
Better Debugging via Output Tracing
and Callstack-Sensitive Slicing

Susan Horwitz, Ben Liblit, and Marina Polishchuk

Abstract—Debugging often involves 1) finding the point of failure (the first statement that produces bad output) and 2) finding and

fixing the actual bug. Print statements and debugger break points can help with step 1. Slicing the program back from values used at

the point of failure can help with step 2. However, neither approach is ideal: Debuggers and print statements can be clumsy and time-

consuming and backward slices can be almost as large as the original program. This paper addresses both problems. We present

callstack-sensitive slicing, which reduces slice sizes by leveraging the series of calls active when a program fails. We also show how

slice intersections may further reduce slice sizes. We then describe a set of tools that identifies points of failure for programs that

produce bad output. Finally, we apply our point-of-failure tools to a suite of buggy programs and evaluate callstack-sensitive slicing and

slice intersection as applied to debugging. Callstack-sensitive slicing is very effective: On average, a callstack-sensitive slice is about

0.31 time the size of the corresponding full slice, down to just 0.06 time in the best case. Slice intersection is less impressive, on

average, but may sometimes prove useful in practice.

Index Terms—Static program slicing, callstack-sensitive analysis, points of failure, output tracing and attribution.

Ç

1 INTRODUCTION

AN erroneous program can fail in two different ways: 1) It
can crash by causing a segmentation fault, throwing an

uncaught exception, etc., or 2) it can produce bad output, but
continue to execute. In case 1, information about the point of
failure is usually provided, often including the line of code
that caused the crash and a stack trace. In case 2, although the
user might be able to identify the first instance of bad output,
it can be a nontrivial task to find the actual point of failure
(the statement that produced that output) and to determine
what the callstack configuration was at the time of failure.

For example, consider the C program shown in Fig. 1a,
which is supposed to compute and print either the product
or the sum of the numbers from 1 to 10, depending on the
command line argument. Function getChoice is imple-
mented incorrectly, which causes the product to be printed
when the sum is expected, and vice versa.

For a run with command line argument sum, the
program prints val: 3628800. The point of failure is
line 25, but that is not obvious; in fact, the person testing
the program may assume that the point of failure is line 19,
where the value of the sum is printed.

The first contribution of this paper is the description of a
suite of tools that we have designed and implemented to
help provide point-of-failure information for programs that
fail by producing bad output. These tools allow a program-
mer to associate each byte of output produced by a

C program (running under Linux) with the code that wrote
that output. For example, for the program in Fig. 1a, our
tools allow a programmer to pinpoint line 25 as the point of
failure when the command line argument is sum. If the
program is compiled with debug information, the sequence
of active function calls at the time the output was written is
also provided. These tools are discussed in Section 2.

Having point-of-failure information is a useful first step
in debugging, but it is rare that the point of failure itself is
the code that needs to be modified to correct the problem. In
our example, although the point of failure is line 25, the
actual bug is the incorrect implementation of function
getChoice on lines 1-4.

Weiser [1] suggests that when programmers debug a
program, they often use backward slicing: They start from the
point of failure and work backward, following data and
control dependences, examining all codes that might affect
the behavior at the point of failure until they find the bug.
Because a backward slice excludes code irrelevant to the
point of failure, this process allows programmers to focus
only on relevant code and thus speeds up the task of
locating the actual bug.

In Fig. 1a, stars indicate the program components that
are in the backward slice from line 25. Excluding code that
has no effect on the value printed at line 25 would probably
help the programmer find the error in function getChoice

more quickly. However, in this example, the whole
program is so small that slicing is not really needed for
debugging. For large programs, slicing can be of limited
value because backward slices can be very large. For
example, the Wisconsin Program-Slicing Tool 1.1 Reference
Manual [2] reports that, in six C programs, the average size
of a backward slice ranged from 19 to 97 percent of the size
of the whole program, and Binkley and Harman [3] report
that, in 43 C programs, the average size of a backward slice
ranged from 7.5 to 62 percent of the size of the whole
program. (In the Wisconsin Program-Slicing Tool 1.1 Reference

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. X, XXXXXXX 2010 1

. S. Horwitz and B. Liblit are with the Department of Computer Sciences,
University of Wisconsin–Madison, 1210 W Dayton St., Madison,
WI 53706-1685. E-mail: {horwitz, liblit}@cs.wisc.edu.

. M. Polishchuk is with Microsoft Corporation, 1 Microsoft Way, Redmond,
WA 98052. E-mail: marinapo@microsoft.com.

Manuscript received 15 Feb. 2009; revised 28 July 2009; accepted 30 July
2009; published online 1 Oct. 2009.
Recommended for acceptance by G. Rothermel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-02-0035.
Digital Object Identifier no. 10.1109/TSE.2009.66.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Manual [2], slices were taken starting from each call to a
library function, while Binkley and Harman [3] took slices
starting from every line of source code.)

One reason that backward slices can be so large is that the
slice back from a statement S in a function f takes into
account all possible calling sequences from main to f . For
example, consider the program shown in Fig. 1b, which is the
same as the original example in Fig. 1a except that the two
calls toprintfhave been replaced by a call to a user-defined
print function. In this version, the point of failure for input
sum is line 4. Unfortunately, in this case, the backward slice
from that line is the entire program because function print

is called to print both the sum and the product.
A desirable backward slice for this example is one that

isolates the execution of line 4 that results from the call to
print at line 31, and not the one at line 25. One possibility
is to use a dynamic slice, first defined by Korel and Laski
[4]. However, as discussed in Section 4, the program

instrumentation required to support dynamic slicing can
introduce slowdowns of 1-3 orders of magnitude [5], which
may be unacceptable for large programs.

An alternative, more efficient kind of slice that takes into
account a given sequence of active function calls was first
introduced by Binkley [6] (where it was called a calling-
context slice). Krinke [7] identified a shortcoming of
Binkley’s algorithm and provided a more precise version
(where it was called a context-restricted slice). We refer to
these slices in this paper as callstack-sensitive slices.

While the full slice of the program in Fig. 1b from line 4 is
the whole program, the callstack-sensitive slice from that
line with one active call at line 31 excludes the loop on lines
21-24, making it clear that the error is unrelated to the way
the sum is computed and helping the programmer find the
bug in function getChoice.

Detailed algorithms for full and callstack-sensitive slicing
are provided by Horwitz et al. [8] and Krinke [7],

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. X, XXXXXXX 2010

Fig. 1. (a) Example of an erroneous program: function getChoice returns the wrong value, which causes the product to be printed when the sum is
expected, and vice versa. For a run with command line argument sum, the point of failure is line 25, and for a run with command line argument prod,
the point of failure is line 19. Stars indicate the lines that are in the slice back from line 25. Boxed line numbers indicate the lines that are in the
intersection of the slices from the two failure points (lines 19 and 25). (b) Similar example but with a separate print function. Boxed line numbers
indicate the lines that are in the intersection of two callstack-sensitive slices from line 4: one with an active call at line 25 and the other with an active
call at line 31.

respectively, and are outside the scope of this paper. For
both techniques, slicing back from a program component C
involves a backward traversal of the edges of the System
Dependence Graph representation of the program. The
important difference arises when component C is in a
procedure P other than main. In that case, the full slice
follows edges back to all call sites that call P, while the
callstack-sensitive slice only follows edges back to the call
site that is at the top of the given callstack. If P was reached
by a sequence of calls from main, e.g., call P1, call P2,. . . ,
call Pn, call P, the full slice continues to follow edges back to
all call sites that call Pn, Pn-1, etc., while the callstack-
sensitive slice only follows edges back to the call sites in the
callstack. For the example program in Fig. 1b, the full slice
back from line 4 includes both lines 25 and 31 (the two call
sites that call function print). The callstack-sensitive slice,
given the callstack that contains the call to print made on
line 25, only follows edges back to the call site on line 25, and
thus, does not include the call to print made on line 31.

