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Abstract

While many methods to simulate flocking behaviors
have been proposed, these techniques usually only pro-
vide simplistic navigation and planning capabilities be-
cause each flock member’s behavior depends only on its
local environment. In this work, we investigate how the
addition of global information in the form of a roadmap
of the environment enables more sophisticated flocking
behaviors and supports global navigation and planning.
In this paper, we propose new techniques for four dis-
tinct group behaviors: homing, goal searching, travers-
ing narrow areas and shepherding. Extending ideas from
cognitive modeling, we embed behavior rules in individ-
ual flock members and in the roadmap. These embedded
behaviors enable the creatures to modify their actions
based on their current location and state. For example,
the flock might move as an unordered group in open re-
gions and in a follow-the-leader fashion through narrow
passages. These behaviors exploit global knowledge of
the environment and utilize information gathered by all
flock members which is communicated by allowing indi-
vidual flock members to dynamically update the shared
roadmap to reflect (un)desirable routes or regions. We
present experimental results showing how the judicious
use of simple roadmaps of the environment enables com-
plex behaviors to be obtained at minimal cost. Anima-
tions can be viewed at http://parasol.tamu.edu.

Introduction

The ability to simulate the coordinated movement of
a group of creatures plays an important role in arti-
ficial life. For example, birds fly in flocks, fish swim
in schools, and sheep move as a herd. An artificial
representation of such creatures requires techniques for
generating the motion of the individual entities within
the flock and techniques for directing the global move-
ment of the flock. While such methods have attracted
much attention, most research has focused on techniques
for modeling individual behavior within a flock, such as
Reynolds’ boids (Reynolds 1987). These techniques have
been coupled with simple methods for guiding global
flock movement, such as attractive potential fields cen-
tered at a goal location, to achieve realistic group move-
ment in simple environments with few external obsta-
cles, such as birds in the air or fish in the sea. Usually

Figure 1: Complex behaviors, such as covering, can be im-
proved using global information.

in this approach the flock shows homogeneous behav-
ior. Tu and Terzopoulos extended Reynolds’ flocking
system to create more realistic, self-animating charac-
ters through biomechanical modeling with a behavioral
finite state machine, the intention generator (Tu & Ter-
zopoulos 1994). They also propose the idea of cognitive
modeling (Funge, Tu, & Terzopoulos 1999), which con-
trols how characters gather knowledge and how they act.
Their cognitive modeling language, CML, eases an ani-
mator’s task of specifying character behaviors. In brief,
cognitive modeling provides an alternative to hard-coding
for embedding behaviors into programs. It also enables
heterogeneous flocks — different behaviors for different
flock members. Unfortunately, these existing methods
do not perform well if complex navigation is required,
such as in cities, through crowded rooms, or over rough
terrain. The ability to generate animations in complex
environments is poor even if more elaborate behaviors
are encoded in CML. This is due to, so-called, emer-
gent behavior in which characters only react to immedi-
ate events.

In contrast, path planning algorithms developed in the
robotics community are capable of navigation in complex



2 in Artificial Life VIII, Standish, Abbass, Bedau (eds) (MIT Press) 2002. pp 362-370

environments (Latombe 1991). In particular we note the
roadmap methods which can quickly answer many diverse
path planning queries using a map, typically constructed
during preprocessing, containing a network of represen-
tative feasible paths in the environment. In essence,
these maps function similarly to driving maps in that
one plans a route by first locating their initial and fi-
nal positions and then selecting a route connecting them
from the roads and highways shown on the map. While
many good path planning algorithms exist, they have
traditionally only been used to plan paths for a single
moving object (the ‘robot’). That is, roadmap methods
have not been used to support group behavior.

Our Contribution

In this work, we explore the benefits of integrating
roadmap-based path planning techniques with flocking
techniques. We extend ideas from cognitive modeling
(Funge, Tu, & Terzopoulos 1999), and embed behavior
rules in individual flock members and in the nodes and
edges of the roadmap. We find that the global infor-
mation provided by our rule-based roadmaps improves
the behavior of autonomous characters, and in particu-
lar, enables more sophisticated group behaviors than are
possible using traditional (local) flocking methods. Key
features of our approach include:

e The roadmap provides a convenient abstract represen-
tation of global information in complex environments.

e Adaptive roadmaps (e.g., modifying node and edge
weights) enable communication between agents.

e Associating rules with roadmap nodes and edges en-
ables local customization of behaviors.

