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Abstract — We propose new methods for estimating properties of analog
objects in properly sampled multi-dimensional grey-scale images. The
finite aperture of lenses ensures bandlimitation of the analog image and
allows sampling. Many existing measurement procedures work on a binary
object obtained by edge detection and thresholding. The ragged binary edge
is disturbed by aliasing which cannot be repaired by smoothing. To solve
this problem we propose methods that work directly on the grey-scale
image. The grey-scale image contains accurate photometric information.
Our new methods yield errors that are generally an order of magnitude
better than the traditional binary ones. For applications where a smooth,
constant edge height is a prerequisite we introduce erf-clipping. Erf-
clipping is a point operation that shapes a linear edge region into a scaled
error function. In contrast to thresholding it requires very mild
oversampling.

1. INTRODUCTION TO SAMPLING-ERROR FREE MEASUREMENTS

The scope of the paper is to propose digital measurements of analog
geometric quantities. To facilitate image analysis by computer we need to
convert the analog information into a digital representation. The finite
aperture of lenses ensures bandlimitation of the analog image and allows
sampling. The optical point-spread-function (PSF) can be modeled by a
Gaussian of size σpsf. The Nyquist theorem prescribes a minimum sampling
rate that allows reconstruction of the analog signal after sampling. To avoid
sampling-errors in our measurements we restrict ourselves to use sampling-
error free operators. A sampling-error free operator is a continuous
operation that can be replaced by a cascade of operations: sampling, digital
filtering, and interpolation.

A measurement performed on a sampled image that is exactly equal to
its analog counterpart is called a sampling-error free measure [1]. Envision
a signal as a landscape in which the grey-value denotes the elevation. The
sum of the grey-value samples grey-volume is directly proportional to the
volume underneath the landscape.

grey-volume A x y z A i j kx y z x y zi j k, , , ,, ,( )( ) = ( )∑∆ ∆ ∆ ∆ ∆ ∆ (1)

with A(x,y,z) a bandlimited image, ∆x the sample spacing in the x-direction
and ∆x<2π /fx,max. Thus undersampling up to a factor of two is allowed to
obtain an sampling-error free estimate of grey-volume [2, 3].

Applying grey-volume to photometric data yields the integrated intensity
(total energy). To measure the integrated intensity of all objects we need to
subtract the background level for all pixel in the image. In case of a
perfectly “flat” object, grey-volume is proportional to the 2D area or 3D
volume of the objects present in the image. For 2D area and 3D volume
measurements of “non-flat” objects as well as for all other object
measurements we propose an alternative strategy. Transform an input
image into output image whose grey-volume is directly proportional to

Table 1: Overview of object measurements in multi-dimensional signals.
The column “feature” denotes the dimensionality of the measure in D-
dimensional space. In addition to D spatial coordinates we have one grey-
value per sample point.

Feature 2D 3D DD
grey-volume integrated

grey-value
integrated
grey-value

integrated
grey-value

size D+1 mass, energy mass, energy
size D area volume hyper-volume
size D–1 edge length surface area hyper-surface
size D–2 length hyper-length
size D–3 hyper-(D–3 size)
shape D–3 bending energy bending energy
shape 0 Euler number Euler number Euler number

quantity to be measured. To avoid aliasing (sampling errors) the
transformation should consist of sampling-error free operations. Object
properties that can be measured this way are listed in table 1. For practical
reasons we focus on measurements in two and three-dimensional images.
The transformations use differentiation and nonlinear scaling.
Differentiation of D-dimensional images can be achieved by a D-
dimensional convolution with a derivative-of-Gaussian filter. For nonlinear
scaling of grey-values we introduce erf-clipping which replaces
thresholding by a sampling invariant operation.

2. NONLINEAR SCALING: ERF-CLIPPING

Nonlinear scaling of the photometric data (grey values) is applied to
obtain a “flat” object. Well-known scaling functions are thresholding
Sthreshold and hard-clipping Shard-clipping. Scaling a sampled image is
equivalent to scaling the continuous image and sampling. Thresholding and
hard-clipping distort the grey value landscape so that it is no longer
bandlimited. To solve this problem we introduce a soft-clipping technique
called erf-clipping.
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with g the input signal, t the “threshold” level, and r the so called clip
range. Instead of shaping a rising input signal into a step edge
(thresholding) or a ramp edge (hard-clipping), erf-clipping shapes a linear
rising input signal into a scaled error function (c.f. figure 1). All scaling
methods cross the “threshold” level t in one point. In contrast to
thresholding, both hard-clipping and erf-clipping preserve the slope of the
signal around the selected “threshold”.