An obvious question is whether callstack-sensitive
slicing yields enough of a reduction in slice size to produce
substantially more useful backward slices during debug-
ging. Binkley provided no evaluation of callstack-sensitive
slicing. Krinke did two evaluations. The first [7] evaluated
slicing using two moderate-sized test programs (ctags and
patch). For each program, a “characteristic” execution was
performed, and both full and callstack-sensitive slices were
computed for each function call. For these experiments, the
average full-to-callstack-sensitive slice size ratios were just
1.10 and 1.01 for the two programs. The second evaluation
[9] was performed on 14 moderate-sized programs, includ-
ing ctags and patch. In this case, the programs were not
actually run. Instead, callstacks of depth 1-12 were
generated using the programs’ static callgraphs. This study
found greater size reductions for callstack-sensitive slices.

However, there are several problems with Krinke’s
studies. The first study was clearly too limited since it used
just two programs and just one execution of each. The second
study used callstacks based on the static callgraph; there is
no guarantee that those callstacks could even arise in an
actual execution. Furthermore, in the context of debugging,
we are not interested in slices from all function calls, only in
slices from points of failure. These may lead to very different
results, as Krinke [9] himself warns:

callstacks and criteria in practice will have different proper-
ties than artificially generated callstacks and criteria.

The second contribution of this paper is a series of
experiments that addresses these shortcomings of Krinke’s
work. Our experiments, discussed in Section 3, were carried
out on a total of 285 buggy versions of 11 programs
obtained from the Software Artifact Infrastructure Reposi-
tory [10], [11]. For each point of failure, we compared the
sizes of the whole program, the full slice, and the callstack-
sensitive slice.

For nontoy programs, we found that the full slice
ranged from 3 to 87 percent of the size of the whole
program, with mean 73 percent and median 80 percent.
The size of a callstack-sensitive slice ranged from 3 to 80
percent of the size of the whole program, with mean 35
percent and median 28 percent. In nearly all cases (354
out of 401 different failure points across multiple nontoy

applications), the callstack-sensitive slice was strictly
smaller than the corresponding full slice. In the remaining
cases, the callstack-sensitive and full slices were the same
size. On average, for these programs, a callstack-sensitive
slice was about 0.31 time the size of the corresponding full
slice. In the best case, stack sensitivity yielded a slice just
0.06 time the size of the corresponding full slice.

Callstack-sensitive slicing can be even more helpful
when a single bug causes different test inputs to trigger
failures at different points or at the same point but with
different sequences of active function calls. For example, if
the program in Fig. 1a is tested with the command line
argument sum and then prod, bad output will be produced
at line 25 and then at line 19. If both errors are due to the
same bug, the erroneous code must be in the slices back
from both lines and thus we can make it even easier for the
programmer to locate the bug by displaying the intersection
of those two slices: the boxed lines of code in Fig. 1a.

If the program in Fig. 1b is tested with the command line
argument sum and then prod, bad output will be produced
at line 4 in both runs. In the first case, the active function
call when the wrong output is printed is the one at line 31
and, in the second case, it is the one at line 25. There is only
one full backward slice from line 4, but there are two
(different) callstack-sensitive slices. Boxed lines in Fig. 1b
indicate the intersection of those two slices.

Of course it is not usually known a priori that a program
has just one bug. However, previously developed techni-
ques [12], [13], [14] can be used to cluster runs so that
failures in each cluster are likely to be due to the same bug.
Slice intersections can then be computed for all failures in
the same cluster.

Section 3 includes data about the efficacy of slice
intersection. Although these results are less dramatic than
the comparison of full and callstack-sensitive slicing, we
found that slice intersectionwas occasionally very beneficial.

2 MAPPING BYTES OF OUTPUT TO SOURCE CODE

This section describes our tools for C programs that allow a
programmer to pinpoint code that wrote each byte of
output produced by the program and to use that informa-
tion for debugging.

In the following descriptions, the source code information
associated with a byte of output is the name of the source
file that caused the output to be written, the line number of
the write, and the file names and line numbers of the
function calls active at the time the output was written. We
have implemented the following tools:

The Trace Tool records output information in a trace file
while the program runs.

The Interactive Mapping Tool allows a programmer to
browse the program’s output, and for each selected output
character, to obtain the corresponding source code informa-
tion from the trace file.

The What-Wrote Tool finds and displays the associated
source code information for an output stream and byte
number of interest.

The Compare-Traces Tool takes two programmer-speci-
fied traces as input (e.g., a reference trace representing
correct output and a buggy trace containing bad output),

HORWITZ ET AL.: BETTER DEBUGGING VIA OUTPUT TRACING AND CALLSTACK-SENSITIVE SLICING 3

finds the first byte of output at which the traces differ, and
prints the source code information associated with that byte
in the buggy trace.

In the following sections, we describe the Trace Tool,
outline the format of the trace files, describe the three tools
that make use of the trace files, and finish with a discussion
of the tools’ performance.

2.1 Output Trace Collection

The Trace Tool redefines the standard C library functions
that manipulate files. These redefinitions are provided in a
shared library that can be preloaded into any program’s code
space. Thus, the Trace Tool can be applied to arbitrary
existing code without recompilation. The redefined func-
tions create a trace file (formatted using XML) while the
program runs. The trace file records each output event:
opening an output file, writing to an output file or to stdout
or stderr, and closing an output file. The record of each
write event includes the actual bytes of output written, a
representation of the current callstack, and information
about the code that caused the write. When the Interactive
Mapping, What-Wrote, or Compare-Traces Tools are run,
they use the information in the trace file to allow the
programmer to select individual bytes of output and to
identify the corresponding source code and stack trace.

The Trace Tool takes advantage of several features and
documented extensions of the GNU C compiler (gcc) and
C library (glibc) running under Linux. Table 1 sum-
marizes the extensions used; refer to appropriate platform
documentation for further details [15], [16], [17].

2.1.1 Opens

Our shared library redefines the standard C file-opening
calls: fopen, fopen64, and fdopen. Our implementations
call the corresponding standard implementations from
glibc to actually open the file. We then create a file proxy
object with customized handlers for write, seek, and close
operations. This file proxy is used to trap subsequent output
operations and augment the trace file. The file proxy is set
to be nonbuffered so that our custom handlers will be called
immediately by each output routine without waiting for a
buffer flush. (Otherwise, we would misidentify the code
responsible for output between flushes.)