We illustrate the power of our approach by proposing
new approaches for four behaviors: homing, goal search-
ing, traversing narrow passages and shepherding. Our
new techniques can be applied to an entire flock, to indi-
vidual flock members, or to an external agent that may
influence the flock (e.g., a sheep dog).

To our knowledge, this is the first time global maps
have been used to support group behavior. However,
Parker’s work supports our use of global information to
enable sophisticated group behaviors (Parker 1993). In
particular, she concluded that global knowledge should
be used to provide general guidance for the longer-term
actions of an agent, whereas local knowledge influences
the more short-term, reactive actions. She also suggested
that local information should be used to ground global
knowledge in the current situation. This allows agents to
remain focused on the overall goals of their group while
reacting to the dynamics of their current situations.

Related Work

Reynolds’ influential flocking simulation (Reynolds
1987) established the feasibility of modeling such a sys-

tem. His work showed that flocking is a dramatic ex-
ample of emergent behavior in which global behavior
arises from the interaction of simple local rules. Each
individual member of the flock (boid), has a simple rule
set stating that it should move with its neighbors. This
concept has been used successfully by researchers both
in computer graphics and robotics. Tu and Terzopoulos
(1994) used flocking behaviors with intention generators
to simulate a school of fish in artificial life. Later, they
implemented a search over possible situations expressed
in formal logic (Funge, Tu, & Terzopoulos 1999). They
also demonstrated shepherding behavior in which a T-
Rex herds raptors out of its territory.

Nishimura and Tkegami (1997) used flocking dynamics
to investigate collective strategies in a “prey-predator”
game model. Ward et al. (2001) studied an evolving sen-
sory controller for producing schooling behavior based on
“boids”. Brogan and Hodgins (1997) investigated group
behavior with significant dynamics, such as human-like
bicycle riders. Sun et al. (2001) achieve swarm be-
haviors based on a biological immune system. Balch
and Hybinette (2000) propose a behavior-based solu-
tion to the robot formation-keeping problem. Fukuda
et al. (1999) describe group behavior for a Micro Au-
tonomous Robotics System. Mataric (1994) classifies a
basic set of group behaviors which can be used to create
more complex behaviors including flocking and herding.
Saiwaki et al. (1997) use a chaos model to simulate a
moving crowd. An interesting approach by Vaughan et
al. (2000) used a robotic external agent to steer a flock
of real geese.

Although there is little research on path planning for
flocks, many methods have been proposed for planning
for multiple robots. These methods can be character-
ized as centralized or decoupled. Centralized methods
consider all robots as one entity, while decoupled meth-
ods first find a path for each robot independently and
then resolve conflicts. In work from Li et al. (2001),
each group of crowds is guided by a leader and the paths
of the leaders are generated using a decoupled approach.

The observation of the behavior of ant colonies has in-
spired the ant colony optimization (ACQO) meta-heuristic
for discrete optimization. Dorigo et al. (1999) exploit
this ant-like behavior to optimize solutions for several
NP-Complete problems. In our work, the flock’s ability
to explore comes from using an ACO-like approach to
adaptively adjust roadmap edge weights.

Rule-Based Roadmap Path Planning

Roadmap methods are among the most effective motion
planning methods (Latombe 1991). These methods are
based upon a map, usually computed during preprocess-
ing, encoding representative feasible paths in the envi-
ronment. Paths are planned by first locating their start
and goal positions in the roadmap and then determining
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Figure 2: Querying a roadmap.

aroute between them from the pathways in the roadmap.
(See Figure 2.)

The roadmaps encode global navigation information,
but they usually do not include ‘local’ information
for influencing behavior differently in different regions.
We propose providing such information in the form of
pre-defined behavior rules which can be stored in the
roadmap. When in the region of influence of a roadmap
node (or edge), the group members’ behavior is governed
by the rule, if any, associated with that node. If no rule
is specified, a default behavior will be followed. Rules
may be as simple as

RULE: Go To NEXT NODE IN YOUR PATH
or as complex as

RULE: Wait For THE OTHERS, SELECT A LEADER,
FoLLow THE LEADER.