The short space spectra (in analogue to the short time spectrum in
speech recognition) of the output signals after a scaling applied to a linear
region of the signal are:
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Figure 1: Output of three nonlinear scaling operations: thresholding, hard-
clipping, and erf-clipping applied to the linear region of a signal (linear
edge slope).
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We notice that the Fourier transform of the thresholded signal decays
slowly (∝ f-1), the signal after hard-clipping somewhat faster (∝ f–2),
whereas the bandwidth of erf-clipped signal is mainly determined by the
approximate bandwidth of the underlying Gaussian. Figure 2 shows the
Fourier transform of the output signals after thresholding, hard-clipping and
erf-clipping. The erf-clipping result corresponds to a Gaussian filtered step
edge. The size of the Gaussian filters is similar to the size of the analog
prefilter (PSF) when sampled at the Nyquist rate, σpsf= 0.9 pixels [2].
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Figure 2: The Fourier transform of the signals after thresholding, hard-
clipping and erf-clipping. The erf-clipping result corresponds to a Gaussian
filtered step edge. The size of the Gaussian filters is similar to the size of
the PSF, σpsf = 0.9.
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Figure 3: The Fourier transforms of the scaled  signals before (grey lines)
and after (black lines) sampling. The difference between the line pairs is
due to aliasing. a) spectrum after thresholding, b) spectrum after hard-
clipping, c) spectrum after erf-clipping.

From figure 2 we may conclude that erf-clipping produces a signal that
is approximately bandlimited, whereas thresholding and hard-clipping
produce signals with considerable energy contributions at half the sampling
frequency, 12 fs.

Figure 3 shows the Fourier transforms of the scaled signals before (grey
lines) and after (black lines) sampling. The difference is due to aliasing. It
is clear that the spectrum of the erf-clipped signal (figure 3c) is almost
completely preserved whereas the entire spectra of the signals after
thresholding and hard-clipping are heavily corrupted due to aliasing.

When erf-clipping replaces thresholding it is often applied to a raw
intensity image or a second derivative filtered image. The first leaves us
with choices for the central isophote (“threshold” level t) and the clip range
r, whereas the latter is usually applied around the zero-crossing and leaves
us with a choice for the clip range. In [3] we proposed to set the clip range
at roughly 1/4 of the original edge height. In [3] we also showed that erf-
clipping increases the bandwidth of the signal. The increase is roughly the
ratio between the edge height (contrast) before and after clipping.

3. ZERO CROSSING POSITION OF CURVED EDGES

There exists an extensive literature on edge detection techniques and the
evaluation of edge detectors in the presence of noise. The so-called
stochastic errors have received a lot of attention while the systematic errors
and sampling issues have been neglected. Berzins [4] paid some attention
to edge location errors near corners.

Analog and digital low-pass filters yield systematic errors in the zero-
crossing position of curved edges after second derivative filtering. The
filters studied are: the Laplacian-of-Gaussian (LoG), the second derivative
in gradient direction (SDGD) and their sum PLUS. The zero-crossing of a
second derivative filter is a well-known edge localization criterion. In
previous work [5, 6] we have shown that all derivative based edge detectors
exhibit a systematical error in their zero-crossing position that cannot be
avoided. The blurring of curved edges – optical as well as digital – exerts
an influence on the edge location. This discovery of this phenomenon has
driven us to investigate the behavior of these systematic errors as function
of the edge radius and the size of the low-pass filter. We found that two
well-known edge detectors: the LoG and the SDGD produce an equal edge
shift, but in opposite direction. The zero-crossing of a convex edge is
displaced outwards by the LoG and inwards by the SDGD. A newly
proposed edge detector called PLUS (PLUS = LoG + SDGD) yields an
edge displacement that is an order of magnitude smaller than the ones
produced by either of its constituents (c.f. table 1). Accurate prediction of
the edge shifts requires that the sampling requirements are satisfied and that
the size of the overall smoothing (σtotal) remains a few times smaller than
the edge radius R (2σtotal<R). In [5] we have shown that SDGD and PLUS
require three times oversampling to avoid aliasing.