The fileproxy includesa callback state structureas follows:

1. the real file (FILE *) that we are proxying,
2. the real file’s current byte offset (initially zero unless

appending),
3. an integer ID number unique to this opened-file

instance.

After creating the file proxy, we append a “file opened”
record to the trace file. This record gives the unique ID
number for this file, the associated numeric file descriptor,
and the name of the file opened (omitted in the case of
fdopen). We then return the file proxy to the caller, which
treats it as though it were a standard C FILE *.

Two important files are not opened in this manner:
stdout andstderr. The standard output and error streams
are already set up by theC runtime library before our tracer is
active. Instead, we create a small fragment of initialization
time code that wraps these two files in proxies as we would
for any fdopen call. This initialization code runs before
main, and therefore, no application output is lost.

Note that we proxy FILE * file objects, not raw file
descriptors. Output sent directly to a file descriptor (e.g., via
write instead of fwrite) is not traced. Writes via
memory-mapped files are likewise omitted from the trace.

2.1.2 Writes

The file proxy’s custom write handler performs the bulk of
trace recording work. When the program sends output to a
file proxy, such as by calling fprintf or fwrite, our
custom write handler is called to consume the data. The
handler receives the callback state structure described above
plus a buffer containing the raw data to be written. Note that
any output formatting, such as via fprintf, occurs before
our handler is called. This saves us from having to
reimplement that nontrivial formatting behavior ourselves.

In our custom write handler, we first perform the actual
data write to the real file and then record information about
this write in the trace file. That information includes the
unique ID number for this file, the beginning and ending
byte offsets of the write, and the raw data written. We also
collect and record the vector of saved program counter
addresses on the callstack, thereby identifying the code
location making the output call as well as the entire call
chain from program entry (main) down to that point.
Finally, the current byte offset in the callback state structure
is updated. We track offsets ourselves rather than relying on
ftell because the latter is unreliable on nonseekable
streams such as sockets and pipes.

2.1.3 Seeks and Closes

Our custom seek handler performs the actual seek on the
real file and also updates the current byte offset as recorded
in the callback state structure. The seek is not explicitly
noted as an event in the trace, but will affect the offsets
reported for the next write event.

Our custom close handler notes the close event in the
trace, performs the actual close on the real file, and releases

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. X, XXXXXXX 2010

TABLE 1
Nonstandard Tools and C Extensions Used by the Trace Tool

resources associated with the file proxy object and its
callback state structure.

2.2 Output Trace File Format

Each run of a program records its output in a single trace
file. For multithreaded programs, this file becomes a
serialization point for all output. We designed the trace file
format to be detailed, flexible, and easy to process. Our
implementation is not tuned for performance, and alternate
formats that emphasize compactness and efficiency are
certainly possible.

Our traces are formatted as XMLdocuments, with the top-
level structure consisting of a sequence of open, write, and
close event records. During trace collection, we open the
trace file and print its initial XML declarations and opening
<output-trace> tag as part of pre-main initialization.
Post-main termination code prints the ending </output-

trace> tag and closes the trace; signal handlers ensure that
this finalization takes place even in the event of a crash.

Each stack frame in the output trace is initially of the
form <frame pc = “0x ...”/>. That is, it gives a
hexadecimal program counter address but no source file,
line, or function information. A stand-alone frame resolver
tool traverses the trace and adds file, line, and
function attributes by examining the symbol table and
debug information in the traced binary. If the program was
compiled without debug information, function names are
usually still available. If the program has been stripped (so
that neither function names nor source locations are
available), only the numeric pc attribute is retained.

2.3 Output Trace Exploration and Analysis

We now describe a suite of trace processing tools. The
Interactive Mapping, What-Wrote, and Compare-Traces
Tools help a programmer explore and analyze output traces
produced by the Trace Tool.

Fig. 2 shows the Interactive Mapping Tool, hosted in
any full-featured Web browser, applied to the trace
produced by running the program in Fig. 1b with input
sum. The hand-shaped mouse pointer is hovering over the
first output digit. The highlighted block of text surrounding
this character indicates that the entire “val: 3628800” line
was printed as a single operation. If the program had
performed multiple output operations, only those bytes
written at the same time as the selected character would
have been highlighted.

The box immediately below the mouse pointer gives the
range of bytes in the selected block and prints the source
code information associated with those bytes, as well as the
same information for each active function call. In this case,
the 14 bytes that include the selected character were printed
on line 4 of print, which was, in turn, called from line 31 of
main, and both functions are in example.c. Standard
error follows standard out, but is obscured in this view by
the stack trace. If the program wrote to any other files, these
would also appear in the trace in the order that they were
opened. The “Show Hidden Characters” check box, if
selected, uses special typographic symbols to reveal
nonprinting characters such as spaces, tabs, and newlines.

Given an output file or stream (e.g., stdout) and a byte
of interest (e.g., 6), the What-Wrote Tool prints the source
code information associated with that byte. For example, to

find the code and surrounding stack context that printed
the sixth byte (counting from zero) printed to standard
output by the code in Fig. 1b:

% what-wrote - -stdout = 6 example.xml

example.c 4 print

example.c 31 main.

If the selected byte was written multiple times, such as
via fseek, we provide the information for the last write, as
this produced the final value present in the output after the
program completed.

The Compare-Traces Tool finds the first point of
divergence between a buggy run’s output and a correct,
reference run’s output. It then displays the source code
information for the buggy code that printed this bad byte.
For example, to find the code from Fig. 1b that printed the
first incorrect byte:

% compare-traces reference.xml example.xml

example.c 4 print

example.c 31 main.

The Compare-Traces Tool ignores changes in output
grouping: For example, if the reference trace prints “val:
3628800” in one operation while the buggy trace first
prints “val:” and later prints “3628800,” this is not
considered a divergence. The tool also takes overwriting
into account: An incorrect byte is only treated as a point of
difference if that byte is not subsequently “corrected” by a
later write at the same stream position.

At first, one might think that the functionality of the
Compare-Traces Tool could be achieved by combining the
Unix diff utility with the What-Wrote Tool. This is true
except when the program writes to multiple output streams.
In that case, diff has no way to know the order in which
output bytes were written to the different streams. Because

HORWITZ ET AL.: BETTER DEBUGGING VIA OUTPUT TRACING AND CALLSTACK-SENSITIVE SLICING 5

Fig. 2. Interactive browsing of output trace for code in Fig. 1b run with
input sum. The “3” character in standard output is selected.

our Trace Tool produces a single trace file that keeps track of
the bytes of outputwritten to all streams, theCompare-Traces
Tool is able to correctly identify the first point of difference,
regardless of the output stream in which it occurs.

Although our present interest is in attributing erro-
neous output to the faulty code that produced it, these
tools may be useful for a variety of other tasks as well,
including the following:

. Asanapplication evolves, onemaywish to change the
format of what was previously correct output; output
tracing can identify the code that should be modified,
and can prevent surprises by identifying other output
also produced by the code being changed.

. Similarly, these tools can help debug internationali-
zation errors that “leak” English text in what should
be a non-English localization of a user interface.

