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Abstract

We analyze the concrete security and key sizes of theoretically sound lattice-based encryption schemes

based on the “learning with errors” (LWE) problem. Our main contributions are: (1) a new lattice attack

on LWE that combines basis reduction with an enumeration algorithm admitting a time/success tradeoff,

which performs better than the simple distinguishing attack considered in prior analyses; (2) concrete

parameters and security estimates for an LWE-based cryptosystem that is more compact and efficient

than the well-known schemes from the literature. Our new key sizes are up to 10 times smaller than prior

examples, while providing even stronger concrete security levels.
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1 Introduction

Recent years have seen significant progress in theoretically sound lattice-based cryptography, resulting in

solutions to many tasks of wide applicability. In the realm of encryption alone, for example, we now have

public-key cryptosystems [AD97, Reg03, Reg05] with chosen-ciphertext security [PW08, Pei09], identity-

based encryption [GPV08, CHKP10, ABB10], and a fully homomorphic cryptosystem [Gen09]. Much of

this progress has been greatly aided by the use of simple and flexible average-case problems — namely,

the short integer solution (SIS) introduced by Ajtai [Ajt96] and the learning with errors (LWE) problem

of Regev [Reg05] — that are provably as hard as certain lattice problems in the worst case, and appear to

require time exponential in the main security parameter to solve.

For practical parameters, however, the concrete hardness of the SIS and LWE problems against algorithmic

attacks is still far from a settled issue. This makes it difficult to assess the actual security and efficiency of

cryptographic schemes that are based on these problems. The purpose of this paper is to shed further light on

this issue, by considering new variants of known schemes and attacks, and analyzing their consequences in

terms of key sizes and estimated security.
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1.1 Our Contributions

We analyze the concrete security and efficiency of modern lattice-based cryptographic schemes, with a focus

on LWE and public-key encryption. To start, we describe an LWE-based cryptosystem that has substantially

smaller keys and ciphertexts than the more well-known systems in the literature (namely, the original system

of Regev [Reg05] and its more efficient amortized variants [PVW08, GPV08]). Our scheme incorporates

several techniques and perspectives from recent works; in particular, it is an instance of an abstract system

described by Micciancio [Mic10] that generalizes all the schemes of [Reg05, PVW08, GPV08], and the

system’s design and security proof (under the LWE assumption) combine a variety of techniques from recent

works [Ale03, MR09, LPS10, Pei10] to yield asymptotic and concrete improvements in key size. While there

are not any new techniques involved, to our knowledge the literature lacks a full description and analysis of

the system, despite it now being an important target of study.

Our second main contribution is a new and stronger way of using existing algorithmic attack tools, such

as lattice basis reduction and bounded-distance decoding with preprocessing, to analyze the concrete security

of recent lattice-based cryptosystems. Our attack is directed specifically at the LWE problem, and exploits

some of its structural properties in ways that have not been attempted before in a cryptanalytic context. (Our

attack also does not seem immediately applicable to other lattice problems, such as the unique shortest vector

problem, that have been used for public-key encryption [AD97, Reg03, AD07].) Therefore, we believe that

our analysis gives a more accurate assessment of LWE’s concrete hardness than estimates derived from prior

lattice attacks.

Applying our attack to the improved cryptosystem, we then propose concrete parameters and (conserva-

tive) runtime estimates for modern commodity hardware. Despite our improved attacks, the resulting key

sizes are still smaller than prior example parameters by factors as large as 10, even for stronger security levels.

(See Section 6 for full details.) For example, using parameters that can encrypt a 128-bit payload and appear

to be at least as secure as AES-128, we obtain public key sizes of about 1, 120 kilobits, or about 400 kilobits

assuming a public source of trusted randomness.

Clearly, the above key sizes are still too large for many applications, but this is a consequence of the

quadratic overhead inherent to the use “standard” LWE. By using the compact “ring-based” variant of

LWE and cryptosystem from [LPR10] (which is related to the heuristic NTRU scheme [HPS98] and the

theoretically sound line of works initiated in [Mic02]), we can immediately shrink the above key sizes by

a factor of at least 200. The resulting sizes of 2-5 kilobits are comparable to modern recommendations for

RSA, and the cryptosystem itself is many times faster on modern hardware.

Our methodology. Here we briefly summarize our methods and main conclusions. Our approach involves

a dedicated study of basis reduction for a certain family of random lattices, and a post-reduction decoding

algorithm that to our knowledge have not been considered in prior analyses. (For a discussion of our approach

in relation to prior works, see Section 1.2.)

Lattice-based cryptosystems in the line of works started by Ajtai [Ajt96] involve a family of so-called

q-ary lattices, which are m-dimensional integer lattices that contain qZm as a sublattice, for some modulus

q ≥ 2. We study how basis reduction performs, in terms of its running time and the global properties

of its output basis, on random lattices from this family. Our experiments yield reliable and theoretically

well-behaved predictions about the basis quality that may be obtained using various amounts of computational

effort.

Complementing our analysis of lattice basis reduction, we describe a new post-reduction attack on the

search version of the LWE problem, and provide precise trade-offs between time and adversarial advantage

(i.e., success probability) in terms of the given basis quality. Even though we attack the search-LWE problem,
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which is not strictly necessary to break the semantic security of most LWE-based cryptosystems, our full

attack turns out to be strictly preferable (for a very wide range of parameters used in cryptography) to the

natural distinguishing attack on decision-LWE that has been considered in prior analyses [MR09, RS10].

Specifically, our attack can solve a search-LWE instance, and hence decrypt a ciphertext, with the same

or better advantage than the distinguishing attack, while using lattice vectors of lower quality and hence

much less total runtime. The improvement is especially pronounced in the high-advantage regime, where the

adversary needs relatively high confidence in the decrypted plaintext, such as might be required for breaking

hybrid encryption.

Our post-reduction attack involves a simple extension of Babai’s “nearest-plane” algorithm [Bab85] that

allows us to trade basis quality against decoding time, which to our knowledge has not been explored in a

cryptanalytic context. The extension is related to Klein’s (de)randomized algorithm [Kle00] for bounded-

distant decoding, but is simpler and specifically tailored to the known Gaussian distribution of the error vector.

As we have already indicated, the quality/time trade-off dramatically affects the quality of basis required to

solve an LWE instance, and hence the running time of the attack.

Finally, we note that our analysis is entirely modular, and allows for substituting improved basis reduction

algorithms (and their accompanying runtime and quality predictions) into the post-reduction attack.

1.2 Related Work

Several papers contain studies of the concrete hardness of lattice problems. Here we mention the ones most

closely related to our work, which are aimed at calculating secure parameters for lattice-based cryptosystems,

and describe the most important distinctions.

Gama and Nguyen [GN08] performed a comprehensive study of the behavior of basis reduction for

various families of lattices. Their analysis is primarily focused on the best obtainable solutions to the Hermite-,

Unique-, and Approximate-Shortest Vector Problems. The Hermite SVP is in particular an important problem

in our work and other cryptanalyses. While Gama and Nguyen did not attempt to document the behavior

of basis reduction on random q-ary lattices (aside from the closely related Goldstein-Mayer distribution for

enormous q), our experiments confirmed several of their findings for this family (as did the experiments

in [MR09]). Gama and Nguyen’s study was aimed mainly at predicting the behavior of basis reduction, but

did not include runtime predictions, nor did it investigate the use of a reduced basis to solve bounded-distance

decoding problems (such as LWE), where additional algorithmic ideas and trade-offs are possible.