Rules are assigned to nodes automatically in our im-
plementation. For example, narrow passage behaviors
(rules) are assigned to nodes on path segments that have
small clearance. This process can be done manually as
well, enabling customization.

System Overview

The general components of our system are one or more
AGENTs and an ENVIRONMENT. Environment-aware
AGENT behavior is specified in RULEs written in our
custom script language.

System Components Each AGENT is a flock mem-
ber, and it has several attributes associated with it, such
as position, goal, role, and path. These are stored in
variables called AgentVars. When an AGENT reaches a
node, it starts executing that node’s rule script. These
rules might be executed only once, or at each time step
that the AGENT is in the region of influence of that
node. In addition to pre-defined variables common to all
AGENTSs, recording properties such as position, AGENTS
may also have dynamic (temporary) variables which are
instantiated when rules are executed.

The ENVIRONMENT stores global information about
the environment in the roadmap which is shared by all
AGENTs. The roadmap nodes store NODE attributes,
such as node position and edges and functions to as-
sist navigation (e.g., returning the minimum weight edge
leaving the node) in NodeVars. The NodeVars and func-
tions are shared by all AGENTs running the NODE’s
script (when they are within the NODE’s influence area).
In addition to the pre-defined NodeVars, a NODE may
also have dynamic NodeVars instantiated by the NODE’s
script.

RULEs describe AGENT behavior. They are associ-
ated with regions of the ENVIRONMENT and are stored
in roadmap NODEs. They can contain variables, assign-
ments, control statements and loops. TRIGGERSs are spe-
cial rules which are invoked to initialize and finalize vari-
ables governing behaviors. For example, in the narrow
passage behavior, the first AGENT to reach the passage
is selected as the leader by the TRIGGER for that narrow
passage. TRIGGERs may be run only once, the first time
an AGENT reaches the associated NODE, or they may
run continuously until all AGENTs have left the region.

System Control Structure There is a main loop in
the program which, at each time step, assigns AGENTS
to NODESs, runs any necessary TRIGGERS, and then calls
individual agent rule scripts.

Rule scripts are stored with roadmap nodes, and
are executed by AGENTs that are assigned to those
nodes by the control loop (i.e., that are in the sphere of
influence of those nodes). The structure of a rule script
is as follows:

Definition of NodeVars
Definition of AgentVars
Definition of TRIGGERs
RULEs. ...

In our scripting language, the predefined variable agent
refers to the AGENT running the script. All AGENTs
have agent.position and agent.goal attributes pro-
viding their current position and goal position, and
an agent.role attribute defining their current role,
which is boid by default. The AGENT attribute
agent.path has functions such currentPosition,
index, nextPosition, push, pop, etc. The prede-
fined variable node in the script represents the NODE
with which that script is associated. Each edge belongs
to an edge structure made up of start, end and weight
values. AGENTs can access the roadmap (or ENVIRON-
MENT) information through the predefined node variable
or by calling functions which return information avail-
able in the node or edge structures, e.g., node.edge (i)
which returns the ith edge.
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Roadmap-Based Group Behaviors

In this section, we show how rule-based roadmap tech-
niques can be used to achieve different behaviors. We
consider four behaviors: homing, goal searching, travers-
ing narrow passages and shepherding. The first two
behaviors influence where the flock goes — reaching a
pre-defined goal (homing) or searching for a goal (goal
searching). The narrow passage behavior influences how
the flock members position themselves relative to each
other when they move through the passage. In the shep-
herding behavior an external agent influences the flock.

Homing Behavior

Homing behavior consists of two sub-models, one rep-
resenting the individual behavior of flock members and
the other influencing the global behavior of the flock.
“Boid” dynamics (Reynolds 1987) sufficiently model in-
dividual behavior in most cases. In this model, individ-
ual members should: (i) avoid collision with neighboring
flockmates, (ii) match velocity with them, and (iii) stay
close to their neighbors. The neighborhood is defined
by a distance, and an individual member of the flock is
steered by angle and directional vectors satisfying the
above criteria.