. The tools support a limited form of learning by
example: Given some output in a desired format, we
can pinpoint the corresponding code and thereby
reveal the (often obscure) format string that can then
be used to produce similar output elsewhere.

. An output trace can help recognize similar output
produced by distinct pieces of code, which may, in
turn, guide refactoring to centralize common out-
put functionality.

2.4 Tool Performance

Here, we discuss the efficiency of our tools. How much
overhead is incurred when a program is run using our
versions of the file manipulation functions and how long
does it take to find the source code line that produced a
given byte of output?

During trace collection, every byte of normal output is
replicated in the trace, along with information about the
current program point and callstack. For the test applica-
tions used in our experimental evaluation (Section 3), we
find that output tracing roughly doubles execution time,
with slowdowns ranging from 1.94 to 2.78. Note that the
slowdown can vary widely, depending on the application:
Output tracing imposes zero overhead for internal compu-
tations that do not perform output.

Our trace exploration and analysis tools use scripted
sequences of XPath queries to resolve mapping requests.
Although our verbose trace format is not tuned for speed,
the core XPath implementation is provided by the fairly
fast libxml2 C library [18]. The What-Wrote Tool can
resolve batch queries on a large (1.3 megabytes) trace in
roughly 0.6 second. Interactive browsing for traces of
moderate size is, for all practical purposes, instantaneous.

3 EXPERIMENTAL RESULTS

The goal of our experiments was to assess how effective
callstack-sensitive slicing and taking intersections of slices
are likely to be in the context of program debugging.
Therefore, our methodology was as follows:

1. Find buggy versions of C programs with test
inputs that cause failures (either crashes or
erroneous output).

2. Run the programs. Find the points of failure and the
callstacks at those points.

3. Compute full and callstack-sensitive slices from the
points of failure, and compare the slice sizes.

4. For each program with test inputs that cause failures
at different points, compare the size of the smallest
full slice from one of those points with the size of the
intersection of the full slices from all of those points
(and similarly for the callstack-sensitive slices).

5. For each program with test inputs that cause failures
at the same point but with different callstacks,
compare the size of the smallest callstack-sensitive
slice from that point with the size of the intersection
of all callstack-sensitive slices from that point.

To compute slices, we used the CodeSurfer slicing tool
[19]. CodeSurfer builds a System Dependence Graph [8], [20]
representation of a C program and uses the slicing algorithm
of Horwitz et al. [8] to produce full slices. It also provides a
Scheme API, which we used to implement callstack-
sensitive slicing. The slices produced by CodeSurfer are
sets of nodes of the underlying System Dependence Graph.

CodeSurfer provides a mapping from graph nodes to
source code lines. We use this mapping to determine the
sizes of programs and slices, which are reported in the
following sections. For program sizes, we count the number
of source code lines that correspond to at least one node in
the program’s System Dependence Graph. For slice sizes, we
count the number of source code lines that correspond to at
least one node in the slice. Some examples of source code
lines that will not be counted in either program or slice size
are lines that contain only comments, preprocessor direc-
tives, curly braces, and typedefs.

3.1 Test Programs

The buggy C code that we used comes from the Software-
artifact Infrastructure Repository [10], [11]. Table 2 provides
information about the programs. The first seven constitute
the Siemens suite: a set of small, toy programs (all less than
1,000 lines of code) originally collected by Hutchins et al.
[21]. For each of the programs in the Siemens suite, there are
one bug-free “reference” version and from 7 to 41 additional
versions with introduced bugs. The eighth program, space,
is an application mentioned in work by Vokolos and Frankl
[22] and Wong et al. [23]. For space, there are one reference
version and 34 buggy versions. In this case, the bugs are real
errors that were identified during the testing and opera-
tional use of the program. The final three programs are Unix
utilities. For each of these programs, there are five reference
versions that are actual field releases of that program. For
each reference version, there are a number of additional
versions with introduced bugs.

The information in Table 2 is as follows:
Number of code lines. Average number of lines of

source code in each buggy version of the application. As
discussed above, we count only lines that correspond to at
least one node in the program’s System Dependence Graph.

Number of buggy versions. Number of nonreference
variants that produce at least one crash or bad output
failure on the application’s test suite. For the Unix utilities,
this is the total number of buggy versions across all of the
reference versions.

Total number of failures. For each program, this is the
total number of failures across all buggy versions. Each run
of a buggy version can have 0, 1, or 2 failures: A run that

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. X, XXXXXXX 2010

produces the same output as the reference version and does
not crash counts as 0 failures. A run that produces bad
output but does not crash, or that crashes without having
produced bad output, counts as 1 failure. A run that
produces bad output then crashes counts as 2 failures.

Number of unique failures. For each buggy version of a
program, there may be many inputs that cause the program
to fail at the same point and with the same active callstack.
For debugging purpose, all of those failures are associated
with the same full slice and the same callstack-sensitive slice.
Therefore, in the graphs of Figs. 3, 4, 5, and 6, all of those
failures are represented by just one point on the x-axis. This
column states how many distinct x-axis points there are for
each program.

3.2 Comparisons of Callstack-Sensitive Slice Sizes
and Full Slice Sizes

In this section, we consider whether using callstack-sensitive
slices can significantly reduce the amount of code that a
programmer has to examine during debugging. Fig. 3 shows
howmuch larger full slices are than callstack-sensitive slices
for our test programs. There is one graph for all of the
Siemens applications combined, and one graph each for
space, flex, grep, and gzip. As explained above, each

point on the x-axis corresponds to a unique point-of-failure/
callstack pair for one buggy program version. For example,
if one buggy version fails at the same point and with the
same callstack under 10 different inputs, then all 10 of those
failing runs are represented by one tick mark in the graph.
Each graph shows the ratio of the size of the full slice from
the point of failure to the size of the callstack-sensitive slice
from that point. In each graph, the points (ratios) are sorted
by size. Note that the scale of the y-axis is different for each
of the five graphs.

For the seven Siemens programs, there is generally
little advantage to using callstack-sensitive slicing. There
are 14 cases where the full slice is more than 1.3 times the
size of the corresponding callstack-sensitive slice. On
average, though, full slices are 1.03 times the size of the
corresponding callstack-sensitive slice. In other words, on
average, stack sensitivity shrinks a slice only very slightly.
However, the Siemens suite consists entirely of small, toy
programs, and thus, these results are not likely to predict
the effects of stack sensitivity when slicing real code.

The results for the other test programs are more
encouraging. The best results are for grep and gzip. In
58 out of 101 cases for grep, the ratio is over 4, and the
maximum ratio is 17.24. In 46 out of 103 cases for gzip, the

HORWITZ ET AL.: BETTER DEBUGGING VIA OUTPUT TRACING AND CALLSTACK-SENSITIVE SLICING 7

TABLE 2
Information about the Test Programs Used in the Experiments

Fig. 3. Ratio of size of full slice to size of callstack-sensitive slice. Note that the scale of the y-axis is different for each graph. (a) All Siemens
applications, (b) space, (c) flex, (d) grep, and (e) gzip.

ratio is over 4 and the maximum ratio is 6.38. The average

ratio across all non-Siemens tests is 3.22 (the average ratio is

1.72 for space, 1.30 for flex, 4.33 for gzip, and 5.42 for

grep), and the median ratio across all non-Siemens tests is

3.09 (the median ratio is 1.10 for space, 1.29 for flex, 3.74

for gzip, and 4.65 for grep).
The factor that affects the power of callstack sensitivity is

the total number of calls to the functions in the callstack. This

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. X, XXXXXXX 2010

Fig. 5. Ratio of size of full slice to size of callstack-sensitive slice for all applications, grouped by types of recursion present.