The survey by Micciancio and Regev [MR09] proposed example parameters for various lattice-based

schemes from the contemporary literature (which have larger keys than the one we describe here). Their

parameters were derived using Gama and Nguyen’s conclusions about the (in)feasibility of obtaining various

Hermite factors, and as such do not include concrete estimates of attack runtimes or success probabilities.

Their security estimates are calculated using the natural distinguishing attack on LWE by finding one relatively

short vector in an associated lattice; our attack succeeds with lower-quality vectors, making it even more

effective. (It should be noted that the example parameters given in [MR09] were already known to offer

moderate security at best.)

Rückert and Schneider [RS10] recently gave concrete estimates of “symmetric bit security” for many

recent lattice-based schemes, incorporating concrete runtime estimates for various Hermite factors in random

q-ary lattices. Their analysis uses a permissive form of the distinguishing attack described in [MR09], in

which the adversarial advantage is about 2−72. This small advantage is not incorporated into their final bit

security estimates, so the estimates are more conservative than ours, even without taking into account the

superior decoding attack on search-LWE.
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Finally, we note that the best distinguishing attack against LWE used in [MR09, RS10] may not always

apply to our cryptosystem, because its parameters can be set so that relatively few LWE samples are published,

and thus the attack is forced to use a suboptimal lattice dimension. We give further details in Sections 5.1

and 6.

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, . . . , k}. The base-2 logarithm is denoted lg. We use

bold lower-case letters (e.g., x) to denote vectors over the real R. We use bold upper-case letters (e.g., B)

for ordered sets of vectors, and identify the set with the matrix having the vectors as its columns. We let

‖B‖ := maxi‖bi‖, where ‖·‖ denotes the Euclidean norm.

For an (ordered) set of linearly independent vectors B = {b1, . . . ,bk} ⊂ Rn, its Gram-Schmidt

orthogonalization B̃ is defined iteratively as b̃1 = b1, and b̃i is the component of bi orthogonal to

span(b1, . . . ,bi−1) for i = 2, . . . , k. In matrix notation, it corresponds to the (unique) decomposition

B = QR, where the columns of Q ∈ Rn×k are orthonormal (i.e., QtQ = I) and R ∈ Rk×k is right-

triangular with positive diagonal entries; the Gram-Schmidt vectors are then b̃i = qi · ri,i. For a set of

linearly independent vectors B = {b1, . . . ,bk}, its fundamental parallelepiped is

P1/2(B) := B · [−1
2 ,

1
2)

k =

{∑

i∈[k]
ci · bi : ci ∈ [−1

2 ,
1
2)

}
.

A lattice Λ in Rm is a discrete additive subgroup. In this work we are concerned only with q-ary integer

lattices, which are contained in Zm and contain qZm, i.e., qZm ⊆ Λ ⊆ Zm. Such a lattice is generated by a

(non-unique) basis B = {b1, . . . ,bm} ⊂ Zm of linearly independent integer vectors, as

Λ = L(B) := B · Zm =

{∑

i∈[m]

zi · bi : zi ∈ Z

}
.

The determinant det(Λ) of such a lattice is its index as a subgroup of Zm, i.e., det(Λ) = |Zm : Λ|. Equiva-

lently, it is |det(B)| for any basis B of Λ.

2.1 Discrete Gaussians

For a lattice Λ and a positive real s > 0, the discrete Gaussian distribution DΛ,s over Λ with parameter s
is the probability distribution having support Λ that assigns a probability proportional to exp(−π‖x‖2/s2)
to each x ∈ Λ. For Λ = Zn, it is easy to see (by orthonormality of its standard basis) that the discrete

Gaussian DZn,s is simply the product distribution of n independent copies of DZ,s. There are efficient

algorithms for sampling from a distribution within negligible statistical distance of DZ,s, given any s > 0.

(See, e.g., [GPV08]: for arbitrary s there is a rejection sampling algorithm, and for small s one can compute

a close approximation to the cumulative distribution function.).

We will need two tail bounds on discrete Gaussians.

Lemma 2.1 ([Ban93, Lemma 1.5]). Let c ≥ 1 and C = c · exp(1−c2

2 ) < 1. Then for any real s > 0 and any

integer n ≥ 1, we have

Pr
[
‖DZn,s‖ ≥ c · 1√

2π
· s
√
n
]
≤ Cn.

Lemma 2.2 ([Ban95, Lemma 2.4]). For any real s > 0 and T > 0, and any x ∈ Rn, we have

Pr [|〈x, DZn,s〉| ≥ T · s‖x‖] < 2 exp(−π · T 2).
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2.2 Learning with Errors

The learning with errors (LWE) problem was introduced by Regev [Reg05] as a generalization of the well-

known ‘learning parity with noise’ problem, to larger moduli. The problem is parameterized by a dimension

n ≥ 1 and an integer modulus q ≥ 2, as well as an error distribution χ over Z (or its induced distribution

over Zq). In this work we will be concerned only with discrete Gaussian error distributions χ = DZ,s over

the integers, where α := s/q ∈ (0, 1) is often called the (relative) error rate.

For an s ∈ Zn
q , the LWE distribution As,χ over Zn

q × Zq is sampled by choosing a uniformly random

a ∈ Zn
q and error term e ← χ, and outputting the pair (a, t = 〈a, s〉 + e mod q) ∈ Zn

q × Zq. The search

version of the LWE problem is, given any desired number of independent samples (ai, ti)← As,χ, to find s.

The decision version of LWE is to distinguish, with non-negligible advantage, between any desired number of

independent samples (ai, ti)← As,χ (for a uniformly random s ∈ Zn
q ), and the same number of independent

samples drawn from the uniform distribution over Zn
q × Zq. It is often convenient to write these problems

in matrix form as follows: collecting the vectors ai ∈ Zn
q as the columns of a matrix A ∈ Zn×m

q and the

(implicit) error terms ei ∈ Z and values ti ∈ Zq as the entries of vectors e ∈ Zm, t ∈ Zm
q respectively, we

are given the input

A, t = Ats+ e mod q

and are asked to find s, or to distinguish the input from a uniformly random (A, t). The LWE problem may

also be viewed as an average-case ‘bounded-distance decoding’ problem on a certain family of lattices: for

A ∈ Zn×m
q , define the lattice

Λ(At) = {z ∈ Z
m : ∃ s ∈ Z

n
q such that z = Ats mod q}.

Then the t component of the LWE input may be seen as a perturbed lattice point in Λ(At), to be decoded.

Hardness of LWE. We recall several facts from the literature about the provable hardness of LWE. The

first is that for error distribution χ = DZ,α·q where α · q ≥ 2
√
n, the search version of LWE is at least as

hard as quantumly approximating certain worst-case problems on n-dimensional lattices to within Õ(n/α)
factors [Reg05].1 Moreover, for similar parameters and large enough q, search-LWE is at least as hard as

classically approximating the decision shortest vector problem and variants [Pei09]. For moduli q that are

sufficiently ‘smooth’ (i.e., products of small enough primes), the decision form of LWE is at least as hard as

the search form [Reg05, Pei09].