Global behavior is usually simulated using potential
field methods by adding two directional vectors (Khatib
1986): one toward a goal and one away from nearby ob-
stacles. However, this method may easily be trapped in
a local minimum in an environment crowded with ob-
stacles. A method commonly used in computer games
requiring motion of a group of objects is a grid-based
A* search (Russell & Norvig 1994). In this approach,
the environment is discretized to small grid cells and the
search for the flock’s path is based on expanding toward
the most promising neighbor of already visited positions.
Although A* search finds shortest paths and it is usually
fairly fast, it does have drawbacks. Of particular note
here is the necessity of finding a completely new path
for each new goal which reduces the efficiency of this ap-
proach and increases the computation time for complex
environments.

In contrast, roadmap-based path planning methods
have a global view and once the roadmap is generated,
finding new paths is fast and efficient. In our approach,
we use a probabilistic roadmap method (PRM) (Amato et
al. 1998; Kavraki et al. 1996) motion planning method
called MAPRM (Wilmarth, Amato, & Stiller 1999), to
build the roadmap automatically and find a path for the
flock. One of the advantages of MAPRM is that the paths
we find tend to have large clearances from obstacles.
Once a path is found, individual flock members follow
the path. The path is discretized to subgoals based on
an individual flock member’s sensor range. Each member
keeps track of subgoals and as soon as a subgoal comes
within the sensory range the next subgoal becomes the

steering direction for the global goal.

With other interacting forces from neighboring flock
members and obstacles, steering toward the subgoal has
the lowest priority, so individual members still move to-
gether while moving toward goal. This results in a flock-
ing toward the goal and avoids getting trapped in local
minima. The behavior is summarized in Algorithm I.

Algorithm I HoMING

01.for (each individual flock member)
02. if (goal is in view range)

03. stay near goal

04. else if (current subgoal is in view range)
05. set next subgoal as the target

06. else

07. steer toward the target

08. endif

09.endfor

The script to implement this behavior would be:

//Homing Script
agent.goal = agent.path.next();
stop; //don’t run again at this node

Thus, as soon as an AGENT reaches a node within
the path, the node’s rule selects the next node in the
AGENT’s path as the goal.

Goal Searching Behavior

Goal searching is a type of exploring behavior. We as-
sume the environment is known and the objective is to
search for a goal and then move toward it. We achieve
this behavior using a roadmap graph with adaptive edge
weights. Each individual member behaves independently
from its flock mates and uses the roadmap to wander
around. Specifically, they follow roadmap edges and
there are no predefined paths. If they reach a roadmap
node with several roadmap edges, they probabilistically
choose a roadmap edge to follow based on the weight of
the edge. The edge weights represent any preferences
for the current task, i.e., searching for and reaching the
goal.

Our goal searching behavior is similar to ant colony
optimization (ACO). Although the individual flock mem-
bers know the environment, they don’t know the location
of the goal. If an individual reaches a location where the
goal is within sensor range, its location is communicated
to the other members, perhaps indirectly, and they then
attempt to reach the goal as well. We implemented this
behavior using adaptive edge weights. The weight of
an edge indicated how important it is believed to be,
and edges leaving roadmap nodes are selected with some
probability based on their weights. As an individual tra-
verses a path in the roadmap, it remembers the route it
has taken. Then, when it reaches a goal, it increases
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Figure 3: Ten flock members are searching for an unknown goal. (a) The flock faces a branch point. (b) Since both edges
have the same weight, the flock splits into two groups. (c) After dead ends are encountered in the lower left and upper right,
edge weights leading to them are decreased. (d) As some members find the goal, edge weights leading to it are increased. (e)

The remaining members reach the goal.

the weight of the edges on the route it took. If the in-
dividual reaches a roadmap node without any outgoing
connections (i.e., with only one edge) or a node already
contained in the current path (i.e., a cycle), the weight
of the edges it followed will be decreased. See Figure 3.

The algorithm for this approach is summarized below.

Algorithm IT GOAL SEARCHING

01.for (each flock member)

02. if (goal found)

03. increase edge weights on path to goal

04. else if (dead end found)

05. pop stack until a new branch is found

06. decrease weight of edge corr. to popped node
07. else

08. select a neighboring node of the current node
09. push this node onto the stack

10. endif

11.endfor

This algorithm can be implemented using two different
rule sets: one for all roadmap nodes except the node with
the goal, and one for the roadmap node with the goal.
The first rule set adds the visited nodes to the AGENT’s
path. The second set, which is only executed if the agent
reaches the goal, will increase the weight of the edges the
agent used to reach the goal. The script to implement
the first set of rules is:

// Searching Script
AGENTVAR Node nextNode;
AGENTVAR FEdge edge;
TRIGGER checkDeadEnd;

edge = node.probMaxOutEdge() ;
nextNode = edge.end;
agent.goal = nextNode.position;

agent .addPath(nextNode.position);

The first three lines define local variables and a trigger
function. The fourth line calls a function of the prede-
fined node variable which returns, with some probability,

the maximum weight outgoing edge. Then, the AGENT’s
next goal is set to that edge’s second endpoint and this
information is added to path so that the AGENT can
remember the route it has taken.

