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Stroke is the second most common cause of death worldwide, responsible for

6.24 million deaths in 2015 (about 11% of all deaths). Three out of four stroke

survivors suffer long term disability, as many cannot return to their prior employment

or live independently. Eighty-seven percent of strokes are ischemic. As an increasing

volume of ischemic brain tissue proceeds to permanent infarction in the hours

following the onset, immediate treatment is pivotal to increase the likelihood of

good clinical outcome for the patient. Triaging stroke patients for active therapy

requires assessment of the volume of salvageable and irreversible damaged tissue,

respectively. With Magnetic Resonance Imaging (MRI), diffusion-weighted imaging is

commonly used to assess the extent of permanently damaged tissue, the core

lesion. To speed up and standardize decision-making in acute stroke management

we present a fully automated algorithm, ATLAS, for delineating the core lesion. We

compare performance to widely used threshold based methodology, as well as a

recently proposed state-of-the-art algorithm: COMBAT Stroke. ATLAS is a machine

learning algorithm trained to match the lesion delineation by human experts. The

algorithm utilizes decision trees along with spatial pre- and post-regularization to outline

the lesion. As input data the algorithm takes images from 108 patients with acute

anterior circulation stroke from the I-Know multicenter study. We divided the data into

training and test data using leave-one-out cross validation to assess performance in

independent patients. Performance was quantified by the Dice index. The median

Dice coefficient of ATLAS algorithm was 0.6122, which was significantly higher than

COMBAT Stroke, with a median Dice coefficient of 0.5636 (p < 0.0001) and the

best possible performing methods based on thresholding of the diffusion weighted

images (median Dice coefficient: 0.3951) or the apparent diffusion coefficient (median
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Dice coefficeint: 0.2839). Furthermore, the volume of the ATLAS segmentation was

compared to the volume of the expert segmentation, yielding a standard deviation of

the residuals of 10.25 ml compared to 17.53 ml for COMBAT Stroke. Since accurate

quantification of the volume of permanently damaged tissue is essential in acute stroke

patients, ATLAS may contribute to more optimal patient triaging for active or supportive

therapy.

Keywords: stroke, diffusion MRI, segmentation, diffusion lesion, computer learning, decision trees

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) provides crucial
information in the management of acute stroke patients (Barber
et al., 1998). Diffusion weighted MRI (DWI) is sensitive to
cellular water shifts following the breakdown of electrochemical
membrane ion gradients after severe energy failure. Tissue
that display increased image intensity on DWI images and
reductions of the apparent diffusion coefficient (ADC) are
generally thought to represent irreversibly damaged tissue, the
so-called infarct core (Barber et al., 1998). The penumbra—the
electrically silent, yet salvageable tissue—is the target of acute
stroke therapy (Wheeler et al., 2013). When using MRI in acute
stroke management, the penumbra is operationally defined as
the mismatch between hypoperfused tissue, as determined by
perfusion-weighted imaging (PWI), and the ischemic core, as
determined by DWI (Barber et al., 1998; Schlaug et al., 1999).
Often, PWI is bypassed to save precious time before treatment
can be initiated, and salvageable tissue instead assessed by an
operational “clinical/DWI”mismatch (Balami et al., 2013;Mishra
et al., 2014). Patients who present with small diffusion lesions
generally respond favorably to thrombolytic and endovascular
therapy (Nagakane et al., 2011), while the odds of improving
patient outcome decline as the diffusion lesion volume increases
and the mismatch tissue volume declines. In particular, the
balance between treatment success and risk of hemorrhagic
side-effects may become unfavorable in patients with diffusion
lesions above 70 ml (Sanak et al., 2006). There is hence a pressing
need to develop fast, accurate, and reliable means of identifying
core lesion on DWI images and thereby quantify their size,
particularly as treatment windows for recanalization therapy are
being extended by using tissue characteristics—so-called “tissue
clocks”—rather than time from symptom onset—the traditional
clock—to guide acute stroke therapy (Hillis and Baron, 2015).

Current methodologies for the identification of diffusion
lesions either rely on fixed diffusion thresholds (Oppenheim
et al., 2001; Sener, 2001; Straka et al., 2010; Purushotham et al.,
2015), which may not be generally applicable across cohorts and
scanner vendors, or they require the use of both diffusion and
perfusion sequences (Nagenthiraja et al., 2013).