A particularly important fact for our purposes is that decision-LWE becomes no easier to solve even if the

secret s is chosen from the error distribution χ, rather than uniformly at random [MR09, ACPS09]. This may

be seen as follows: given access to As,χ, we can draw many samples to obtain

At =

[
At

1

At
2

]
, t =

[
t1
t2

]
=

[
At

1

At
2

]
s+

[
e1
e2

]
= Ats+ e mod q,

where A2 is uniform, e is drawn from χ, and A1 ∈ Zn×n
q is square and invertible. (This follows by forming

A1 by greedily drawing samples that can form an invertible matrix, and disposing of any others until A1 is

complete.) We can then transform A and t into

Āt := −At
2 ·A−t

1 mod q, t̄ := Ātt1 + t2 = Āte1 + e2 mod q,

1It is important to note that the original hardness result of [Reg05] is for a continuous Gaussian error distribution, which when

rounded naively to the nearest integer does not produce a true discrete Gaussian. Fortunately, a suitable randomized rounding method

does so [Pei10].
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where Ā is uniform; therefore, we have effectively replaced s with the error vector e1. On the other hand,

note that when A, t are uniformly random, then so are Ā, t̄.

In terms of lattices, the above may be interpreted as follows: using the bijection s 7→ At
1s from Zn

q to

itself, we can see that the lattice Λ(At) defined above has as a basis the matrix

H =

[
I

qI −Āt

]
.

(This basis H is a canonical representation of Λ(At) known as the Hermite normal form. We have ordered

the basis vectors so that the Gram-Schmidt vectors of H are integer multiples of the standard basis vectors,

where the first several have length q, and the remainder have length 1.) Because Ats mod q ∈ Λ(At), we

have t = Ats+ e = e mod H, which is

e−He1 =

[
0

e2 + Āte1

]
=

[
0

t̄

]
mod q.

In conclusion, t̄ = Āte1 + e2 is the unique canonical representative of e modulo the lattice Λ(At).
Finally, assuming hardness of decision-LWE, a standard hybrid argument over the columns of E (see,

e.g., [PW08]) shows that (Ā, ĀtE1 +E2) is indistinguishable from uniform, where the entries of E =
[
E1

E2

]

are chosen independently from χ.

3 LWE-Based Encryption

Here we describe an LWE-based cryptosystem that is more space-efficient than the ones commonly known in

the literature. It is an instance of an abstract system described by Micciancio [Mic10] that generalizes all

the schemes of [Reg05, PVW08, GPV08], though a full description and analysis of the generalized system

has not appeared in the literature. The security proof combines a number of techniques and perspectives

from recent works [MR09, LPS10, Pei10] for the purpose of improved efficiency and a tight analysis. For

completeness, we also briefly describe an efficient ring-based analogue of the system, which is described in

full generality in the full version of [LPR10].

Despite being a generalization of prior LWE-based cryptosystems, the present scheme can actually be

instantiated to have keys and ciphertexts that are smaller by a factor of about lg q, while simultaneously

improving the concrete security! The improved security comes from the smaller keys (for given security

parameter n), which allows for a relatively larger noise rate that makes the LWE problem harder. The smaller

keys come from a different style of security proof, which is very similar to the proofs for the coding-based

cryptosystem of Alekhnovich [Ale03] and the subset sum-based cryptosystem of Lyubashevsky, Palacio, and

Segev [LPS10]. In brief, the proof uses the LWE assumption twice (first on the public key, and then again

on the ciphertext) to show that the adversary’s view in a passive attack is indistinguishable from uniformly

random. By contrast, the proofs for prior LWE-based schemes involve a statistical argument on either the

public key or ciphertext, but this requires larger keys. We point out that statistical arguments still appear

necessary for many advanced applications of LWE, such as identity-based encryption [GPV08] and others

that use a ‘trapdoor basis,’ and we do not know whether comparably small keys and ciphertexts can be

obtained for these schemes.

3.1 Cryptosystem

The cryptosystem involves a few parameters: an integer modulus q ≥ 2 and integer dimensions n1, n2 ≥ 1,

which relate to the underlying LWE problems; Gaussian parameters sk and se for key generation and
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encryption, respectively; and a message alphabet Σ (for example, Σ = {0, 1}) and message length ℓ ≥ 1.

We also require a simple error-tolerant encoder and decoder, given by functions encode : Σ→ Zq and

decode : Zq → Σ, such that for some large enough threshold t ≥ 1, decode(encode(m) + e mod q) = m
for any integer e ∈ [−t, t). For example, if Σ = {0, 1}, then we can define encode(m) := m · ⌊ q2⌋, and

decode(m̄) := 0 if m̄ ∈
[
−⌊ q4⌋, ⌊

q
4⌋
)
⊂ Zq, and 1 otherwise. This method has error tolerance t = ⌊ q4⌋. We

also extend encode and decode to vectors, component-wise.

To get the smallest public keys, our system makes use of a uniformly random public matrix Ā ∈ Zn1×n2

q

that is generated by a trusted source, and is used by all parties in the system. If there is no trusted source,

then Ā may be chosen by the user herself as part of key generation, and included in the public key.

• Gen(Ā, 1ℓ): choose R1 ← Dn1×ℓ
Z,sk

and R2 ← Dn2×ℓ
Z,sk

, and let P = R1 − Ā ·R2 ∈ Zn1×ℓ
q . The public

key is P (and Ā, if needed), and the secret key is R2.

In matrix form, the relationship between the public and secret keys is:

[
Ā P

]
·
[
R2

I

]
= R1 mod q. (3.1)

• Enc(Ā,P,m ∈ Σℓ): choose e = (e1, e2, e3) ∈ Zn1 ×Zn2 ×Zℓ with each entry drawn independently

from DZ,se . Let m̄ = encode(m) ∈ Zℓ
q, and compute the ciphertext

ct =
[
ct1 ct2

]
=
[
et1 et2 et3 + m̄t

]
·



Ā P

I

I


 ∈ Z

1×(n2+ℓ)
q . (3.2)

(Note that the first ciphertext component ct1 can be precomputed before P and m are known.)

• Dec(ct = [ct1, c
t
2],R2): output decode(ct1 ·R2 + ct2)

t ∈ Σℓ.

Using Equation (3.2) followed by Equation (3.1), we are applying decode to

[
ct1 ct2

]
·
[
R2

I

]
= (et +

[
0 0 m̄t

]
) ·



R1

R2

I


 = et ·R+ m̄t,

where R =
[
R1

R2

I

]
. Therefore, decryption will be correct as long as each |〈e, rj〉| < t, the error

threshold of decode. (We give a formal analysis in Section 3.2 below.)