Table 1: Relative location error (r0–R)/R of constant curvature edges as
function of the total σ (σ2=σslope2+σPSF

2+σsmooth2+σderivative) and the
object radius R. The positive axis is defined from the center of the object.
The sampling requirement is given as well.

filter sampling (r0–R)
R    in 2D

(r0–R)
R    in 3D
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An alternative method for edge localization uses a linear combination of
Gaussians. A Doublet-of-Gaussians filter is similar to a Laplacian-of-
Gaussian (LoG). A combination with N Gaussians reduces the edge shift to
a fraction (1/(2N–3)) of the one produced by a LoG filter [5, 6]. Smoothing
by a Gaussian filter also displaces the isophotes. The isophotes at half edge
height is displaced inwards by the same amount as the SDGD zero
crossing. In [7] we extended the 2D algorithm for isophote curvature
estimation to measure the principal curvatures of an isophote surface patch.
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4. AREA OR VOLUME, PERIMETER OR SURFACE-AREA,
SPAGHETTI LENGTH, EULER NUMBER AND BENDING ENERGY,

For images that contain a single object the global measures produce
object features. Our grey-scale measurements transform the input image
into an output image. The grey-volume – sum of the sample values – of the
output image is directly proportional to the required measure. Using this
principle we developed 2D estimators for area, contour length, Euler
number, and bending energy of a thin rod. In 3D we developed estimators
for volume, surface area, spaghetti length, Euler number and the bending
energy of a thin plate.

All our object measurements depend on the contour or surface of the
analog object. Knowledge about the behavior of (curved) object edges due
to low-pass filtering is a first requirement to construct unbiased estimators.
Another vital element is erf-clipping. This form of nonlinear scaling is used
to flatten the grey landscape. Wherever possible we have compared our
results to those of others. By doing so, one difficulty remains. All authors
who have published measurement errors started from a point sampled
version of an analytical object description. They have neglected to model
the imaging process. Their reported errors are optimistic since they omit
systematic error contributions due to low-pass filters in the imaging process
and they avoid all errors related to edge localization.

4.1. 2D area & 3D volume
Traditional methods produce a binary object whose area or volume is

estimated by pixel or voxel counting. We use the zero crossing of our
PLUS operator to denote the object boundaries. PLUS is constructed from
partial derivatives with a built-in Gaussian of size σ = 3.0. From here we
followed two strategies. The first produces a binary image by thresholding
at level zero and filling the interior of the object. Counting the number of
object pixels or voxels yields a measure for area or volume.  The second
alternative applies erf-clipping in the linear edge region around the zero
crossing with clip range r=h/4, where h denotes the edge height in the
image or the dynamic range after PLUS filtering prior to clipping.
Afterwards, the upper clipping level is propagated inwards whereas the
lower clipping level is propagated into the background resulting in a flat
object (upper clipping level) on a flat background (lower clipping level).
This yields the grey-scale landscapes A2D or V3D. The resulting grey-
volume of A2D or V3D is proportional to the area or volume of the
underlying object. Erf-clipping produces an erf-shaped edge profile (anti-
symmetric) centered around the zero crossing and of a width w described
by the standard deviation of a Gaussian. For a curved edge there is more
additional “mass” outside the contour than there is missing inside the
contour.  The resulting positive bias term for simply-closed objects is πw2

in 2D and 4πw2R in 3D  [5, 6] . In 2D the clip-width bias is constant and
can be subtracted to obtain an area estimation limited by the accuracy of the
PLUS operator. In 3D we either use two clip ranges (r=h/4 and r=h/5) to
eliminate the erf-width bias or we use a linear combination of 1.0 Laplace +
1.07 SDGD (instead of PLUS) as second derivative filter to compensate the
erf-width bias.

Table 2: Overview of 2D area and 3D volume estimation methods. The
PLUS bias and erf-width bias are absolute bias terms, bias* is the relative
bias after correction. PLUS uses Gaussian derivatives with σ = 3.0. The
clip range is 1/4 of the PLUS range.

bias terms relative errors
after correction

Method PLUS
bias

erf width
bias

bias* (%)
R∈ (10→50)

CV (%)
R∈ (10→50)

2D: binary method πσ4/R2 πw2 1→10–3 10–3

2D: grey-scale method πσ4/R2 1→10–2 10–2

3D: binary method 4πσ4/R 4πw2R 1→10–3 10–3

3D: grey-scale method 4πσ4/R 1→10–2 10–2

Thus, the erf-width bias can be compensated. The corrected (*) grey-
scale method produces a bias smaller or equal to the one produced by the
binary method. The bias decreases from 1% for object radii around 10
pixels to 10–3 % for object radii around 50 pixels. The CV of the grey-scale
method is an order of magnitude smaller than the CV of the binary method.
For an overview see table 2.