In order to identify the core lesion, a fast, accurate, and
operator-independent automatic method would be desirable.
Here we describe an adaptive, multimodal algorithm, ATLAS
(Automatic Tree Learning Anomaly Segmentation), for swiftly
identifying diffusion lesions. It combines DWI and ADC values
to automatically identify diffusion lesions. We validate the

technique in patient data from a multicenter study with n =

108 acute stroke patients, scanned with different protocols,
field strengths, and system manufacturer, and then assess its
performance relative to lesions detected by human experts.

2. MATERIALS AND METHODS

2.1. Patients and Image Acquisition
In all, 108 patients with anterior circulation strokes (67
male, 41 female) from the I-Know multicenter study were
analyzed retrospectively (European Commission, 2006). The
study conformed with the Helsinki Declaration, the rules
laid out by the Council of Europe Convention on Human
rights and Biomedicine, Directive 95/46/EC of the European
Parliament and of the Council of 24 October 1995 on the
protection of individuals with regard to the processing of
personal data and on the free movement of such data, and
with the legislation and regulations in Denmark, Germany,
France, and Spain, respectively. The study were approved by
the Aarhus, Hamburg, Lyon, and Girona hospitals respective
regional ethics committees, and carried out after informed
consent from the patients. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. Only
patients with acute DWI scans were included. The median age
of the patients was 70.5 years (range: 30, 92), the median time
from onset of symptoms to initial MRI scan was 149 min (range:
46, 788), and the median NIHSS (National Institutes of Health
Stroke Scale) was 11 (range: 4, 24) (Table 1).

Standard gradient echo dynamic susceptibility contrast MRI
was performed on the scanner used for stroke MRI at the
admitting hospital (GE Signa Excite 1.5T, GE Signa Excite 3T,
GE Signa HDx 1.5T, GE Signa Horizon 1.5T, Milwaukee, WI;
Siemens TrioTim 3T, Siemens Avanto 1.5T, Siemens Sonata
1.5T, Erlangen, Germany; Philips Gyroscan NT 1.5T, Phillips
Achieva 1.5T, and Philips Intera 1.5T, Best, Netherlands). Echo-
planar DWI was obtained at magnetic field gradient strengths of
b = 0 s

mm2 and b = 1000 s
mm2 , where the weighted images were

acquired at 3–12 directions, according to the scanner vendor/type
at the different centers. The data quality obtained across centers
and scanner vendors is summarized in terms of image signal-to-
noise ratios in Table 1.

2.2. Expert Outlining of Diffusion Lesion
The core lesions were delineated on acute diffusion weighted
images with adjunct ADC and T2FLAIR (T2 weighted Fluid
Attenuated Inversion Recovery) images to avoid the effects of T2
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TABLE 1 | Pooled patient characteristics.

Median [range] n

Patients 108 (♀ = 41)

Age 70.5 [30, 92]

Time, Onset to MRI

(minutes)

149 [46, 788]

NIHSS 11 [4, 24]

DWI volume (ml) 11.8 [0, 164.8]

Signal-to-noise rate DWI 13.1 [4.5, 25.5]

Stroke types

- Cardiac source of emboli 51

- Large vessel disease with

significant carotid stenosis

19

- Large vessel disease,

other

13

- Dissection 3

- Other/unusual cause 1

- Undetermined 21

Visible occlusion 82

- Intracranial ICA occlusion 21

- Carotid T occlusion 1

- M1 occlusion 34

- M2 occlusion 29

- MCA distal branch

occlusion

10

- ACA occlusion 2

shine through. Each core lesion was delineated by a single expert
based on clinical experience. This delineated diffusion lesion was
the goal of the segmentation algorithm.

2.3. Input to ATLAS
ATLAS uses four parameters derived from the diffusion weighted
sequence. These include the DWI image at b = 1000 s

mm2

and the ADC map, which is uninfluenced by T2 effects
due to edema, and quantifies water diffusion on an absolute
scale. For comparison across patients, the DWI images were
standardized by dividing image intensity values by the mean
DWI value in the contralateral hemisphere for each axial slice
in each patient. We employed one additional normalization step,
utilizing contralateral mirror images to avoid normal structures,
and artifacts being misinterpreted as lesions, as follows (see
Figure 1):

For each image a transformation map was calculated. The
transformation consisted of three parts:

1. The mirror image relative to the mid-sagittal plane, calculated
by coregistering the b0 image to the b0 image flipped
along the y-axis using SPM12 (Wellcome Trust Center for
Neuroimaging, UCL, UK) (Friston et al., 2007).