For another perspective on this scheme as an (approximate) key-agreement mechanism, let ℓ = 1 for

simplicity. By the discussion in Section 2.2, we can interpret key generation as reducing a Gaussian error

vector r modulo a lattice defined by Ā, and publishing the result Ār2 − r1 mod q. Likewise, we can view

encryption as reducing a Gaussian error vector e modulo the dual of the same lattice, and publishing the

result et1Ā+ et2 mod q. Using their respective private error vectors and the other party’s public message, the

sender and receiver can both (approximately) compute et1Ār2 ∈ Zq, whereas a passive adversary cannot. A

formal proof of security appears below in Section 3.3.
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Ring-based analogue. We briefly describe a very similar scheme that is based on the decision ring-LWE

problem [LPR10]. For messages of length any ℓ ≤ n = n1 = n2, and using the same values of n and q as

above, the public and secret keys are up to an n factor smaller than in the above system, namely n lg q or

2n lg q bits at most, depending on the availability of a common trusted string. (The ciphertext size is the

same, namely 2n lg q bits.)

Let R = Z[x]/f(x) be a polynomial ring for some monic polynomial f(x) that is irreducible over Z;

common choices include cyclotomic polynomials such as f(x) = xn + 1 for n a power of 2. (See [LPR10]

for efficiency and security properties of this and other cyclotomic polynomials, including degrees n that are

not powers of 2.) Let q ∈ Z be a sufficiently large integer modulus for which f(x) splits into linear (or very

low-degree) factors modulo q, and let Rq = R/q = Zq[x]/f(x). Let χk, χe be error distributions over R that

are concentrated on ‘small’ elements of R; see [LPR10] for what error distributions enable rigorous security

proofs.

Let Σ be a message alphabet. The message encoder and decoder are functions encode : Σn → Rq and

decode : Rq → Σn, such that decode(encode(m) + e mod q) = m for any ‘small enough’ e ∈ R, e.g., one

whose coefficients as a polynomial in Z[x]/f(x) are all in [−t, t) for some integer threshold t ≥ 1.

As above, the system uses a uniformly random a ∈ Rq that can be generated by a trusted source, or

chosen by the user.

• Gen(a): choose r1, r2 ← χk, and let p = r1 − a · r2 ∈ Rq. The public key is p (and a, if needed), and

the secret key is r2.

• Enc(a, p,m ∈ Σn): choose e1, e2, e3 ← χe. Let m̄ = encode(m) ∈ Rq, and compute the ciphertext

[c1 = a · e1 + e2, c2 = p · e1 + e3 + m̄] ∈ R2
q .

• Dec(c = [c1, c2], r2): output decode(c1 · r2 + c2) ∈ Σn. By a straightforward calculation, decryption

will be correct as long as e1 · r1 + e2 · r2 + e3 is within the error threshold of decode; this holds with

high probability when χk, χe are sufficiently concentrated.

The proof of security, under the decision ring-LWE assumption for noise distributions χk and χe, is

essentially identical to the proof of Theorem 3.2.

3.2 Parameters for Correctness

Here we give an upper bound on the Gaussian parameters sk, se in terms of the desired per-symbol error

probability δ. For reasonably small values of δ, correctness for the entire message can effectively be

guaranteed by way of a simple error-correcting code.

One small subtlety is that if a portion of the random vector e used for encryption happens to be ‘too

long,’ then the probability of decryption error for every symbol can be unacceptably large. We address this

by giving a bound on e, in Equation (3.4) below, which is violated with probability at most 2−κ for some

statistical parameter κ (say, κ = 40 for concreteness). We then calculate the error probabilities assuming

that the bound holds; the overall decryption error probability is then no more than 2−κ larger. One can also

modify the Enc algorithm to reject and resample any e that violates Equation (3.4); the adversary’s advantage

can increase by at most 2−κ.

Lemma 3.1 (Correctness). In the cryptosystem from Section 3.1, the error probability per symbol (over the

choice of secret key) is bounded from above by any desired δ > 0, as long as

sk · se ≤
√
2π

c
· t√

(n1 + n2) · ln(2/δ)
. (3.3)
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(n1 + n2) c ≥ (sk · se)/t ≤
256 1.35 0.08936

384 1.28 0.07695

512 1.25 0.06824

640 1.22 0.06253

Figure 1: Bounds on parameters for Lemma 3.1 using a per-symbol error probability of δ = 0.01, where c is

determined so that the probability of choosing a ‘bad’ encryption vector e is at most 2−40.

Here c ≥ 1 is a value that depends (essentially) only on n1 + n2; representative values are given in Figure 1.

Proof. As shown above in the specification of the decryption algorithm, the jth symbol of the message

decrypts correctly if |〈e, rj〉| < ⌊ q4⌋. Recall that the entries of e ∈ Zn1+n2+ℓ are independent and have

distribution DZ,se , and rj ∈ Zn1+n2+ℓ is the jth column of R =
[
R1

R2

I

]
, where the entries of R1 and R2 are

drawn independently from DZ,sk .

To bound the error probability, let ē ∈ Zn1+n2 consist of the first n1+n2 entries of e. Then by Lemma 2.1,

there is a c ≥ 1 such that

‖ē‖ ≤ c · 1√
2π
· se
√
n1 + n2 (3.4)

except with very small probability (concrete values of c are given in Figure 1). For any fixed ē satisfying

the above bound, observe that each 〈e, rj〉 is independent and distributed essentially as 〈ē, Dn1+n2

Z,sk
〉.2 By

Lemma 2.2, for any T ≥ 0 we have

Pr
[∣∣∣〈ē, Dn1+n2

Z,sk
〉
∣∣∣ ≥ T · sk‖ē‖

]
< 2 exp(−π · T 2).

Letting T = t/(sk‖ē‖), where t is the error tolerance of our message encoding, and using the bound on ‖ē‖
from above, we get the bound on sk · se from the lemma statement.

3.3 Security Proof

Theorem 3.2. The cryptosystem from Section 3.1 is CPA-secure, assuming the hardness of decision-LWE

with modulus q for: (i) dimension n2 with error distribution DZ,sk , and (ii) dimension n1 with error DZ,se .

Proof. It suffices to show that the entire view of the adversary in an IND-CPA attack is computationally

indistinguishable from uniformly random, for any encrypted message m ∈ Σℓ. The view consists of (Ā,P, c),
where Ā ∈ Zn1×n2

q is uniformly random, P ← Gen(Ā, 1ℓ), and ct ← Enc(Ā,P,m). First, (Ā,P) is

computationally indistinguishable from uniformly random (Ā,P∗) ∈ Z
n1×(n2+ℓ)
q under assumption (i) in

the lemma statement, because P = (Āt)t · (−R2) +R1, and Āt is uniform while the entries of both −R2

and R1 are drawn from DZ,sk . So the adversary’s view is indistinguishable from (A, c) where A = (Ā,P∗)
is uniformly random and c ← Enc(A,m). Now (A, c) is also computationally indistinguishable from

uniformly random (A, c∗) under assumption (ii) in the lemma statement, because c = (Ate1 + [ e2e3 ]) + [ 0
m
],

and A is uniform while the entries of e1, e2, and e3 are drawn from DZ,se .

2We ignore the one additional term drawn from DZ,se , which is compensated for by some slack in our final choice of parameters.
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It should be noted that for some settings of the parameters, one of the two assumptions in Theorem 3.2

may be true information-theoretically for the number of LWE samples exposed by the system in an attack.