Fig. 6. Ratio of size of the smallest single slice to size of the intersection for applications with failures at multiple different points. (a) Siemens
applications using full slices. (b) Siemens applications using callstack-sensitive slices. (c) Non-Siemens applications using full slices. (d) Non-
Siemens applications using callstack-sensitive slices.

Fig. 4. Example programs that illustrate that the benefits of callstack sensitivity depend on the number of calls to the functions in the given callstack.

is because the full slicewill include all calls to those functions,
while the callstack-sensitive slice will include only the calls
that match the given callstack. In general, therefore, the
deeper a program’s callstacks can be and themore calls there
are to the program’s functions, the more helpful stack
sensitivity will be (i.e., the smaller the callstack-sensitive
slice will be relative to the full slice). To illustrate this,
consider the two programs shown in Fig. 4. In the program in
Fig. 4a, each function has only 1 call site, and the maximum
depth of the callstack is 1. Therefore, for every line of this
program, the full and callstack-sensitive slices are exactly the
same. In the program in Fig. 4b, function c has three call sites,
and functionbhas twocall sites. The full slice from line2 is the
whole program, but the callstack-sensitive slice from line 2
with the callstack (lines 11 and 15) (of depth 2) includes only
the lines whose line numbers are enclosed in boxes.

The effects illustrated in Fig. 4 suggest that the length of
the longest acyclic path in a program’s callgraph and the
number of call sites for each function might be good
predictors of the benefits of callstack-sensitive slicing. To
investigate this hypothesis, we gathered data for the
reference versions of all of our test programs. We found
that in the Siemens suite, the longest acyclic callgraph path
(i.e., the maximum callstack depth for a sequence of
nonrecursive calls)1 is 8, the average number of calls to a
function ranges from 1.3 to 2.2, and no function is called
from more than 18 call sites. In contrast, for the other test
programs, maximum acyclic callgraph path length ranges
from 13 to 20, the average number of calls to a function
ranges from 3.0 to 6.4, and the maximum number of calls to
a function ranges from 24 in grep to 198 in flex. Therefore,
it is not surprising that callstack-sensitive slicing provides
much greater benefit for the more complex programs than it
does for the simpler programs of the Siemens suite.

These static metrics let developers predict whether
callstack-sensitive slicing is likely to be beneficial before
running a program. However, it is also worth considering
whether such measures comport with runtime behavior. For
the Siemens suite, callstacks at distinct points of failure
average 2.4 calls deep (minimum 1, median 2, maximum 8)
including the point of failure itself. Across all distinct points
of failure in all non-Siemens applications, the average
callstack depth roughly doubles to 4.9 calls (minimum 1,
median 4, maximum 16). This is consistent with the maximal
acyclic depths found via static callgraph analysis above.

Given the low overhead of our output tracing tools and
the slice size reductions seen for the more complex test
applications, we conclude that callstack-sensitive slicing is a
sensible tool for programmers to employ when debugging
real applications.

3.3 Impact of Recursion

Krinke [9] defines three types of recursions as follows:
Neither: no recursion. Present in some versions of

Siemens applications and all versions of space.
Simple: exactly one recursive call per recursive compo-

nent (the recursive component may include multiple
functions, but there is only one call to the component from

outside). Present in some versions of Siemens applications
and some versions of flex.

Complex: more than one recursive call per recursive
component. Present in all versions of gzip.

Both: simple and complex recursion in different recur-
sive components of the same program. Present in some
versions of flex and all versions of grep.

Krinke [9] reports increasing benefit from callstack
sensitivity when moving from nonrecursive to simple-
recursive to complex-recursive programs.

Our findings are less clear. Fig. 5 shows the same data
points and ratios from all plots of Fig. 3, here on a
logarithmic y-scale and grouped by the types of recursion
present in the failing program. Based on this data, it seems
that callstack-sensitive slicing is likely to be more beneficial
for complex-recursive programs than for simple-recursive
programs. This agrees with Krinke’s findings. However,
there are also cases where callstack-sensitive slicing
provides more benefit for nonrecursive programs than for
simple-recursive programs, and the largest ratios of all are
for programs with both simple and complex recursion.
Furthermore, ratios in complex-recursive gzip and non-
recursive space are fairly similar, while flex, whose
variants have both simple and complex recursion, has the
lowest ratios of all the non-Siemens applications.

As suggested before, the disparity between our results
and Krinke’s may be due in part to the differing pools of
slices considered: We slice only from actual failure points,
whereas Krinke’s recursion study sliced from all possible
call sites (up to a bounded stack depth) as determined by a
static callgraph.

3.4 Comparisons of Slice Intersection Sizes and
Individual Slice Sizes

In this section, we examine the benefits of intersecting slices
when a program that is run on different inputs fails at
different points or fails at the same point but with different
callstacks. As mentioned in Section 1, intersecting slices
only makes sense if all failures are caused by the same bug
because only in that case will the slice intersection include
the bug. When it is not known a priori that a program has
just one bug, previously developed techniques [12], [13],
[14] can be used to cluster runs so that failures in each
cluster are likely to be due to the same bug. Slice
intersections would then be computed only for failures in
the same cluster. In our experiments, each buggy version of
a program has just one bug, so it is reasonable to consider
the benefits of slice intersection.

Intersecting slices is advantageous only if the size of the
intersection is smaller than the size of the single smallest
slice: If not, the programmer can simply look at the smallest
slice. Therefore, we considered the ratios of the size of the
smallest slice to the size of the intersection.

For programs that fail at the same point but with different
callstacks, there is only one full slice, so we considered only
the intersections of the callstack-sensitive slices from that
point of failure. For the Siemens suite, slice intersection
provided no benefit; in every case, the intersection was
identical in size to the smallest individual callstack-sensitive
slice. For the non-Siemens programs, on average, the
smallest individual callstack-sensitive slice was 1.02 times
the size of the intersection of slices. However, in 39 out of

HORWITZ ET AL.: BETTER DEBUGGING VIA OUTPUT TRACING AND CALLSTACK-SENSITIVE SLICING 9

1. Recursion can of course increase the depth of the callstack. Two of the
Siemens-suite programs, print_tokens and tot_info, each have one
recursive function; space has none; the reference versions of flex each
have one or two; the reference versions of grep each have nine or 10; and
the reference versions of gzip each have one.

54 cases, this ratio was above 1.05, and the maximum ratio
1.09 arose in 10 cases.