2. A smoothing using an isotropic Gaussian kernel.
3. A morphological correction assigning to each voxel the

intensity value of the voxels with the most critical intensity
(high intensity for DWI, low for ADC) in a small
neighborhood of the voxel.

FIGURE 1 | The algorithm for calculating the mirror correced images. First an

affine transformation, sending the left hemisphere to the right hemisphere and

vise versa, is calculated by coregitering the b0-image to the image you get by

flipping it along the sagittal plane. The DWI (or ADC) image is then flipped using

this transformation. The flipped image is smoothed using an 3-dimensional

Gaussian isotropic kernel. The mirror corrected image is then made voxel for

voxel by subtracting the current voxel value in the DWI (or ADC) image by the

most critical (highest for DWI, lowest for ADC) value of the transformed and

smoothed image in a small neighborhood around the current voxel.
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The mirror corrected images were then the difference between
the original image and the transformed image.

2.4. The ATLAS Algorithm
The principle in the ATLAS algorithm is to build a deep decision
tree, which, in an unconstrained fashion, identifies combinations
of image marker values that optimally separate lesion and non-
lesion voxels. Overfitting is typically reduced by a subsequent
pruning step, which is based on the size of the tree itself, but we
safeguarded the algorithm further by using the spatial relation
between voxels in a second step.

2.5. Decision Tree
The decision tree is built one node at a time, starting from the
root and proceeding in a step-wise manner. For each variable,
the threshold that yields the maximal Youden’s Index (J =

sensitivity + specificity − 1) is determined. The variable with
the highest maximal Youden’s Index is chosen, and the data is
divided along the threshold that yields this maximal Youden’s
Index. Two branches are made from the node, one for the
values greater than or equal to the threshold, and one for the
values smaller than the threshold, and a new node (with the
corresponding data) is made at the end of each of the two
branches. This procedure is repeated until all the nodes in the
bottom (the leaves) of the tree only have data points of one class—
that is, either all data points at a leaf are inside the drawn lesion
or all are outside the drawn lesion.

At each node N, we define the preliminary prediction value
of the node as p (N) =

n1+1
n+2 , where n1 is the number of in-

lesion-voxels in the data of the node, and n is the total number
of voxels in the data of the node. This value is chosen over the
more obvious value n1

n based on the fact that the fewer data points
left at a node, the more small errors and artifacts will skew the
prediction. The value n1+1

n+2 , when compared to n1
n , will be closer

to 0.5 when there are few data points, and almost unchanged
when there are many data points.

We have now built a decision tree. Any data point x can
traverse the tree by starting at the root, and then following the
path in the tree dictated by whether the value of x in the variable
assigned to the current node is less than the threshold assigned
to the node. We define Nd (x) to be the node on the path of x in
the tree reached after d steps. So N0 (x) is the root of the tree, no
matter the values of x. If d is longer than the full path of x, we just
define Nd (x) = N (x) to be the final node x will reach (the leaf).
For each possible data point x we define preliminary predictions
of x at depth d as pd (x) = p (Nd (x)), and simply the preliminary
predictions of x as p (x) = p (N (x)).

To avoid inflating small errors and artifacts, we include
a pruning step. The pruning is done by finding an optimal
depth of the tree (the maximal distance from the root to the
leaves), and removing all nodes further away from the root
than this depth. To find the optimal depth when building a
tree based on n patients we first build n trees based n− 1 of
the patients, where each patient is excluded from the building
of one tree. The data points for each patient is now fed
into the tree it was excluded from, to calculate all the pd (x)
values. At each possible depth d we compute the quality of the

prediction of the drawn lesion by the preliminary predictions
at depth d, using the Area Under the Receiver Operating
Curve (AUC) statistic. As the optimal depth of the full tree,
we choose the median (over the set of patients) of the depths
that yields the highest AUC value for the trees with one patient
excluded.