For instance, if n2 ≥ n1 lg q and sk ≥ ω(
√
log n1), then the public key (Ā,P) is within a negligible (in

n1) statistical distance of uniformly random (by a suitable version of the leftover hash lemma), whereas the

corresponding ciphertexts are statistically far from uniform. These properties are important in, for example,

the ‘dual’ cryptosystem and identity-based encryption scheme of [GPV08]. Conversely, the applications

found in [PVW08, BHY09, ACPS09] have public keys that are far from uniform, but require that encryption

under a ‘malformed’ (uniformly random) public key produces a ciphertext that is statistically independent of

the encrypted message. These properties are achieved when n1 ≥ n2 lg q and se ≥ ω(
√
log n2), again by the

leftover hash lemma.

4 Lattice Decoding Attacks

The most promising practical attacks on the cryptosystem from Section 3, and more generally on LWE itself,

use lattice-basis reduction followed by a decoding phase using the reduced basis.3 In this section we analyze

the performance of decoding as it relates to the quality of a given reduced basis. Then in Section 5 we analyze

the effort required to obtain bases of a desired quality.

Before proceeding, we briefly explain how our decoding attack on LWE differs from the distinguishing

attacks considered in other works [MR09, RS10]. In the latter, the adversary distinguishes (with some

noticeable advantage) an LWE instance (A, t = Ats + e) from uniformly random, which is typically

enough to break the semantic security of an LWE-based cryptosystem with the same advantage. To do

this, the adversary finds a short nonzero integral vector v such that Av = 0 mod q, which may be seen

as a short vector in the (scaled) dual of the LWE lattice Λ(At). (Equivalently, the points of Λ(At) may be

partitioned into hyperplanes orthogonal to v, successively separated by distance q/‖v‖.) The adversary

then simply tests whether the inner product 〈v, t〉 is “close” to zero modulo q. When t is uniform, the test

accepts with probability exactly 1/2, but when t = Ats + e for Gaussian e with parameter s, we have

〈v, t〉 = 〈v, e〉 mod q, which is essentially a Gaussian (reduced mod q) with parameter ‖v‖ · s. When this

parameter is not much larger than q, the Gaussian (mod q) can be distinguished from uniform with advantage

very close to exp(−π · (‖v‖ · s/q)2). For example, when ‖v‖ = 4q/s the distinguishing advantage is about

2−72. However, to distinguish (and hence decrypt a ciphertext) with high confidence, one needs ‖v‖ ≤ q/(2s)
or so, which usually requires a great deal more effort to obtain.

It is customary to include the inverse distinguishing advantage in the total ‘cost’ of an attack, so the

computational effort and advantage need to be carefully balanced. For practical parameters, the optimal total

cost of the distinguishing attack typically involves a very small distinguishing advantage (see Section 6),

which may not be very useful in some settings, such as hybrid encryption.

Our decoding attack is stronger than the distinguishing attack in that it can actually recover the secret

error vector in the LWE instance (and hence decrypt the ciphertext) with the same or better advantage, while

using lower-quality vectors. For all the parameter settings that we investigated, our attack yields a better total

effort as a ratio of time/advantage, and it is significantly more efficient in the high-advantage regime. (See

Section 6 and Figure 4 in particular for details.) The attack works by using an entire reduced basis (not just

one vector), and by expending some additional post-reduction effort to find the LWE solution. We also point

out that unlike in basis reduction, the post-reduction effort is fully parallelizable.

3There are also purely combinatorial attacks on LWE [BKW03, Wag02] that may perform asymptotically better than lattice

reduction, but so far not in practice. Also, these attacks generally require more LWE samples than our cryptosystem exposes, and an

exponentially large amount of space.
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The attack. Recall from Section 2.2 that an LWE instance (A, t = Ats+ e) may be seen as a bounded-

distance decoding problem on a certain lattice Λ = Λ(At), where Ats ∈ Λ.

The standard method for solving a bounded-distance decoding problem on lattices is the recursive

NearestPlane algorithm of Babai [Bab85]. The input to the algorithm is some lattice basis B = {b1, . . . ,bk}
(which for best results should be as reduced as possible) and a target point t ∈ Rm, and the output is a

lattice point v ∈ L(B) that is ‘relatively close’ to t. The precise guarantee is that for any t ∈ span(B),
NearestPlane(B, t) returns the unique v ∈ L(B) such that t ∈ v + P1/2(B̃). In other words, if t = v + e

for some v ∈ L(B), the algorithm outputs v if and only if e happens to lie in P1/2(B̃).
The main drawback of this approach in attacking LWE is that in a reduced basis B, the last several

Gram-Schmidt vectors of B are typically very short, whereas the first few are relatively long. In such a case,

the parallelepiped P1/2(B̃) is very ‘long and skinny,’ and so the Gaussian error vector e is very unlikely to

land in it, causing NearestPlane to produce an incorrect answer.

We address this issue by giving a generalized algorithm that admits a time/success tradeoff. It works

just as NearestPlane does, except that it can recurse on some di ≥ 1 distinct planes in the ith level of the

recursion. In essence, the multiple recursion has the effect of making the parallelepiped P1/2(B̃) wider in

the direction of b̃i by a factor of exactly di.
4 To capture the most probability mass of the Gaussian error

distribution of e, one should choose the multiples di so as to maximize mini(di · ‖b̃i‖).5
The input to our NearestPlanes algorithm is a lattice basis B = {b1, . . . ,bk} ⊂ Rm, a vector d =

(d1, . . . , dk) ∈ (Z+)k of positive integers, and a target point t ∈ Rm. It outputs a set of
∏

i∈[k] di distinct

lattice vectors in L(B), as follows:

1. If k = 0, return 0. Else, let v be the projection of t onto span(B).

2. Let c1, . . . , cdk ∈ Z be the dk distinct integers closest to 〈b̃k,v〉/〈b̃k, b̃k〉.
3. Return

⋃

i∈[dk]
(ci · bk + NearestPlanes({b1, . . . ,bk−1}, (d1, . . . , dk−1),v − ci · bk).

Note that the recursive calls to NearestPlanes can be run entirely in parallel. The following lemma is an

immediate extension of the analysis from [Bab85].

Lemma 4.1. For t ∈ span(B), NearestPlanes(B,d, t) returns the set of all v ∈ L(B) such that t ∈
v + P1/2(B̃ ·D), where D = diag(d). The running time is essentially

∏
i∈[k] di times as large as that of

NearestPlane(B, t).

Note that the columns of B̃ ·D from the lemma statement are the orthogonal vectors di ·b̃i, so P1/2(B̃ ·D)

is a rectangular parallelepiped with axis lengths di · ‖b̃i‖.
4The algorithm of Klein [Kle00] also can recurse on more than one plane per iteration. Klein’s algorithm solves the general

bounded-distance decoding problem, and selects the planes at each stage probabilistically (though it can also be derandomized);

its guarantee is related solely to the shortest Gram-Schmidt vector in the basis. Our algorithm is tailored specifically to the setting

where we know the distribution of the offset vector; this allows the algorithm to recurse on exactly those planes that maximize the

probability of success (over the choice of the error vector).
5One could further generalize the algorithm to search within an approximate ball made up of ‘bricks’ that are copies of P1/2(B̃),

thus capturing even more of the Gaussian without adding much more to the search space. However, this would significantly

complicate the analysis, and we find that the present approach is already very effective.
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Success probability of NearestPlanes. When t = v + e for some v ∈ L(B) and a continuous Gaussian

e← Ds for some s > 0, the probability that v is in the output set of NearestPlanes(B,d, t) is

Pr
[
e ∈ P1/2(B̃ · diag(d))

]
=

m∏

i=1

Pr
[
|〈e, b̃i〉| < di · 〈b̃i, b̃i〉/2

]
=

m∏

i=1

erf

(
di · ‖b̃i‖

√
π

2s

)
, (4.1)

which follows by the independence of the values 〈e, b̃i〉, due to the orthogonality of the Gram-Schmidt

vectors b̃i. When e is drawn from a sufficiently wide discrete Gaussian over the integer lattice (in practice, a

parameter of 6 or more suffices), the above is an extremely close approximation to the true probability.