For programs that fail at different points, we compared
the size of the intersection of all full slices from those points
with the size of the smallest of the full slices, and also the
size of the intersection of all callstack-sensitive slices from
those points with the size of the smallest of the callstack-
sensitive slices. Figs. 6a and 6b show the ratio of smallest
single slice size to intersection size for Siemens applications.
For the Siemens suite, the smallest full slice was, on
average, 1.02 times the size of the intersection of full slices;
in the best case, this ratio was 1.10. These ratios were very
similar for callstack-sensitive slices; the average and
maximum remain 1.02 and 1.10, respectively.

Figs. 6c and 6d show the same ratios (smallest single slice
size to intersection size) for the non-Siemens programs. The
benefits of intersecting full slices are smaller than those for
the Siemens suite: The average ratio of the smallest full slice
to intersection of full slices was 1.001 and the maximum
ratio was 1.009. Intersecting callstack-sensitive slices for the
non-Siemens programs was more beneficial: The average
ratio was 1.06, and in the best case was 2.38.

Note that we have assumed that the smallest slice is
readily available in our intersection experiments. This is
true in a typical in-house testing scenario, with failures
derived from a finite test suite under developer control. A
developer can run the entire test suite first, then cherry-pick
the single smallest slice while ignoring all others. If the
entire test suite can be run in a reasonable amount of time,
there is no reason not to wait for the one smallest slice.

However, postdeployment debugging is an alternative
but equally important scenario. If failures are being
collected from the field in an ongoing manner, then
continuous intersection of slices as reports arrive may help
narrow the search for a bug without having to wait for an
ideal (small slice) failure to come along. Thus, in this
context, slice intersection can still help developers by
providing small slices in a more timely manner.

4 RELATED WORK

This section first discusses how callstack-sensitive slicing
fits in the slicing framework defined by Binkley et al. [24],
[25], and then considers how it relates to techniques for
reducing the sizes of slices based on criteria other than
active callstacks.

4.1 Slicing Framework

Harman et al. [26] define a projection theory of program
slicing. Binkley et al. [24], [25] use that theory to show the
semantic relationships among eight different kinds of
slicing. For example, it is shown that dynamic slicing
subsumes static slicing because every semantically correct
static slice is also a semantically correct dynamic slice.

Three orthogonal dimensions were considered, involving
the following constraints:

. input values: does the slice preserve execution
behavior for all possible inputs or only for a given
input?

. path sensitivity: do the execution paths in the slice
match those in the original program, or is it only the
final values of the variables of interest that match?

. iteration-count sensitivity: does the slice preserve the
values of the variables of interest at all execution
instances of the point from which the slice is taken,
or only for a particular, given instance?

Callstack-sensitive slicing involves a new kind of constraint
on calling context and thus provides an interesting new
fourth dimension along which to compare different kinds of
slicing. The calling-context dimension would be similar to
the iteration-count dimension: The latter allows one to
specify, for code inside a loop, which iterations are of
interest, while the former allows one to specify, for code in a
called function, which active calling contexts are of interest.

It is worth noting, however, that the relationships
defined by Binkley et al. [24], [25] provide no information
about the relative sizes of the slices produced by algorithms
that implement the different kinds of slicing. In the
proposed new fourth dimension, callstack-sensitive static
slicing would subsume “plain” (i.e., full) static slicing, but
this says nothing about how much smaller callstack-
sensitive slices are in practice. The investigation of that
question is the subject of this paper.

4.2 Other Techniques for Reducing Slice Size

4.2.1 Dynamic Slicing

Dynamic slicing was originally defined by Korel and Laski
[4]. The idea is to take a slice from a particular execution
instance of a statement. A slice is specified by providing the
statement of interest S, plus additional information to
identify the instance of interest, such as the time t at which
the statement executed. The dynamic slice from S at time t

includes only the statements that actually influenced the
execution of that instance of S, rather than the statements
that might influence some instance of S.

The dynamic slice from an output statement at the time
that the first erroneous value was written would, in general,
be a smaller slice than the callstack-sensitive slices proposed
here. However, dynamic slicing comes with a price: The
program must be instrumented to gather an execution trace,
and dynamic slicing itself can be very slow. Recent work
[27], [28] has addressed the second problem (the time
required for computing a dynamic slice), but the authors
report program slowdowns of 1-3 orders of magnitude [5].
As discussed in Section 2.4, our tracing tool (the output of
which provides the callstacks used to compute callstack-
sensitive slices) has comparatively very low overhead, with
slowdowns ranging from 1.94 to 2.78 in our experiments.
Callstack-sensitive slicing is done using the program’s
System Dependence Graph (SDG) representation, which
requires time polynomial in the size of the program to build
[20]. Once the SDG is built, any number of callstack-
sensitive slices can be computed. The worst-case time for a
single callstack-sensitive slice is linear in the size of the slice
times the depth of the callstack.

While future work may succeed in reducing the over-
head of dynamic slicing, it is not clear how much better
dynamic slices are than callstack-sensitive slices or whether
the potential for reduced slice size will outweigh the
disadvantage of program slowdown.

4.2.2 Parametric Slicing

Parametric slicing, as defined by Field et al. [29], is related to
partial evaluation [30]. Both are static techniques that take
into account some input values or some constraints on input

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. X, XXXXXXX 2010

values (e.g., the value read into x is greater than zero). Field
et al. [29] define parametric slicing as a framework, where
slicing is carried out using a set of rewriting rules. The size
of a parametric slice depends both on the particular
rewriting rules that are used (with the usual trade-offs
between precision and efficiency) and the particular
constraints provided. For example, consider slicing the
program in Fig. 1b. Given a reasonable set of rewriting rules
and the constraint that the input value (the command line
argument) is sum, the parametric slice from line 4 is the same
as the callstack-sensitive slice from line 4 with an active call
at line 31. However, the parametric slice from line 4 is worse
(larger) than the callstack-sensitive slice if the constraint is
that the input value is either sum or prod; in this case, the
parametric slice is the same as the full slice. Finally, to see an
example where a parametric slice is better than a callstack-
sensitive one, consider the code in Fig. 7. This code is similar
to the code in Fig. 1b, except that the sum and product are
computed in variable result rather than in separate
variables sum and prod, and there is just one call to
function print to print the final value of result. Because
there is only one call to print, the callstack-sensitive slice
from line 4 (with an active call at line 32) is the same as the

full slice; in particular, it includes lines 20-23. In contrast, the
parametric slice from line 4 with the constraint that the input
value is sum excludes those four lines.

4.2.3 Conditioned Slicing

Conditioned slicing [31], [32], [33] is very similar to
parametric slicing in that the programmer is able to specify
constraints on input values. The examples discussed above
for which parametric slicing is better, worse, and the same
as callstack-sensitive slicing apply to conditioned slicing as
well. Fox et al. [33] discuss an extension to conditioned
slicing that allows the specification of constraints (e.g.,
x ¼ y) that must hold at the statement from which a slice is
taken, but the details of the approach are not clear, and
there is no discussion of an implementation or of experi-
mental results.