2.6. Regularization
So far, the decision tree only utilizes spatial information in the
limited fashion of the mirror corrected images. We therefore
developed series of steps to regularize the decision tree lesion
estimate. First, the probability map is smoothed with a 3-
dimensional Gaussian isotropic kernel. Next, the smoothed
image is thresholded at 0.25. This value is chosen due to the
fact that there are many more voxels outside the lesion than
inside, so the decision trees will naturally err to the side of voxels
being outside lesions. Finally, themask is morphologically closed,
which has the effect of reducing false negative noise, and then
morphologically opened which has the effect of reducing false
positive noise.

2.7. Evaluation
As a measure of how well segmentation was performed, we use
the Dice coefficient, which is twice the overlapping volume (or
the true positives, TP) divided by the sum of the volume of
the prediction (true positive + false positive, TP + FP) and the
volume of the actual segment (true positive + false negative, TP+
FN), or D =

2TP
2TP+FP+FN . Note that this yields a number between

0 and 1, where 0 means that the actual and predicted lesions did
not overlap while 1 means that the actual and predicted lesions
were exactly equal.

To validate the method, we used leave-one-out cross-
validation to build trees based on all but one patient. This model
was then evaluated on the patient that was left out.

We compared the results to both the existing COMBAT
Stroke method (Nagenthiraja et al., 2013) and to a generalized
thresholds-based method.

2.7.1. Generalized Threshold

Thresholding is the simplest and fastest ways of making a
segmentations, and therefore appealing (Oppenheim et al., 2001;
Sener, 2001; Purushotham et al., 2015). Thresholding methods
work by including all voxels with an intensity greater or smaller
than a certain value into the lesion. Often single voxels with very
high intensities or very low intensities are removed beforehand
due to them being deemed to be noise or artifacts rather than
stroke lesions. The result of this is that instead of one threshold
the methods uses two thresholds, choosing a segment of all
the voxels with intensitied between two given values. When
evaluating the ATLAS algorithm we compare our results to the
results of optimal generalized thresholding on both ADC and
DWI. This optimal generalized thresholding works by finding
the two thresholds yielding the higest Dice coefficient for each
patient.We emphasize that since the thresholds are optimized for
each individual patient, these optimal per-patient performance
estimates are not applicable in prospective patients but serve
here to benchmark ATLAS against a best-case scenario, that
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is, they represent upper-most performance bounds for methods
that apply up to two thresholds to ADC or DWI images,
respectively.

3. RESULTS

Figure 2 shows the segmentation process for three similar
slices from three different patients with Dice values closest
to the first, second, and third quartile. Figure 2A shows

the two input variables used: DWI, ADC. Figure 2B shows
the variables that are put into the decision tree i.e., DWI,
ADC, mirror corrected DWI, and mirror corrected ADC.
With this input the decision tree now provides us with
Figure 2C: the preliminary prediction map. In Figure 2D, the
first prediction map is smoothed with a 3-dimensional Gaussian
kernel and then thresholded at 0.25. Finally, the result (blue
contour) is compared to the expert result (red outline) in
Figure 2E.

FIGURE 2 | The full ATLAS algorithm with examples of intermediate results. Panel (A) shows the input variables (the DWI and the ADC images). Panel (B) shows the

preprocessed variables, that is the original two variable, and the mirror corrected versions of the original two variables. Panel (C) illustrated the voxelvise output of the

decision tree. Panel (D) shows the postprocessing of first smoothing the output, and then thresholding. Finally panel (E) shows the ATLAS segmentation (blue outline)

overlaying the original DWI image along with the expert drawn segmentation (red outline).
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In Figure 3, the volume of the lesion mask drawn by the
experts is compared to the volume of the prediction mask
as determined by the ATLAS algorithm and COMBAT Stroke
diffusion lesion segmentation, respectively (Nagenthiraja et al.,
2013). The identity line indicates a perfect match between
predicted volume and true volume. For the ATLAS prediction,
we observe a standard deviation of the residuals of 10.25 ml
compared to 17.53 ml for COMBAT Stroke. The horizontal
and vertical lines at 70 ml indicate the volumes above which
thrombolysis is discouraged according to current guidelines
(Sanak et al., 2006).