The goal searching behavior differs from the homing
behaviors in that we need to monitor the AGENTS’ path
to deal with dead ends. We use special RULEs called
TRIGGERS for this purpose. TRIGGERs are instantiated
when an AGENT reaches the associated NODE, and they
may be run only once, or they may run continuously
until some termination condition is met. For example,
in this case, the TRIGGER function checkDeadEnd will
run once for AGENTs in its influence range. It will check
to see if the path so far contains a dead end, and if so,
will remove the edges leading to it from the path and
decrease their weights so other agents will be less likely
to traverse them.

The following rule, which only resides in the node clos-
est to the goal, will increase the weight of the edges on
the path the AGENT took to the goal.

// Update the passed edges
agent.path.increaseEdgeWeights();
stop; //don’t run again at this node

Narrow Passage Behavior

Sometimes the flock’s behavior should depend on the
surrounding environment. For example, different group
formations may be used in relatively open areas than
when passing through narrow regions.

A naive way to achieve narrow passage traversal by
the flock is to use the homing behavior and to select two
nodes as goals, first a node in front of the entrance to
the passage and then a node outside the exit from the
passage. One drawback of this approach is that flock
members may bunch up and conflict with each other as
they try to move through the passage.

A follow-the-leader strategy may avoid the congestion
problems of the naive strategy. In this strategy, we first
assemble the flock in front of the narrow passage, and
then select the closest flock member to the entrance to
the narrow passage as the leader. Then, the remaining
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flock members are arranged into a queue that follows
the leader. Their position in the queue depends on their
distance to the entrance of the narrow corridor. They
can be kept from crowding each other by selecting ap-
propriate values for the repulsive force from other flock
members. This strategy provides more of a flow effect.

Note that different behaviors can be achieved by using
a different criterion to select the next flock member in
line 6 of Algorithm ITI. For example, instead of selecting
the next closest flock member to the narrow passage, one
might select the farthest, which would create a ‘milling
around’ effect at the entrance to the passage.

Algorithm ITI NARROW PASSAGE

01.while NorT all flock members in gathering area
02. set individual members’ goal to gathering area
03.endwhile

04.set leader to NIL

05.while there are flock members outside passage

06. select the closest unselected member as Current
07.  if Leader is NIL

08. set Leader to Current

09. set Leader’s goal to next step in the path
10. else

11. set Current’s goal to Previous

12.  endif

13.  set Previous to Current
14.  increase neighbor avoidance threshold
15.endwhile

A script for the NARROW PASSAGE behavior is given
below. Initially, all agents are boids. After they all have
gathered outside the passage, one of them is selected as
the leader and the others become followers; these roles
are maintained while traversing the passage.

NODEVAR previous=-1; //define node vars
NODEVAR closest;

NODEVAR state=wait; //define initial state
TRIGGER continuous: waitGathering;
TRIGGER continuous: selectClosest;

IF (agent.role==boid && state==wait) { //wait
agent.goal=node.position; //go to gathering area

}

ELSE IF (agent.role==leader) { //if leader
agent.goal=agent.path.next(); //follow path
stop; //don’t run again at this node

}

ELSE IF (agent.role==follower) { //if follower
agent.path.next(); //update path (not goal)
stop; //don’t run again at this node

ELSE { // agent is boid and state is not wait
IF(closest==agent.id) { //agent is closest
IF (previous==-1) { //no leader yet
agent.role=leader;
agent.goal=agent.path.next();//follow path

ELSE { //join queue - follow previous
agent.role=follower;
agent.goal=agent (previous) ;

agent.path.next(); //update path

previous=agent.id; //update previous
stop; //don’t run again at this node

The waitGathering TRIGGER function continuously
checks if all AGENTs have reached the gathering area.
When they are there, it sets the NODEVAR state so that
the follow behavior starts. The selectClosest TRIGGER
function continuously runs. It can access and update
variables applicable to all AGENTs within the region of
the NODE (i.e., previous and closest) as well as private
variables for each AGENT (i.e., role). At each iteration,
it finds a new closest AGENT and sets the closest vari-
able. Then, the AGENTs running the script compare
themselves with the closest, if they are closest then they
either follow their pre-assigned path (the leader) or fol-
low the previous AGENT.