4.2.4 Hybrid Slicing

Hybrid slicing [34] is a dynamic technique, used in
conjunction with a debugger that allows the programmer
to set break points. The system keeps track of the sequence
of break points encountered as the program is run as well as
the sequence of function calls and returns that are executed.
When a slice is requested, the sequence of break points that
have and have not been encountered plus the sequence of
function calls/returns that have executed are used to
compute a safe approximation to the paths that might have
been taken (and those that could not have been taken). This
approximation is used to exclude some program compo-
nents from the slice.

If a complete history is maintained, a hybrid slice will
always be at least as small as the corresponding callstack-
sensitive slice. However, as suggested by Gupta et al. [34],
the cost of hybrid slicing may be unacceptable if complete
break point and call/return histories are maintained.
Therefore, it is proposed that histories should be truncated
to some predefined length. Clearly, when histories are
truncated, it is possible to construct examples for which a
hybrid slice is arbitrarily worse than the corresponding
callstack-sensitive slice.

The experiments reported by Gupta et al. [34] are quite
limited. They used very short programs (no more than
688 lines of code) and gave no timing data. Thus, it is
difficult to predict how much history truncation will be
required or how hybrid slice sizes will compare to the
corresponding callstack-sensitive slice sizes in practice.

4.2.5 Call-Mark Slicing

Call-mark slicing, defined by Nishimatsu et al. [35],
involves tracking of statements that execute at least once
when a program is run. That information is used to reduce
slice sizes by halting the backward traversal of the System
Dependence Graph when a nonexecuted component is
reached. The authors point out that it is not necessary to
track every statement in the program: If statement S1

dominates statement S2 in the program’s control-flow
graph or if both statements occur in the same basic block,
then (for a terminating program) if S1 does not execute,
neither does S2. The technique is called call-mark slicing
because they suggest limiting runtime tracking to the call
statements in the program.

Fig. 8 contains a program to illustrate that for different
examples, call-mark slicing can produce slices that are

HORWITZ ET AL.: BETTER DEBUGGING VIA OUTPUT TRACING AND CALLSTACK-SENSITIVE SLICING 11

Fig. 7. Example to illustrate a case where parametric slicing produces a
smaller slice than callstack-sensitive slicing.

smaller than, the same size as, or larger than those
produced by callstack-sensitive slicing. The new example
program computes and prints either the sum or the product
of the numbers from 1 to N , for each value N supplied as a
command line argument. If N is less than 20, the product is
computed; otherwise, the sum is computed.

If the example program is run with the input 10, line 4
(the call to printf in function print) is executed once,
with an active call at line 25. The full slice from line 4 is the
whole program. The callstack-sensitive slice and the call-
mark slice are identical: Both omit lines 27-31.

If the example program is run with the input 10 100,
line 4 is executed twice: first with an active call at line 25
and then with an active call at line 31. In this case, the full
and call-mark slices are identical: Both consist of the whole
program. This is true whether only call statements or all
statements are tracked because in this case, all statements in
the program are executed. The callstack-sensitive slice with
the first callstack omits lines 27-31, and with the second
callstack, it omits lines 21-25.

If the example program is run with the input 1, line 4 is
executed oncewith an active call at line 25. The full slice is the

whole program, the callstack-sensitive slice omits lines 27-31,
and the call-mark slice additionally omits lines 22 and 23.

4.2.6 Set Operations on Slices

Ours is not the first work to contemplate forming intersec-
tions of slices. Gallagher and Lyle [36] suggest using slice
intersections for software quality assurance auditing of
safety-critical code. Intersections of backward slices identify
possible interactions between critical components, with an
empty intersection revealing two components to be mu-
tually independent.

Agrawal et al. [37] propose a debugging paradigm based
on dynamic slicing and backtracking. Their prototype
implementation, SPYDER, allows user-directed slice differ-
encing and intersection to “give the user the ability to obtain
dynamic program dices (and more).” The particular role of
intersections in debugging is not explored further, and no
empirical evaluation is offered.

While slices shrink under intersection and differencing,
operations that make slices larger can also be useful.
Mulhern and Liblit [38] describe debugging strategies
based on unions of slices. They show that many algorithms
give slices whose unions do not behave as expected and
offer a novel slicing algorithm that is both precise and well
behaved under union.

5 CONCLUSIONS

We have described techniques that have the potential to
make a significant difference in how, and how effectively,
programmers debug their code. Our output trace collection
and analysis tools allow a programmer to find point-of-
failure information for programs that produce bad output.
Given a point of failure identified by those tools or by a
crash, callstack-sensitive slicing helps a programmer find
the problem more quickly by reducing the size of the
backward slice from that point.

Experimental evaluation of our proposed approach is
very promising: The overhead of the trace and mapping
tools is minimal, and callstack-sensitive slicing can drama-
tically decrease slice sizes.

We have also investigated the use of slice intersection for
debugging programs that fail in multiple ways. While the
improvements gained this way are more modest than those
gained via the use of callstack-sensitive slices, they are still
likely to be worthwhile in many cases in practice.

ACKNOWLEDGMENTS

This work was supported in part by AFOSR grant FA9550-
07-1-0210; LLNL contract B580360; and the US National
Science Foundation (NSF) grants CCF-0621487, CCF-
0701957, CCR-0305387, and CNS-0720565. Any opinions,
findings, and conclusions, or recommendations expressed
in this material are those of the authors and do not
necessarily reflect the views of the NSF or other institutions.
M. Polishchuk was with the University of Wisconsin–
Madison when this work was performed.

REFERENCES

[1] M. Weiser, “Program Slicing,” IEEE Trans. Software Eng., vol. 10,
no. 4, pp. 352-357, July 1984.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. X, XXXXXXX 2010

Fig. 8. Example to illustrate cases where call-mark slicing produces
slices that are smaller than, the same size as, and larger than those
produced by callstack-sensitive slicing.

[2] Wisconsin Program-Slicing Tool 1.1 Reference Manual, Wisconsin
Alumni Research Foundation, http://www.cs.wisc.edu/wpis/
slicing_tool/slicing-manual.ps, Nov. 2000.

[3] D. Binkley and M. Harman, “A Large-Scale Empirical Study of
Forward and Backward Static Slice Size and Context Sensitivity,”
Proc. 2003 Int’l Conf. Software Maintenance, Sept. 2003.

[4] B. Korel and J. Laski, “Dynamic Program Slicing,” Information
Processing Letters, vol. 29, no. 3, pp. 155-163, 1988.

[5] R. Gupta, personal communication, 2006.
[6] D. Binkley, “Semantics Guided Regression Test Cost Reduction,”

IEEE Trans. Software Eng., vol. 23, no. 8, pp. 498-516, Aug. 1997.
[7] J. Krinke, “Context-Sensitivity Matters, but Context Does Not,”

Proc. Int’l Workshop Source Code Analysis and Manipulation, pp. 29-
35, 2004.

[8] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing
Using Dependence Graphs,” ACM Trans. Programmings Languages
and Systems, vol. 12, no. 1, pp. 26-60, Jan. 1990.

[9] J. Krinke, “Effects of Context on Program Slicing,” J. Systems and
Software, vol. 79, no. 9, pp. 1249-1260, 2006.

[10] G.R.H. Do and S. Elbaum, “Supporting Controlled Experimenta-
tion with Testing Techniques: An Infrastructure and Its Potential
Impact,” Empirical Software Eng.: An Int’l J., vol. 10, no. 4, pp. 405-
435, 2005.

