THPM 5-9

Better Geometric Measurements BasedPbotometric Information

Lucas J. van Vliet andPiet W.Verbeek

Pattern Recognition Group of the Faculty of Applied Physics
Delft University of Technology
Lorentzweg 1, 2628 CJ Delft, The Netherlands

Abstract — We propose new methods for estimating properties of analqgantity to be measured. To avoid aliasing (sampling errors) the

objects in properly sampled multi-dimensiorgakey-scale images. The transformation should consist of sampling-error free operations. Object

finite aperture of lenses ensureandlimitation of the analog image andproperties that can be measured this way are listed in table 1. For practica

allows sampling. Many existing measurement procedures work on a binggsons we focus on measurements in two and three-dimensional images

object obtained by edge detection #metsholding. The ragged binary edgeThe transformations use differentiation and nonlinear scaling.

is disturbed byaliasing which cannot be repaired by smoothing. To sol\Rifferentiation of D-dimensional images can be achieved byDa

this problem we propose methods that work directly ongtleg-scale dimensional convolution with a derivative-of-Gaussian filter. For nonlinear

image. The grey-scale image contains accupatgometric information. scaling of grey-values we introducerf-clipping which replaces

Our new methods yield errors that are generally an order of magnitideesholding by a sampling invariant operation.

better than the traditional binary ones. For applications where a smooth,

constant edge height is a prerequisite we introder€éelipping. Erf- 2.

clipping is a point operation that shapes a linear edge region into a scaled

error function. In contrast to thresholding it requires very mild Nonlinear scaling of th@hotometric datagfey values) is applied to

oversampling. obtain a “flat” object. Well-known scaling functions atferesholding

Sthreshold @nd hard-clipping &rd-clipping Scaling a sampled image is

equivalent to scaling the continuous image and samplimgesholding and

hard-clipping distort thegrey value landscape so that it is no longer
The scope of the paper is to propose digital measurements of andagdlimited. To solve this problem we introduce a soft-clipping technique

geometric quantities. To facilitate image analysis by computer we needaatiederf-clipping.

NONLINEAR SCALING: ERFCLIPPING

1. INTRODUCTION TO SAMPLINGERROR FREE MEASUREMENTS

convert the analog information into a digital representation. The finite t+31r for g=t

aperture of lenses ensures bandlimitation of the analog image and allows Sthresho|din491t:r) = B —1ir for g<t

sampling. The optical point-spread-function (PSF) can be modeled by a 2 9

Gaussian of sizeps. TheNyquist theorem prescribes a minimum sampling o+3r for g=t+3r

rate that allows reconstruction of the analog signal after sampling. To avoid _g 1 1
sampling-errors in our measurements we restrict ourselves samagkng- Swardclipping(g't' r) =0 for t-3r<g<t+sr @
error free operators. A sampling-error free operator is a continuous E—%r for g<t-—4ir

operation that can be replaced by a cascade of operations: sampling, digital
filtering, and interpolation. Serf—clipping(g1tl r) =t+3r erf(\ 77(9 ‘t)r_l)

A measurement performed on a sampled image that is exactly equa|itf g the input signalf the “threshold” level, and the so called clip
its analog counterpart is calledampling-error free measure[1]. Envision range. Instead of shaping a rising input signal into a step edge
a signal as a landscape in which the grey-value denotes the elevation.({ﬂpgshmding) or a ramp edge (hard-clippirg¥-clipping shapes a linear
sum of thegrey-value samplegrey-volume is directly proportional to the (ising input signal into a scaled error function (c.f. figure 1). All scaling
volume underneath the landscape. methods cross the “threshold” levelin one point. In contrast to

- - i i thresholding, both hard-clipping amdf-clipping preserve the slope of the
greyvolume(A(x.y.2) AXAyAzz"J'kA(l Aol Ay’kﬂz) @ signal around the selected “threshold”.
with A(x,y,2) abandlimited image/y the sample spacing in tiedirection The short space spectra (in analogue to the short time spectrum in
and Ax<21 /fy max. Thusundersampling up to a factor of two is allowed tagpeech recognition) of the output signals after a scaling applied to a linear
obtain an sampling-error free estimateyody-volume [2, 3]. region of the signal are:
Applying grey-volume to photometric data yields the integrated intensity 1 1
(total energy). To measure the integrated intensity of all objects we need to F{ Svesroaing) = orif +mo(f)= ot ®)
subtract the background level for all pixel in the image. In case of a