We conclude this section by giving an informal explanation for why the advantage of the decoding

attack can potentially be much larger than that of the distinguishing attack above, given vectors of the same

quality. In the distinguishing attack, using a vector v of length (say) ‖v‖ ≈ 4q/s implies that 〈v, t〉 mod q
is distributed roughly as D4q modulo q, whose statistical distance is only about 2−72 from uniform. A basis

B of Λ(At) of equivalent quality has ‖b̃m‖ = q/‖v‖ = s/4, because Λ(At) lies in hyperplanes orthogonal

to v and separated by distance q/‖v‖. So even without using multiple recursion in NearestPlanes (i.e., letting

every dm = 1), the corresponding term in Equation (4.1) is erf(
√
π/8) ≈ 0.25; moreover, the remaining

terms typically approach 1 very rapidly, since ‖b̃i‖ usually increases quickly as i decreases. Letting di > 1
increases the overall success probability even more at little added cost, and allows for obtaining a relatively

large advantage without needing higher-quality basis vectors.

5 Basis Reduction and Experiments

In this section we present an analysis of lattice basis reduction on random q-ary lattices arising from LWE,

and results of reduction experiments on various parameters. Our goal is to predict a conservative, but still

useful, lower bound on the practical runtime of the lattice decoding attack described in Section 4 for a given

set of LWE parameters.

We found that the best practical lattice reduction algorithm currently available to us is the BKZ algorithm

as implemented by Shoup in the NTL library [Sho], so this is what we used in our experiments. The BKZ

algorithm is parameterized by a blocksize k between 2 and the dimension of the lattice to be reduced.

As the blocksize increases, the reduced basis improves in quality (i.e., it contains shorter lattice vectors,

whose Gram-Schmidt lengths are closer together), but the runtime of BKZ also rapidly increases, becoming

practically infeasible for k ≥ 30 or so.

There has been some recent progress in the development of algorithms for finding short vectors in

lattices, which can be used as subroutines to (or entire replacements of) BKZ reduction. For example, Gama,

Nguyen, and Regev [GNR10] recently proposed a new method called “Extreme Enum”, which is much

faster than its predecessor, the Schnorr-Euchner enumeration [SE94]. There are also single-exponential time

algorithms for the Shortest Vector Problem [AKS01, MV10b, MV10a], which can run faster in practice than

Schnorr-Euchner enumeration in certain low dimensions; however, these algorithms also require exponential

space. We were not able to evaluate the performance and effectiveness of all these approaches, leaving this

for future work. The BKZ implementation we use employs Schnorr-Euchner enumeration and, since the BKZ

framework uses the enumeration subroutine as a black box, we presume that new algorithms incorporating

Extreme Enum and other approaches will soon be available for evaluation. (For a comparison of enumeration

algorithms in practice, see the open SVP-challenge website.6)

6http://www.latticechallenge.org/svp-challenge/

12

http://www.latticechallenge.org/svp-challenge/


 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140  160  180

i

log2(|~b_i|)
fit alpha = -0.038000

 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140  160  180

i

log2(|~b_i|)
fit alpha = -0.038000

 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140  160  180

i

log2(|~b_i|)
fit alpha = -0.038000

Figure 2: Logarithmic GSO lengths of three LWE instances after BKZ-20 reduction, which conform to

the GSA assumption (modified with fixed upper and lower bounds on the Gram-Schmidt lengths). In all

cases, the observed slope of the plot is very nearly the same, but other parameters vary. Parameters are

n = 32, q = 257,m = 64 (left); n = 64, q = 257,m = 128 (center); n = 32, q = 2053,m = 192 (right).

In Section 5.1, we analyze the main properties of BKZ-reduced bases for q-ary lattices that are relevant

to our decoding attack. In Section 5.2, we use our experiments to estimate the runtime required to obtain

bases of a desired quality. We point out that the rest of our analysis is independent of this estimate, and can

easily be applied with other runtime estimates for BKZ variants or other approaches.

5.1 Basis Reduction for q-ary Lattices

We begin by reviewing some of the prior work on basis reduction, in particular as applied to the q-ary lattices

that arise from LWE.

The analysis of lattice reduction algorithms by Gama and Nguyen [GN08] identified the Hermite factor

of the reduced basis as the dominant parameter in the runtime of the reduction and the quality of the reduced

basis. A basis B of an m-dimensional lattice Λ has Hermite factor δm for δ ≥ 1 if ‖b1‖ = δm · det(Λ)1/m.

For convenience, we call δ the root-Hermite factor.

Another important concept is the Geometric Series Assumption (GSA), introduced by Schnorr [Sch03].

The GSA says that in a BKZ-reduced basis B, the lengths ‖b̃i‖ of the Gram-Schmidt vectors decay geometri-

cally with i, namely, ‖b̃i‖ = ‖b1‖ · αi−1 for some 0 < α < 1. Our experiments on random q-ary lattices

adhere to the GSA very closely, with the exception that the Gram-Schmidt lengths are always upper- and

lower-bounded by q and 1 respectively, owing to the special structure of q-ary lattices (see Figure 2). For

large BKZ blocksizes that correspond to effective attacks on LWE, these exceptional cases do not arise, and

our bases conform to the GSA as ordinarily stated.

By combining the notion of Hermite factor with the GSA, we can predict the lengths of all Gram-Schmidt

vectors in a basis B (of an m-dimensional lattice Λ) having root-Hermite factor δ. An easy calculation shows

that under the GSA,

det(Λ) =

m∏

i=1

‖b̃i‖ = αm(m−1)/2 · δm2 · det(Λ) =⇒ α = δ−2m/(m−1) ≈ δ−2, (5.1)

where the approximation holds for large m.

We now turn to q-ary lattices that arise from LWE. Recall from Section 2.2 that LWE is a bounded-distance

decoding problem on the m-dimensional lattice

Λ(At) = {z ∈ Z
m : ∃ s ∈ Z

n
q such that z = Ats mod q}
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for some A ∈ Zn×m
q with m ≥ n. Because the LWE problem allows us to ignore some of the rows of At

(and the corresponding noisy inner products), a natural and important question is what ‘subdimension’ m
makes a lattice attack most effective. This question was addressed in [MR09], where a simple calculation

showed that for a desired root-Hermite factor δ, the subdimension m =
√
n lg(q)/ lg(δ) is optimal in the

context of the natural distinguishing attack on LWE (as described at the beginning of Section 4). The analysis

of [MR09] actually applies to the lattice

Λ⊥(A) = {x ∈ Z
m : Ax = 0 mod q},

which is the dual of Λ(At) up to scaling by a q factor, and the optimal subdimension m given above

minimizes the length of d̃1 = d1 in a reduced basis D of Λ⊥(A) having root-Hermite factor δ. In our setting,

by duality the same choice of m maximizes ‖b̃m‖ = q/‖d̃1‖, where the basis B of Λ(At) is the dual basis

of D in reverse order.