[11] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do, “Software-
Artifact Infrastructure Repository,” http://sir.unl.edu/portal/,
Sept. 2006.

[12] P. Francis, D. Leon, M. Minch, and A. Podgurski, “Tree-Based
Methods for Classifying Software Failures,” Proc. 15th Int’l Symp.
Software Reliability Eng., pp. 451-462, 2004.

[13] M. Haran, A. Karr, A. Orso, A. Porter, and A. Sanil, “Applying
Classification Techniques to Remotely-Collected Program Execu-
tion Data,” Proc. 10th European Software Eng. Conf., pp. 146-155,
2005.

[14] A. Zheng, M. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
Debugging: Simultaneous Identification of Multiple Bugs,” Proc.
23rd Int’l Conf. Machine Learning, pp. 1105-1112, June 2006.

[15] The GNU C Library, 0th ed., The Free Software Foundation, July
2001.

[16] GNU Binutils, binutils 2.17 ed., The Free Software Foundation,
June 2006.

[17] R.M. Stallman andthe GCC Developer Community, Using the
GNU Compiler Collection (GCC), gcc 4.1.1 ed., The Free Software
Foundation, May 2006.

[18] D. Veillard, The XML C Parser and Toolkit of Gnome, http://
xmlsoft.org/, Sept. 2006.

[19] GrammaTech, Codesurfer, http://www.codesurfer.com, Sept. 2006.
[20] T. Reps, S. Horwitz, and G. Rosay, “Speeding up Slicing,” Proc.

ACM SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 11-20,
Dec. 1994.

[21] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments
of the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,” Proc. Int’l Conf. Software Eng., pp. 191-200,
May 1994.

[22] F.I. Vokolos and P.G. Frankl, “Empirical Evaluation of the Textual
Differencing Regression Testing Technique,” Proc. Int’l Conf.
Software Maintenance, pp. 44-53, Nov. 1998.

[23] W.E. Wong, J.R. Horgan, A. Mathur, and A. Pasquini, “Test Set
Size Minimization and Fault Detection Effectiveness: A Case
Study in a Space Application,” Proc. 21st Int’l Computer Software
and Applications Conf., pp. 522-528, Aug. 1997.

[24] D. Binkley, S. Danicic, T. Gyimothy, M. Harman, A. Kiss, and B.
Korel, “Theoretical Foundations of Dynamic Program Slicing,”
Theoretical Computer Science, vol. 360, no. 1, pp. 23-41, 2006.

[25] D. Binkley, S. Danicic, T. Gyimothy, M. Harman, A. Kiss, and B.
Korel, “A Formalisation of the Relationship between Forms of
Program Slicing,” Science of Computer Programming, vol. 62, no. 3,
pp. 228-252, 2006.

[26] M. Harman, D. Binkley, and S. Danicic, “Amorphous Program
Slicing,” J. Systems and Software, vol. 68, no. 1, pp. 45-64, 2003.

[27] X. Zhang and R. Gupta, “Cost Effective Dynamic Program
Slicing,” Proc. ACM SIGPLAN 2004 Conf. Programming Language
Design and Implementation, pp. 94-106, June 2004.

[28] X. Zhang, R. Gupta, and Y. Zhang, “Cost and Precision Tradeoffs
of Dynamic Data Slicing Algorithms,” ACM Trans. Programming
Languages and Systems, vol. 27, no. 4, pp. 631-661, July 2005.

[29] J. Field, G. Ramalingam, and F. Tip, “Parametric Program Slicing,”
Proc. ACM Symp. Principles of Programming Languages, pp. 379-392,
Jan. 1995.

[30] N. Jones, C. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. Prentice Hall Int’l, 1993.

[31] S. Danicic, C. Fox, M. Harman, and R. Hierons, “ConSIT: A
Conditioned Program Slicer,” Proc. Ninth IEEE Working Conf.
Reverse Eng., pp. 216-226, Oct. 2000.

[32] D. Daoudi, S. Danicic, J. Howroyd, M. Harman, C. Fox, and M.
Ward, “ConSUS: A Scalable Approach to Conditioned Slicing,”
Proc. Ninth IEEE Working Conf. Reverse Eng., pp. 109-118, Oct. 2002.

[33] C. Fox, M. Harman, R. Hierons, and S. Danicic, “Backward
Conditioning: A New Program Specialisation Technique and Its
Application to Program Comprehension,” Proc. Ninth Int’l Work-
shop Program Comprehension, pp. 89-97, May 2001.

[34] R. Gupta, M. Soffa, and J. Howard, “Hybrid Slicing: Integrating
Dynamic Information with Static Analysis,” ACM Trans. Software
Eng. and Methodology, vol. 6, no. 4, pp. 370-397, Oct. 1997.

[35] A. Nishimatsu, M. Jihira, S. Kusumoto, and K. Inoue, “Call-Mark
Slicing: An Efficient and Economical Way of Reducing Slice,” Proc.
21st Int’l Conf. Software Eng., pp. 422-431, 1999.

[36] K.B. Gallagher and J.R. Lyle, “Using Program Slicing in Software
Maintenance,” IEEE Trans. Software Eng., vol. 17, no. 8, pp. 751-
761, Aug. 1991.

[37] H. Agrawal, R.A. DeMillo, and E.H. Spafford, “Debugging with
Dynamic Slicing and Backtracking,” Software—Practice & Experi-
ence, vol. 23, no. 6, pp. 589-616, 1993.

[38] A. Mulhern and B. Liblit, “Effective Slicing: A Generalization of
Full and Relevant Slicing,” Technical Report 1639, Univ. of
Wisconsin-Madison, June 2008.

Susan Horwitz received the PhD degree in
computer science from Cornell University in
1985. She has been on the faculty of the
Department of Computer Sciences at the Uni-
versity of Wisconsin–Madison since September
1985, serving as an associate chair from 2004 to
2007. Her research has mainly focused on the
design and implementation of language-based
programming tools, including the design of
algorithms for program slicing, on-demand

data-flow analysis, and the analysis of programs with pointers.

Ben Liblit received the PhD degree from the
University of California Berkeley with advisor
Alex Aiken in 2004. He is an assistant professor
in the Department of Computer Sciences at the
University of Wisconsin–Madison. His research
combines static, dynamic, and statistical meth-
ods to create debugging tools that cope with the
ugly complexities of real-world software devel-
opment. He received the 2005 ACM Doctoral
Dissertation Award for his work on postdeploy-

ment statistical debugging.

Marina Polishchuk received the MS degree
in computer science from the University of
Wisconsin–Madison in 2006. She has been a
software development engineer in test at
Microsoft since 2006. She currently works to
advance testing at Microsoft as a whole in
Microsoft’s Engineering Excellence Team,
where she trains, mentors, and collaborates
with testers to establish the best practices.
Her primary interests are debugging, program

understanding, automated test generation, and compiler testing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HORWITZ ET AL.: BETTER DEBUGGING VIA OUTPUT TRACING AND CALLSTACK-SENSITIVE SLICING 13