Shepherding Behavior

In the previous sections we have observed distinct flock-
ing behaviors In the homing and narrow passage behav-
iors, the flock members were moving toward a goal to-
gether, i.e., as a flock. The motion was planned for the
flock. In the goal searching behavior, the flock members
were exploring and planning their motions individually.
In a sense, the flock had control of the motion in the
first case and individual flock members had control in
the second case. In our last scenario, control is ceded
to an outside agent who guides, or shepherds them. In
the simulation snapshots shown in Figure 6, the exter-
nal agent is a dog whose objective is to move the flock
of sheep toward the goal. The only motion control for
the flock is to move away from the dog. Vaughan et
al. (2000) provide a similar implementation in which a
robot was programmed to move geese toward a goal po-
sition. We would like to implement a similar algorithm
where a subgoal will be a roadmap node found in the
path (starting at the center of the flock). Until the sub-
goal is reached, the shepherd will move the flock toward
that goal and then will choose the next roadmap node
on the path as the next subgoal

To move the flock toward the subgoal, the dog steers
the flock from the rear (see Figure 6, second and third
columns, the robot is behind the flock’s covering circle).
If any subgroup separates from the flock, it is the dog’s
job to move the subgroup back to the flock (third column
in Figure 6).

Algorithm IV SHEPHERDING (for dog)

01.Find a path on roadmap

02.while (goal not reached )

03.  Select the next node on the path as subgoal
04. while (subgoal not reached)
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05. Move to rear of flock on the far side of subgoal

06. if flock separates

07. Move the subgroup that is farthest from
subgoal toward other subgroups

08. endif

09. endwhile
10.endwhile

The script to implement shepherding behavior is
shown below. Note that it should be applied every-
where in the environment, and hence every roadmap
node should have this rule.

//Shepherding Script
AGENTVAR steeringlocation;
AGENTVARVAR dogAvoidance;
TRIGGER continuous: findSteering;
TRIGGER continuous: avoidDog;
IFr (agent.role==dog )
agent .goal=steeringlocation;
ELSE
agent .externalForce=dogAvoidance;

The findSteering TRIGGER function continuously finds
a steering location for the dog by checking the location of
the sheep. The avoidDog trigger continuously computes
an extra directional vector to avoid the dog (dogAvoid-
ance). The internal variable externalForce is added to
the boid rules.

Experimental Results

In this section we evaluate our roadmap-based tech-
niques for the homing, exploring, narrow passage traver-
sal and shepherding behaviors described previously.
Movies illustrating these behaviors can be found on our
webpage: (http://parasol.tamu.edu/).

Our experiments are designed to compare our
roadmap-based techniques with more traditional ap-
proaches for simulating flocking behavior and to study
the improvements possible by incorporating global infor-
mation about the environment as encoded in a roadmap.

All of our experiments were run on a Linux system
with Athlon 1.33 GHz processor and 256MB memory.
While noting that our techniques could use any roadmap,
our current implementation is based on the Medial-Axis
Probablistic Roadmap Method, or MAPRM (Wilmarth,
Amato, & Stiller 1999). MAPRM probabilistically gener-
ates a roadmap which is an approximation of the medial
axis of the environment in two dimensional space.

Homing Behavior

For the homing behavior, our roadmap-based technique
is compared with a basic flocking behavior using a po-
tential field and a grid-based A* search behavior.

The environment is a square with sides measuring
420 meters that contains six types of obstacles (see Fig-
ure 4(a)). A total of 301 obstacles are randomly placed
in the environment. At any given time there is one goal,
and when all flock members reach it, a new goal is ran-
domly generated; this process continues until eight goals
have been generated and reached. The experiment in-
volves 40 flock members, which are initially placed ac-
cording to a Gaussian distribution around the center of
the square environment. The simulation is updated ev-
ery 100 ms.