perfectly “flat” object,grey-volume is proportional to the 2D area or 3D sin(27Tf) 0 1 oo1o

volume of the objects present in the image. For 2D area and 3D volume T{Saam.cnppmg} :W%”Td(f)gz ForfH “
measurements of “non-flat” objects as well as for all other object

measurements we propose an alternative strategy. Transform an input L0 1 0 exp(_zﬁngz)

image into output image whogeey-volume is directly proportional to 7{ %i»clipping} = ex;(—ana f )% + ﬂ5(f)H: BT a— ®)
Table 1: Overview of object measurements in multi-dimensional signals. output after: input:g  linear edge slope

The column “feature” denotes the dimensionality of the measuf#-in

dimensional space. In addition Bbspatial coordinates we have ogrey- thresholdin

value per sample point.
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Feature 2D 3D DD - d_c"ppmg/w o
grey-volume | integrated integrated integrated 2
grey-value grey-value grey-value . s
sizeD+1 mass, energy | mass, energy erf-clippin 2
sizeD area volume hyper-volume 9\ ©
sizeD-1 edge length surface area hyper-surface
sizeD-2 length hyper-length
sizeD-3 hyper-0-3 size)
shapeD-3 bending energy | bending energy Figure 1: Output of three nonlinear scaling operatichsesholding, hard-
shape 0 Euler number | Euler number | Euler number clipping, anderf-clipping applied to the linear region of a signal (linear

edge slope).
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We notice that the Fourier transform of tieesholded signal decays From figure 2 we may conclude thaf-clipping produces a signal that
slowly (Of1), the signal after hard-clipping somewhat fastef3, is approximatelybandlimited, whereashresholding and hard-clipping
whereas the bandwidth eff-clipped signal is mainly determined by theproduce signals with considerable energy contributions at half the sampling
approximate bandwidth of the underlyit@pussian. Figure 2 shows thefrequency,fs
Fourier transform of the output signals afteesholding, hard-clipping and
erf-clipping. The erf-clipping result corresponds t@aussian filtered step  Figure 3 shows the Fourier transforms of the scaled signals bgfese (
edge. The size of th@aussian filters is similar to the size of the analotines) and after (black lines) sampling. The difference is dwadidsing. It
prefilter (PSF) when sampled at tNgquist rate,ops= 0.9 pixelg2]. is clear that the spectrum of the erf-clipped signal (figure 3c) is almost
completely preserved whereas the entire spectra of the signals after
thresholding and hard-clipping are heavily corrupted diasing.

2 When erf-clipping replaceshresholding it is often applied to a raw
intensity image or a second derivative filtered image. The first leaves us
1 F » with choices for the centradophote (“threshold” leve) and the clip range
’ r, whereas the latter is usually applied around the zero-crossing and leave:
0 \\ 0.2 0.3 0.4 0.5 us with a choice for the clip range. In [8¢ proposed to set the clip range

at roughly 1/4 of the original edge height.[8} we also showed tha&tf-
clipping increases the bandwidth of the signal. The increase is roughly the
ratio between the edge height (contrast) before and after clipping.

F (thresholded signal)
----- F (hard-clipped signal)
— ¢ (erf-clipped signal)

9 3. ZERO CROSSING POSITION OF CURVED EDGES

log |7 (scaled signal
AR

There exists an extensive literature on edge detection techniques and th:
Figure 2: The Fourier transform of the signals aftaresholding, hard- evaluatipn of edge detect_ors in the presence OT noise. The sq-called
clipping anderf-clipping. The erf-clipping result corresponds tGaussian Stochastic errors have received a lot of attention while the systematic errors
filtered step edge. The size of the Gaussian filters is similar to the sizéwofl sampling issues have been neglededzins[4] paid some attention
the PSFops = 0.9. to edge location errors near corners.