4.2. 2D perimeter & 3D surface area
Traditional methods assign weights to the various pixels configurations

along a binary contour in 2D [8, 9] or over a binary surface in 3D [10].
Summation of the weighted contour pixels or surface voxels yields the
perimeter or surface area estimate. In our grey-scale method the boundary
of the object is transformed into a landscape L2D or A3D whose grey-
volume is proportional to its contour length or surface area. The contour can
either be an isophote in the raw data or the zero crossing after second
derivative filtering.

The isophote method applies erf-clipping to a linear edge region
producing a flat grey landscape with erf-shaped edge profiles. The modulus
of a gradient (implemented using Gaussian derivatives) yields a Gaussian
distribution shifted inwards for convex edges (the edge shift is exactly
equal to the one produces by the SDGD). This landscape is called
L2D_isophote or A3D_isophote. The shift causes a negative bias term that can
be partially compensated for in 3D, but not in 2D [2, 3].

The zero-crossing method uses a more appropriate edge definition that
does not suffer from shading. The Laplacian-of-Gaussian (LoG) yields a
zero-crossing that is shifted outwards for convex edges. Applying the
isophote method to the Laplacian zero-crossing, the LoG bias and the
gradient bias (σgrad

2 = σpsf
2 + σLoG

2) cancel each other. This yields a
Gaussian cross-section at the exact edge location. Such a landscape is
called L2D_zero-crossing or A3D_zero-crossing. The finite width of the Gaussian
profiles along the object boundary produces a small positive bias in 3D
images. This bias term, however, is independent of the object shape and
size and can easily be subtracted from the surface area estimate [2, 3].

Table 3: Overview of 2D edge length and 3D surface area estimation
methods. The edge shift bias and edge thickness bias are absolute bias
terms, bias* is the performance after bias correction. The isophote method
uses σgrad = 1.5 whereas the zero crossing method uses σLoG = 1.5, a clip
range of 1/4 of the Laplace range and σgrad = 1.75 (only when the images
are sampled exactly at the Nyquist rate). Due to erf-clipping over 1/4 of the
input range w2<<σ2.

bias terms relative errors
after correction

Method edge shift
(disc/sphere)

edge
thickness

bias* (%)
R∈ (10,50)

CV (%)
R∈ (10,50)

2D: isophote length –πσ2/R 0 10→10–1 10–2→10–4

2D: zero crossing length 0 0 10–1→10–2 10–2→10–3

3D: isophote area –8π(σ2+σpsf
2) 4π(σ2+w2) 1→10–2 10–1→10–3

3D: zero crossing area 0 4π(σ2+w2) 1→10–3 10–1→10–3

Table 3 shows the relative bias (*) and CV after bias correction for both
methods. Experiments show that unbiased estimators for 2D edge length
and 3D surface area can be constructed. Comparing our method with
existing binary methods  [8, 9] we notice that: 1) our bias is almost
everywhere an order of magnitude smaller; 2) our CV’s in 2D are more
than an order of magnitude smaller and our CV’s in 3D are two or three
orders of magnitude smaller. We may conclude that proper sampling really
pays off. Moreover, our method takes care of edge shifts by optical
smoothing (σPSF).

Other experiments showed that some undersampling does not sacrifice
the performance of our method. Sampling at the Nyquist rate σpsf=0.9,
derivative-of-Gaussian with σgrad=1.5 (isophote method) or sampling at the
Nyquist rate σpsf=0.9, LoG with σLoG=1.5 and derivative-of-Gaussian with
σgrad=1.75 (zero crossing method), the measurement procedures perform
well.

4.3. 3D length
Others have extended the binary methods for length estimation in 2D to

3D methods for measuring the length of binary space curves [11, 12, 13].
The three possible transitions: grid parallel, square diagonal, and cube
diagonal are properly weighted and summed to produce an unbiased
minimum-MSE length estimate.

Here we estimate the length of 3D space curves through grey-volume
measurements. To transform a 3D cylinder into a grey-volume proportional
to its length requires a second derivative perpendicular to the center line of
the cylinder, thus in the radial direction. The second derivative in gradient
direction (SDGD) accomplishes this. Thus the integrated SDGD yields a
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grey-volume proportional to the length of the cylinder. The method requires
a constant line intensity along the line. This can be accomplished by
applying erf-clipping to the slopes of the lines. The proposed method is
independent of the line diameter and hence insensitive to the “threshold”
level around which erf-clipping is applied. The length contribution is
virtually independent of the orientation of the line. We have tested our
method in randomly oriented cylinders of radius 20 sampled at the Nyquist
rate. The SDGD uses Gaussian derivatives of size σSDGD = 1.35. Table 4
shows that the errors are three orders of a magnitude smaller than the ones
reported by Verwer [11] for the 3 3 3 chamfer method.