In Figure 4, individual Dice coefficients are compared for
lesion predictions by ATLAS, COMBAT Stroke, and generalized
thresholds on the DWI image and on the ADC image.
ATLAS yields Dice coefficients with median 0.6122 and an
interquartile range of [0.4486, 0.7519], COMBAT Stroke yields
Dice coefficients with median 0.5636 and an interquartile range
of [0.2592, 0.6977], DWI yields Dice coefficients with median
0.3951 and an interquartile range of [0.2405, 0.5644] and ADC
yields Dice coefficients with median 0.2839 and an interquartile
range of [0.1828, 0.4712]. The ATLAS Dice coefficients median
is significantly larger than that of Combat Stroke (Wilcoxon
signed-rank test, p = 1.9 · 10−6).

4. DISCUSSION

We have presented a novel, automated, algorithm for identifying
lesions on DWI images obtained from acute ischemic stroke
patients. The algorithm does not require other acquisitions
than the acute diffusion scan and is devised to produce
outlines of diffusion lesions that agree with human experts. Our
results show that lesions identified by the ATLAS algorithm
are in good agreement with the lesions identified by human
experts, both with regard to their volume and with regard to

FIGURE 3 | The predicted volumes of the lesions segmented by the ATLAS

algorithm and by the Combat stroke method compared to the volume

segmented by the expert outlining.

their localization. Even in cases where the classification based
on ATLAS differed from that of the expert drawn lesions,
the actual difference in volume was modest. The ATLAS
algorithm outperforms other methods such as the COMBAT
Stroke method, and substantially outperforms the optimized
thresholding approaches, such as the RAPID (Straka et al.,
2010). The algorithm provides a more adaptive approach
than segmentation of image according to a prespecified image
threshold.

The ATLAS model takes a long time to train, especially
in terms of building the decision tree, the subsequent tree-
search and probability map/lesion volume calculations are fast.
Accordingly, the most time-consuming part of this calculation is
the preparation of mirror corrected maps, which can be achieved
in seconds on an ordinary computer. Our results indicate
that threshold-based segmentation methods, such as RAPID,
are less precise and reliable than ATLAS or COMBAT Stroke.
In particular, the RAPID method requires manual removal of
artefacts, which makes it much more time consuming, more
subjective, and thus less reproducible. While the COMBAT
Stroke method does almost as well as ATLAS, it requires
perfusion MRI data.

4.1. Limitations to the Study
The study is limited by its retrospective nature. The I-Know
database only contains anterior circulation strokes. Although
they represent the majority of stroke cases, this means that it
is not really a study about acute stroke in general, but rather
a study about acute anterior circulation strokes. Furthermore,
the I-Know database is a multicenter database. This leads to
greater variation, due to the variation in scanners, field strenghts,
number of head coil channels, and clinical practices. This can
both be an advantage in the sense of yielding a more robust
model—one working with more varied data, but it also requires

FIGURE 4 | A boxplot of the Dice coefficients for the ATLAS segmentation, the

Combat stroke segmentation and the best possible solely threshold based

segmentation by DWI and by ADC.
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more data to build the more stable model. Though this study
included a very large number of data points (∼ 16, 400, 000
voxels), the variation, due to the data being from a multicenter
database, is patientwise, and 108 patients is still a low number
of patients to fully capture the variability of stroke lesions as
they appear on diffusion weighted images. The best solution to
these limitations is to include more data in the building of the
model.

The manual outlining of the lesion is another limitation. The
goal was to segment the ischemic core, but the model is trained to
find the DWI lesion—an experts best estimation of the ischemic
core. This means that common and systematic errors in this
expert estimation may be included in the model (Ay et al., 2008;
Campbell et al., 2010). To remedy this one can try to reduce the
number of errors by using more experts, and to get a consensus
DWI lesion.While this may improve the quality of the data, there
is so far no method of avoiding the problem.

5. CONCLUSION

By providing diffusion lesion volume estimates, the algorithm
provides reliable guidance to clinicians as they weigh the
potential benefits of administering thrombolytic therapy. The
ATLAS algorithm segments the diffusion lesion in a fully
automatic way, while outperforming state-of-the-art methods
and any possible methods solely base on thresholds of the DWI
or the ADC values.
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