Analog and digital low-pass filters yield systematic errors in the zero-

2 crossing position of curved edges after second derivative filtering. The
filters studied are: theaplacian-of-GaussiarL0G), the second derivative
in gradient direction (SDGD) and their sum PLUS. The zero-crossing of a
1 Jlfg ——= second derivative filter is a well-known edge localization criterion. In
= 0.2 0.3 0.4 0.5 previous work [5, 6jve have shown that all derivative based edge detectors
s 0 01 exhibit a systematical error in their zero-crossing position that cannot be
z . ’ avoided. The blurring of curved edges — optical as well as digital — exerts
£ -1 g (thresholded signal) an influence on tht_a edge Iocatlon._ This discovery of thl_s phenomenon h_as
. ) driven us to investigate the behavior of these systematic errors as functior
= after sampling of the edge radius and the size of the low-pass filter. We found that two
g before sampling well-known edge detectors: the®G and the SDGD produce an equal edge
a) shift, but in opposite direction. The zero-crossing of a convex edge is
displaced outwards by the LoG and inwards by the SDGD. A newly
2 proposed edge detector called PLUS (PLUS0o& + SDGD) yields an
edge displacement that is an order of magnitude smaller than the ones
1 I produced by either of its constituents (c.f. table 1). Accurate prediction of
s the edge shifts requires that the sampling requirements are satisfied and the
5 \ 0.2 0.3 0.4 0.5 the size of the overall smoothingita) remains a few times smaller than
5 0 01 the edge radiuR (20i0t9<R). In [5] we have shown that SDGD and PLUS
- require three timesversampling to avoidliasing.
% =1 F (hard-clipped signal)
& - after samolin Table 1: Relative location _errorrg-R)/R of constant curvature edges as
5 5 piing function of the totalo (02=0g)opé+0ps?+Osmootf+Oderivativd and the
2 before sampling object radiuR. The positive axis is defined from the center of the object.
0 - The sampling requirement is given as well.
filter sampling oR . 5p (0 R) . ap
2 R R
‘ . > % Nyquist :_;EEDZ :—1.0':352
flfy ——— - SDGD orcg=27 20r0O 0RO
g \\ 02 03 04 05 - 1 Nva < 10ocf ~10m@f
5 01 Laplace 2 Ix Nyquist 20RO ORD
= = 3 Nyquist {t ft
igf -1 7 (erf-clipped signal) PLUS or gzyzc,l7 = %E‘%E =10 E%E
g Z after sampling
g - before sampling An alternative method for edge localization uses a linear combination of
0 Gaussians. A Doublet-dgaussians filter is similar to haplacian-of-

Figure 3: The Fourier transforms of the scaled signals befgrey(lines) Gaussianl{0G). A combination withN Gaussians reduces the edge shift to

and after (black lines) sampling. The difference between the line pair@ifaction (1/(2-3)) of the one produced byLaG filter [5, 6} Smoothing

due toaliasing.a) spectrum aftethresholdingb) spectrum after hard- by aGaussian filter also displaces tisephotes. Thésophotes at half edge

clipping, c) spectrum afteerf-clipping. height is displaced inwards by the same amount as the SDGD zero
crossing. In [7]we extended the 2D algorithm fasophote curvature
estimation to measure the principal curvatures a$aphote surface patch.
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4.  AREA OR VOLUME, PERIMETER OR SURFACHAREA, 4.2. 2D perimeter & 3D surface area
SPAGHETTI LENGTH EULER NUMBER AND BENDING ENERGY Traditional methods assign weights to the various pixels configurations
along a binary contour in 2[8, 9] or over a binary surface in 3[20].

For images that contain a single object the global measures prod8cenmation of the weighted contour pixels or surfaogels yields the
object features. Ougrey-scale measurements transform the input imagerimeter or surface area estimate. In gnary-scale method the boundary
into an output image. Thgrey-volume — sum of the sample values — of theof the object is transformed into a landscdpg or Azp whosegrey-
output image is directly proportional to the required measure. Using thisume is proportional to its contour length or surface area. The contour can
principle we developed 2D estimators for area, contour lerigtiier either be anisophote in the raw data or the zero crossing after second
number, and bending energy of a thin rod. In 3D we developed estimati@svative filtering.
for volume, surface area, spaghetti lendtbler number and the bending The isophote method applieerf-clipping to a linear edge region
energy of a thin plate. producing a flagrey landscape withrf-shaped edge profiles. The modulus