In our decoding attack (and assuming the GSA), the form of the success probability given in Equation (4.1)

as a product of erf(·) terms also strongly indicates that we should maximize ‖b̃m‖, and hence use the same

subdimension m =
√
n lg(q)/ lg(δ) as above. We do not have a fully rigorous proof of this claim, since

using a smaller m decreases the number of terms in the product, and hence could potentially increase the

success probability. However, it seems unlikely that using a smaller m would improve the success probability

by much (if at all). This is because ‖b̃m‖ = q/‖d1‖ decreases rapidly as m decreases (see [MR09]), and

‖b̃m−i‖ ≈ ‖b̃m‖ · δ2(i−1) is a very close approximation for small i, which are the Gram-Schmidt vectors

that largely determine the success probability. Likewise, increasing m also appears counterproductive, since

it both decreases ‖b̃m‖ and increases the number of terms in the product.

All of the above assumes that a cryptosystem exposes enough LWE samples (via its public keys and/or

ciphertexts) to use the optimal subdimension. While this is always true of prior cryptosystems [Reg05,

PVW08, GPV08], it is not necessarily the case for our cryptosystem in Section 3, due to its smaller keys and

ciphertexts. In this case, the adversary should use the dimension m corresponding to the actual number of

published samples (this rule applies to some of our parameters sets given in Section 6).

5.2 Extrapolating BKZ Runtimes

In order to assign concrete runtimes to the attacks we put forward, we need to predict the runtime required to

achieve a given root-Hermite factor δ in random q-ary lattices.

Gama and Nguyen [GN08] observed that on random lattices generated according to a variety of models,

the runtime required to achieve a given root-Hermite factor δ in large dimensions (exceeding 200 or so) is

largely determined by δ alone; the lattice dimension and determinant contribute only second-order terms.

Our initial experiments confirmed this behavior for random q-ary lattices, and so we extrapolated runtimes

using a fixed set of LWE parameters q and n, for a variety of values δ that correspond to sufficiently large

optimal subdimensions m =
√

n lg(q)/ lg(δ) ≈ 200. Our experiments were performed on a single 2.3 GHz

AMD Opteron machine, using the single-precision floating-point BKZ implementation from the standard

NTL library [Sho]. (Practical attacks on LWE for parameters beyond toy examples would require using at

least quadruple precision, which would increase the running times by at least some constant factor, so our

extrapolations are somewhat optimistic and hence conservative from a security point of view.)

Figure 3 shows the results of our experiments and their extrapolations. Using the rule of thumb that

obtaining a 2k approximation to the shortest vector in an m-dimensional lattice takes time 2Õ(m/k) using

BKZ, we conclude that the logarithm of the runtime should grow roughly linearly in 1/ lg(δ). Our limited

experiments seem consistent with this behavior, though many more would be needed to confirm it with
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Figure 3: Runtime of BKZ experiments on random q-ary lattices, with parameters n = 72, q = 1021, and

m =
√
n lg(q)/ lg(δ0), i.e., the optimal subdimension with respect to a desired root-Hermite factor δ0. The

vertical axis is tBKZ(δ) := lg(TBKZ(δ)), the logarithmic runtime required to obtain a vector with root-Hermite

factor δ when running BKZ with successively increasing blocksizes. The horizontal axis is 1/ lg(δ) for the

actual root-Hermite factor δ achieved by the reduction. For comparison, the graph shows the best-fit estimator

tBKZ(δ) = 1.086/ lg(δ)− 91, and our conservative lower bound estimate tBKZ(δ) = 1.8/ lg(δ)− 110.

confidence. Using least-square regression, the best linear fit to our data for tBKZ(δ) := lg(TBKZ(δ)), the log

runtime (in seconds, on our machine) of BKZ as a function of δ, is tBKZ(δ) = 1.806/ lg(δ)− 91. Since our

experiments were limited by resources and available time, and we expect to see further improvements in basis

reduction techniques (such as those in [GNR10]), for analyzing concrete hardness we use a conservative

lower bound estimate of

tBKZ(δ) := lg(TBKZ(δ)) = 1.8/ lg(δ)− 110. (5.2)

Note that in this estimate, the 1.8 factor is very slightly smaller, and the −110 constant term is substantially

smaller, than their counterparts in the best-fit function from our experiments. We chose the value 1.8 because

our experiments were limited to relatively small block sizes, and the runtimes needed to achieve smaller

values of δ very quickly became infeasible, so we believe that the true coefficient on the linear term (even

with improved algorithms) is larger than 1.8. Similarly, our choice of −110 provides for some security

margin against special-purpose hardware. In conclusion, we believe that our lower bound estimate provides

some safety against foreseeable advances in algorithms and hardware, but in any case, our analysis is entirely

modular and can be immediately adapted to work with any revised estimator.
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6 Cryptosystem Parameters

We now estimate the concrete security of, and compute the space requirements for, the LWE-based cryptosys-

tem from Section 3 on a variety of parameters, and compare with the example parameters given in [MR09]

for the cryptosystem described therein (which is essentially due to [PVW08]). Figure 4 provides the security

estimates, and Figure 5 gives key and ciphertext sizes.

Instantiating the parameters. We set the cryptosystem’s parameters as n1 = n2 = n and sk = se = s
for some positive integer n and s > 0, so that the two LWE hardness assumptions made in Theorem 3.2 are

equivalent. In practice, though, distinguishing the public key and ciphertext from uniform are not equally

hard, because the public key exposes fewer LWE samples than the ciphertext does. In particular, the adversary

cannot use the optimal subdimension in attacking the public key, making it quite a bit harder to break. This

fact could allow us to use slightly smaller sk and correspondingly larger se parameters to get slightly stronger

overall security, but we elect not to introduce such complications at this point. (And arguably, the secret key

ought to be better-protected than any individual ciphertext.)

We choose the modulus q to be just large enough (according to the bounds in Figure 1) to allow for a

Gaussian parameter s ≥ 8, so that the discrete Gaussian DZm,s approximates the continuous Gaussian Ds

extremely well.7 Increasing the value of q beyond this threshold appears not to increase the concrete security

of our cryptosystem, and (somewhat paradoxically) may even slightly decrease it! This is because the BKZ

runtime depends almost entirely on the root-Hermite factor δ, and by the constraints on our parameters

(specifically, sk = se = s = O(
√
q)), the δ yielding a successful attack on our system grows as qΘ(1/n),

which increases with q (albeit very slowly).

Estimating the security. We analyze the distinguishing attack and our decoding attack (both described in

Section 4), estimating the total runtimes for each of a few representative adversarial advantages. The attacks

apply to a single key and ciphertext; by a standard hybrid argument, the advantage increases at most linearly

in the number of ciphertexts encrypted under a single key.