Table 4: Error comparison between two 3D length estimators: Verwer’s
[11] 3 3 3 chamfer method and our integrated SDGD.

Error 3D chamfer method integrated SDGD
bias 0.00 % 0.00 %
CV 2.30 % 2.1 10–3 %
maximum error 2.95 % 4.7 10–3 %
minimum error –10.60 % –3.2 10–3 %

We can measure the length of spaghetti (not necessarily of constant
width). The length of macaroni, however, remains an unsolved problem.
The inside tube gives a virtual negative contribution producing a length of
macaroni equal to zero. This can be explained by the theory on Euler
numbers.

4.4. Euler number
We have proposed and tested two methods for estimating Euler numbers

in two dimensions. The first is deduced from the 3D length estimator. The
integrated second derivative in the gradient direction yields a 2π
contribution for every simply-closed object in 2D images. A hole yields a
contribution of –2π. The bias is around 1%. The second method is derived
from the field of differential geometry. The integrated curvature of SCC
objects always produces 2π per revolution [14]. Around holes the curvature
has an opposite sign and results in an integrated curvature of –2π. This
method has a bias of 0.1%, a smaller bias in exchange for a more complex
algorithm [2].

In three dimensions we have only one method. Again from differential
geometry we know that the surface integral of the Gaussian curvature
yields 4π for each SCC object (Gauss-Bonnet formula [15]). Each tunnel
(handle) through the object contributes –4π. Unfortunately, we cannot
discriminate between surfaces around objects and around holes. The bias is
again smaller than 0.1% [2].

4.5. Bending energy
From the theory of elasticity we know that the bending energy of an

object formed from flexible straight or flat material represents the energy
stored in its shape. Our 2D bending energy is directly proportional to the
bending energy of a deformed circular rod [16]. In 3D the bending energy
corresponds to that of a deflected thin plate. The bending energy per unit
length is the curvature squared κ2, per unit surface area it is the sum of the
squared principal curvatures κ12 + κ22 [7] The integration of the bending
energy contributions over the object boundary is realized by a
multiplication with the landscape L2D_zero-crossing or A3D_zero-crossing
(perimeter or surface area estimator). This way the contour or  surface area
is locally weighted by its energy contribution. The resulting grey-volume
yields the desired bending energy. Thus, the combination of isophote
curvatures and perimeter or surface area estimators allows us to measure
the bending energy. Typical error for discs and ellipses in 2D and spheres
and ellipsoids in 3D are given in table 5.

Table 5: Overview of 2D and 3D bending energy estimation. The isophote
curvatures are calculated using Gaussian derivatives of σκ = 5.4 for the
discs and spheres and σκ = 3.8 for the ellipses and ellipsoids. The GCL
landscape uses a σLoG = 1.5, a clip range of 1/4 of the Laplace range and
σgrad = 1.75. All images were sampled at the Nyquist rate.

Object bias (%) CV (%)

discs of R ∈  (15,100) 3→10–1 10–3

ellipses of eccentricity ∈  (1,0.3), Rmin=16.2 2→–1 10–3

spheres of R ∈  (15,45) 10–2 10–3

ellipsoids of eccentricity ∈  (1,0.7), Rmin=11.4 10–2 10–3

5. CONCLUSIONS

We presented sampling-error free measurements that are better (lower
bias and lower coefficient-of-variation CV = µ/σ) than the traditional
binary methods. The sum of samples grey-volume can easily be measured
without a sampling error. All geometric properties of single objects are
measured as follows. Transform an input image into output image whose
grey-volume is directly proportional to quantity to be measured. To avoid
aliasing (sampling errors) the transformation should consist of sampling-
error free operations. Using this principle we developed 2D estimators for
area, contour length, Euler number, and bending energy of a thin rod. In 3D
we developed estimators for volume, surface area, spaghetti length, Euler
number and the bending energy of a thin plate.

In the above methods we take edge displacement due to optical as well
as digital blurring into account. To separate object from background we
applied milder erf-clipping rather than the very nonlinear threshold
operator.
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