All our object measurements depend on the contour or surface of ¢ha gradient (implemented usi@aussian derivatives) yields@aussian
analog object. Knowledge about the behavior of (curved) object edges distribution shifted inwards for convex edges (the edge shift is exactly
to low-pass filtering is a first requirement to construct unbiased estimat@gqual to the one produces by the SDGD). This landscape is called
Another vital element isrf-clipping. This form of nonlinear scaling is usedLop jsophote OF A3D_isophote- The shift causes a negative bias term that can
to flatten thegrey landscape. Wherever possible we have compared berpartially compensated for in 3D, but not in [2D3].
results to those of others. By doing so, one difficulty remains. All authors The zero-crossing method uses a more appropriate edge definition that
who have published measurement errors started from a point sammeds not suffer from shading. Theplacian-of-Gaussian (LoG) yields a
version of an analytical object description. They have neglected to morelo-crossing that is shifted outwards for convex edges. Applying the
the imaging process. Their reported errors are optimistic since they osudiphote method to thkaplacian zero-crossing, tHeoG bias and the
systematic error contributions due to low-pass filters in the imaging procgsadient bias c(rg,adZ = apS;Z + 0.0c2) cancel each other. This yields a

and they avoid all errors related to edge localization. Gaussian cross-section at the exact edge location. Such a landscape i
calledLop zero-crossing OF A3D_zero-crossing: The finite width of theéGaussian
4.1. 2D area & 3D volume profiles along the object boundary produces a small positive bias in 3D

Traditional methods produce a binary object whose area or volumeénigges. This bias term, however, is independent of the object shape anc
estimated by pixel ovoxel counting. We use the zero crossing of ousize and can easily be subtracted from the surface area egfntite
PLUS operator to denote the object boundaries. PLUS is constructed from
partial derivatives with a built-iGaussian of sizer = 3.0. From here we L%?Leo gs %meévé%geoghzig t()?iggea:]edn%?g gntﬂ igﬁessusffgif;es %fgaa%ité%?gog;a
followed two strategies. The first produces a binary imaggissholding S ; 99
at _Ievel zero and filling 'the interior of the object. Counting the numbert g;?fg:ji f5ﬂ\],$hg$égg %aenggrgfzerrogé?r?gc%ré?ﬁgg r;ggm:ﬁolt%’m; tgi%d
object pixels owvoxels yields a measure for area or volume. The secopghge ‘of 1/4 of thé.aplace range andgrad = 1.75 (only when the images
alternative appliesrf-clipping in the linear edge region around the zerare sampled exactly at thyquist rate). Due terf-clipping over 1/4 of the
crossing with clip range=h/4, whereh denotes the edge height in theinput rangew2<<g2.

image or the dynamic range after PLUS filtering prior to clipping. bias terms relative errors
Afterwards, the upper clipping level is propagated inwards whereas the after correction
lower clipping level is propagated into the background resulting in a flat Method edge shiff edge | bias* (%) | CV (%)
object (upper clipping level) on a flat background (lower clipping level). (disc/sphere_thickness RO(10,50 | RO(10,50)
This yields thegrey-scale landscape&sp or Vs3p. The resultinggrey- .

volume of Ayp or Vsp is proportional to the area or volume of theZD'ISOphOte length R 0 10-10) 102~ 104
underlying objectErf-clipping produces aerf-shaped edge profile (anti-| 2D: zero crossing leng 0 0 101-10% 102103
symmetric) centered around the zero crossing and of a widtescribed | 3p:jsophote area —8(0%+0,?)| 4T 0%HW?) 1.102|101. 103
by the standard deviation of a Gaussian. For a curved edge there is nég'ezero crossing area 0 an(otw?) 1.10% 101103
additional “mass” outside the contour than there is missing inside the- 9 - -

contour. The resulting positive bias term for simply-closed objeatads ] ] ) ]

in 2D and 4w2Rin 3D [5, 6]. In 2D the clip-width bias is constant and Table 3 shows the relative bias (*) and CV after bias correction for both
can be subtracted to obtain an area estimation limited by the accuracy ofifghods. Experiments show that unbiased estimators for 2D edge lengtt
PLUS operator. In 3D we either use two clip rangeb/é andr=h/5) to an_d _3D st_Jrface area can be constru_cted. Comparing our _method with
eliminate theerf-width bias or we use a linear combination of 1.0 Laplace®Xisting binary methods [8, 9Ye notice that: 1) our bias is almost