For the grid-based A* behavior, a bitmap of the en-
vironment of 914 x 914 cells is constructed; the length
of a side of each square cell is equal to the diameter
of a flock member. Cells are classified as free cells and
collision cells. Paths are found in this bitmap using A*
search. For the roadmap-based behavior, the roadmap is
built using the MAPRM method to generate 400 roadmap
nodes and we attempt to connect each node to its 4 near-
est neighbors.

Homing behavior: Basic v.s. Roadmap

METHOD #fockmate reaching the goal
Basic 10
grid-based A™ 40
Roadmap-based 40

Table 1: This table shows the number of the 40 flock mem-
bers that reach their home within 30 seconds using the ba-
sic flocking behavior, the grid-based A* behavior, and the
roadmap-based behavior.

Table 1 shows that, without global information, only
25% of the flock members reach the goal and most of
the others are trapped in local minima. On the other
hand, when global navigation information is utilized, ei-
ther with the grid-based A* method or our roadmap-
based method, all flock members reach the goal.

Homing behavior: Roadmap v.s. grid-based A”

BEHAVIOR init | find path local minima

METHOD time time # escape (s)
roadmap-based || 0.88 0.652 255 22.99
grid-based A™ 6.02 5.757 2005 1035.43

Table 2: This table shows the time for initialization, the
average time to find a path, and the total time spent by all
flockmates escaping local minima.

In Table 2 we show the time spent searching for paths,
the number of local minima encountered along all paths,
and the total time spent escaping from local minima.
Note that our roadmap-based method is faster than the
grid-based A* method, mainly because it spends less
time escaping from local minima.
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Figure 5: Passing through a narrow passage using (a) the follow-the-leader behavior, and (b) the naive strategy (homing to

the exit node of the passage).

Goal Searching Behavior

In this experiment, the rule-based roadmap behavior is
compared with simple flocking behavior that has only
local information about the environment and no knowl-
edge of the goal position and with an ideal variant of the
roadmap-based behavior that has a priori knowledge of
the position of the goal.

The environment (80 x 100) is populated with 16 ob-
stacles (6 types of obstacles) and in total 24% of the envi-
ronment is occupied by obstacles. 50 flock members are
simulated and states are updated every 100ms. We set
the radius of the sensory circle at 5m. For the roadmap,
120 nodes are sampled and connections are attempted to
each node’s 4 nearest neighbors. We are interested in the
number of flock members that reach the goal and how
fast they get there. As mentioned before, the behavior
with complete knowledge is used to establish a best case
(lower bound) for the simulation efficiency, and the basic
behavior using only local information is used to illustrate
the importance of global knowledge.

The results of some experiments are shown in Fig-

ure 4(b). Flocks using the basic behavior did not dis-
cover any goals within 35 seconds, and hence this behav-
ior is not shown in the plot. Overall, the roadmap-based
behavior is competitive with the ideal roadmap-based
behavior — only taking 5 seconds longer than the method
in which the position of the goal is known a priori. In
addition, it is surprising to note that two of the flock
members in the roadmap-based method reach the goal
earlier than any of their flockmates in the ideal roadmap-
based behavior. While we expect the roadmap-based
method to continue to perform well in more complex en-
vironments, we expect its efficiency relative to the ideal
method to decline somewhat.

Narrow Passage Behavior

The narrow passage environment shown in Figure 5 con-
tains 50 flock members and two mountain-like obstacles.
Agents are asked to reach the goal on the other side
of environment. The only way to reach their destina-
tion is to pass through the narrow passage between these
two obstacles. As before, the roadmap is generated us-
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ing MAPRM which attempts to generate high clearance
nodes on the medial axis of the free space. We consider
the naive and the follow-the-leader strategies described
earlier.

In the follow-the-leader strategy, a node is automat-
ically assigned the narrow passage rule if its clearance
is below some threshold. All other nodes are assigned
homing rules with the goal set as a node outside the
exit of the narrow passage. The homing rule script also
sets agent.role = boid, so that all AGENTs are boids
when they gather outside the entrance to the narrow
passage. Snapshots of the agent movement are shown
in Figure 5(a). Note how the agents maintain clearance
from each other as they move through the passage. The
amount of clearance is adjusted by modifying the repul-
sive force between agents, which can be set in the rule
scripts stored in narrow passage nodes.