1.07 SDGD (instead of PLUS) as second derivative filter to compensate@H@rywhere an order of magnitude smaller; 2) our CV's in 2D are more
erf-width bias. than an order of magnitude smaller and our CV’s in 3D are two or three

orders of magnitude smaller. We may conclude that proper sampling really

Table 2: Overview of 2D area and 3D volume estimation methods. Tip@ys off. Moreover, our method takes care of edge shifts by optical
PLUS bias anerf-width bias are absolute bias terms, bias* is the relativ@noothing ¢pg).

bias after correction. PLUS us€mussian derivatives wittr = 3.0. The  Other experiments showed that some undersampling does not sacrifice
clip range is 1/4 of the PLUS range. i the performance of our method. Sampling at the Nyquistage0.9,
bias terms relative errors derivative-ofGaussian withograg=1.5 (sophote method) or sampling at the
after correction Nyquist rategpg=0.9, LoG withaj oc=1.5 and derivative-oGaussian with
Method PLUS | erf width bias* (%) | CV (%) Ograd=1.75 (zero crossing method), the measurement procedures perform
bias bias |RO(10-50)RO(10-50) well.
2D: binary method To#/R2 w2 1-103 103
2D: grey-scale methoq To#/R2 1-102 102 43, 3D length . T
: ! Others have extended the binary methods for length estimation in 2D to
3D: binary method 4mo}R | 4w2R | 1-10°3 10-3 3D methods for measuring the length of binary space ciiiesl2, 13].
3D: grey-scale methoq 4mo%/R 1,102 102 The three possible transitions: grid parallel, square diagonal, and cube

diagonal are properly weighted and summed to produce an unbiased

minimum-MSE length estimate.

scale method produces a bias smaller or equal to the one produced b tll{ézere we estimate thef length of 3? Zpage curvels thrqaghvol.uml

binary method. The bias decreases from 1% for object radii aroundﬁsasurements. TO transform a 3D. cylinder ingrgy-volume proportional

pixels to 163% for object radii around 50 pixels. The CV of tirey-scale toits Igngth requires a seco_nd d'erlv:.;\tlve perpendicular tc_> th_e C‘?”ter Ilqe of
g;g cylinder, thus in the radial direction. The second derivative in gradient

r;;tg?]dolie?a:&dsereozarg;gg|tude smaller than the CV of the binary methy iréction (SDGD) accomplishes this. Thus the integrated SDGD yields a

Thus, theerf-width bias can be compensated. The correcte@@y-
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grey-volume proportional to the length of the cylinder. The method requires 5.  CONCLUSIONS
a constant line intensity along the line. This can be accomplished by
applyingerf-clipping to the slopes of the lines. The proposed method is We presented sampling-error free measurements that are better (lowel
independent of the line diameter and hence insensitive to the “threshdids and lower coefficient-of-variation CV g/o) than the traditional
level around whicherf-clipping is applied. The length contribution isbinary methods. The sum of samptgsy-volume can easily be measured
virtually independent of the orientation of the line. We have tested amithout a sampling error. All geometric properties of single objects are
method in randomly oriented cylinders of radius 20 sampled afiyhaist measured as follows. Transform an input image into output image whose
rate. The SDGD useSaussian derivatives of sizepgp = 1.35. Table 4 grey-volume is directly proportional to quantity to be measured. To avoid
shows that the errors are three orders of a magnitude smaller than the al@sing (sampling errors) the transformation should consist of sampling-
reported byerwer[11] for the 33x3 chamfer method. error free operations. Using this principle we developed 2D estimators for
area, contour lengtizuler number, and bending energy of a thin rod. In 3D
Table 4: Error comparison between two 3D length estimatdeswer's  we developed estimators for volume, surface area, spaghetti |&hdeh,

[11] 3x3x3 chamfer method and our integrated SDGD. number and the bending energy of a thin plate.
Error 3D chamfer method integrated SDGD In the above methods we take edge displacement due to optical as well
bias 0.00 % 0.00 % as digital blurring into account. To separate object from background we
cVv 2.30 % 2.1103% applied mildererf-clipping rather than the very nonlinear threshold
maximum error 2.95 % 4.7103% operator.
minimum error -10.60 % -3.2103%
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discs ofR O (15,100) 3,101 10-3
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