In the naive strategy, homing rules are assigned to
all nodes, with the goal of the homing rules set to the
node at the exit of the narrow passage. Snapshots of the
agent movement are shown in Figure 5(b). Note how the
agents clump together and interfere with each other as
they move through the passage.

Shepherding Behavior

In shepherding, we try to compare the roadmap-based
method with the grid-based A* search and we investigate
how the magnitude of the dog’s repulsive force affects the
simulation. We conducted two sets of experiments.

In the first set of experiments, the flock consists of
30 sheep and the sheep dog is an external agent. The
experiment starts the flock in a random location and
the objective is to move it to a randomly selected goal.
When the sheep reach the goal, the experiment is re-
peated again by selecting a new starting position and
goal position at random.

We compare our method to a grid-based A* method.
The basic method using local information was not con-
sidered due to its observed inadequacies in the previ-
ous experiments. The environment is the same and the
experiments are similar as for the homing experiments
(Figure 4(a)). In our grid-based A* implementation, the
search for the path to the goal and the dog’s path to
the steering position use A* search on a bitmap with
914 x 914 cells. The roadmap method used the MAPRM
method with 400 roadmap nodes, with each node con-
nected to its 4 nearest neighbors.

Our results, shown in Table 3, include initialization
times, the number of simulation steps required to reach
the goal, and the number of local minima encountered.
All values reported are averages over 40 experiments. We
see that fewer local minima are encountered here than
in the previous behaviors. This is influenced by the fact
that MAPRM tries to generate paths that have high clear-
ance from obstacles and because as the dog moves to

Shepherding behavior: Roadmap v.s. A"

METHOD init (s) | #steps | #local min.
Roadmap-based 0.88 2348.17 7.8
A™-based 6.02 10612.08 32.2

Table 3: Shepherding behavior. This table shows time for
initialization, the average number of simulation steps re-
quired to reach the goal, and the average number of local
minima encountered.

Figure 6: Shepherding behavior snapshots where the dog’s
repulsive force is (a) lower or (b) higher. Note that as the
repulsive force increases, the flock may separate and become
harder to herd.

the steering position it influences the individual mem-
bers and increases the entropy of the system, resulting
in relatively more randomness. Thus, even though some
members are stuck in local minima, the dog would come
and retrieve them. The table shows that the roadmap-
based shepherding behavior performed better than the
grid-based A* search.

In the second set of experiments, we have varied the
repulsive force coefficient of the dog between 0.1 and 200.
The coeflicient represents the degree to which the sheep
will be repulsed from the dog. Note that, although the
greater the coefficient the more repulsion occurs, it does
not mean that the total force on the sheep is propor-
tional to the coefficient since there are other forces on
the individual sheep (to represent boid behavior). Snap-
shots of this experiment in a simplified version of the
environment can be seen in Figure 6, and Figure 4(c)
shows the relation between the magnitude of the dog’s
repulsive force and the time needed to herd the flock to
the goal. If the repulsive force is very low, it takes longer
for the dog to push the sheep to the goal. As the repul-
sive force increases, the dog controls the sheep better.
However, after some point, the system becomes chaotic.
This behavior can be explained by the fact that as the
sheep become more repulsed, it becomes difficult for the
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dog to collect them into the herd. This can be seen in
the second and third columns of Figure 6(b) where some
group members are separated from the flock.

Conclusion

In this paper, we have shown that complex group behav-
iors can be generated using a roadmap providing global
environment information. The information the roadmap
contains, such as topological information and adaptive
edge weights, enables the flock to achieve behaviors that
cannot be modeled with local information alone. More-
over, since in many cases global knowledge involves high
communication costs between individuals, indirect com-
munication though dynamic updates of the roadmap’s
edge weights provides a less expensive means of obtain-
ing global information.

The behavior rules embedded in our roadmaps and
agents enable the agents to modify their actions based
on thier current location and state. For example, the
flock can move as an unordered group in open regions
and in a follow-the-leader fashion through narrow pas-
sages. Our simulation results for the four types of behav-
iors studied show that the performance of the rule-based
roadmap behaviors is very close to ideal behaviors that
have complete knowledge.

In summary, we believe the techniques presented in
this paper can be applied easily and efficiently to many
diverse domains and have the potential to improve upon
existing approaches.
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