For analyzing the basic distinguishing attack we rely on calculations from [MR09]. We first compute a

bound β = (q/s) ·
√

ln(1/ε)/π on the length of a nonzero vector v ∈ Λ⊥(A) that would yield the desired

distinguishing advantage (taken over the random choice of the LWE error). We then compute the root-Hermite

factor δ = 2(lg
2 β)/(4n lg q) that would yield such a vector, assuming that the attacker can use the optimal

subdimension m =
√

n lg(q)/ lg(δ). (The value of δ follows from the fact that in the optimal subdimension,

a root-Hermite factor of δ yields a vector of length 22
√
n lg q lg δ.) If the optimal subdimension for this δ

exceeds n1 + n2 + ℓ = 2n+ 128 (the number of LWE samples implicitly exposed by a ciphertext), then we

discard this δ and instead use the one for which δm · qn/m = β, where m = 2n+128. (Values of δ computed

in this way are indicated in Figure 4 by asterisks.) We then calculate a lower bound on the BKZ runtime

using our conservative estimator from Equation (5.2).

In analyzing our decoding attack, we try various values of δ, computing both the estimated BKZ runtime

and the number of enumerations needed (assuming the GSA) to achieve the desired success probability

according to Equation (4.1). If the number of enumerations does not exceed the BKZ runtime (in seconds) by

more than a 216 factor, we consider this to be an acceptable attack. (This 216 factor is somewhat arbitrary, but

7Note that the theoretical worst-case reduction [Reg05] for LWE asks that s ≥ 2
√
n. However, the constant factors are not tight,

and here we are concerned with concrete hardness against known attacks.
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Adv. ε (Distinguish) (Decode)

n q s lg(1/ε) δ lg(secs) δ lg(#enum) lg(secs)

≈ 0 ∗1.0065 83 1.0089 47 32

128 2053 6.77 −32 1.0115 < 0 1.0116 13 < 0

(toy) −64 1.0128 < 0 1.0130 1 < 0

≈ 0 ∗1.0045 168 1.0067 87 78

192 4093 8.87 −32 1.0079 49 1.0083 54 42

(low) −64 1.0087 34 1.0091 44 29

≈ 0 ∗1.0034 258 ∗1.0052 131 132

256 4093 8.35 −32 1.0061 96 1.0063 87 90

(medium) −64 1.0067 77 1.0068 73 75

≈ 0 ∗1.0027 353 ∗1.0042 163 189

320 4093 8.00 −32 1.0049 146 1.0052 138 132

(high) −64 1.0054 122 1.0055 117 119

≈ 0 1.0038 219 1.0071 82 68

136 2003 13.01 −32 1.0088 33 1.0092 42 27

[MR09] −64 1.0098 18 1.0102 27 14

≈ 0 1.0053 126 1.0078 66 52

214 16381 7.37 −32 1.0091 28 1.0094 39 25

[MR09] −64 1.0099 17 1.0102 29 14

Figure 4: Example parameters and attacks for the LWE-based cryptosystem described in Section 3.1, for

various adversarial advantages. The cryptosystem parameters are n = n1 = n2, q, s = sk = se, and

message length ℓ = 128 bits. For comparison, the last two parameter settings (n = 136, n = 214) come

from the example parameters of [MR09]. The columns labelled “Distinguish” refer to a distinguishing (i.e.,

semantic security) attack. These give the root-Hermite factors δ needed to obtain the respective distinguishing

advantages (over the random choice of the LWE error vector), and the corresponding logarithmic runtime (in

seconds) according to our optimistic estimator from Equation (5.2). The columns labelled “Decode” refer

to our decoding (i.e., message and randomness recovery) attack. These give example root-Hermite factors

and number of NearestPlanes enumerations needed to obtain the respective decoding probability, and the

corresponding estimated runtime of the attack. Other trade-offs between δ and the number of enumerations

are possible (as δ increases, so does #enum); we chose the largest δ for which the estimated enumeration

runtime does not exceed that of basis reduction. ∗An asterisk on a value of δ indicates that for reduced vectors

of lengths required by the attack, the cryptosystem reveals too few LWE samples to allow an optimal choice

of subdimension and corresponding root-Hermite factor δ. In such cases, we used the value of δ induced by

working with the full dimension m = n1 + n2 + ℓ = 2n+ 128.
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n q s Per-User Full Key Ciphertext Msg

Key (P) (P & Ā) (c) Expansion

128 2053 6.77 1.8× 105 3.6× 105 2.8× 103 22.0

192 4093 8.87 2.9× 105 7.4× 105 3.8× 103 30.0

256 4093 8.35 4.0× 105 11.2× 105 4.6× 103 36.0

320 4093 8.00 4.9× 105 17.2× 105 5.4× 103 42.0

136 2003 13.01 2.8× 106 5.8× 106 2.9× 103 22.6

214 16381 7.37 2.4× 106 6.4× 106 4.8× 103 18.7

Figure 5: Sizes (in bits) of public keys and ciphertexts for the cryptosystem described in Section 3; for

comparison, the last two rows are for parameters given in [MR09]. In each case, the message size is ℓ = 128
bits. The “message expansion” factor is the ratio of ciphertext size to plaintext size. Recall that in the

ring-based system, the public key sizes are about a factor of n smaller.

seems to be a reasonable estimate on the number of NearestPlanes enumerations that can be performed per

second, especially with parallelism.) We list the largest value of δ for which we found an acceptable attack,

along with the corresponding runtime (which includes both the BKZ and NearestPlanes phases).

Conclusions. We highlight a few notable conclusions from our analysis:

1. The decoding attack is always at least as good as the distinguishing attack for all reasonable advantages,

and is vastly superior in the high-advantage regime. As an extreme example, decoding is more than

2160 times faster when obtaining a large advantage against the “high security” (n = 320) parameter set.

2. For the “low security” (n = 192) parameter set, our key sizes are about 10 times smaller than

those in [MR09], while offering somewhat better security, and the “high security” parameters are

approximately 4-5 times smaller. Note also that the ring-based scheme has key sizes about a factor

of n smaller again.

3. For the “medium security” (n = 256) parameter set, the best runtime/advantage ratio is approximately

2120 seconds, which translates on our machine to about 2150 operations. It seems reasonable to conclude

that these parameters currently offer security levels at least matching those of AES-128. While we elect

not to give precise “symmetric bit security” claims owing to the approximate nature of our predicted

runtimes, rough figures could be derived using the heuristics of Lenstra and Verheul [LV01].

Acknowledgments

We thank Vadim Lyubashevsky, Markus Rückert, and Michael Schneider for helpful discussions, and for

pointing out irregularities in our previous security estimates. We also thank the CT-RSA reviewers for their

useful comments.

18



References

[ABB10] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In

EUROCRYPT, pages 553–572. 2010. On p. 1.

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-

secure encryption based on hard learning problems. In CRYPTO, pages 595–618. 2009.

On pp. 5 and 10.

[AD97] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.

In STOC, pages 284–293. 1997. On pp. 1 and 2.

[AD07] M. Ajtai and C. Dwork. The first and fourth public-key cryptosystems with worst-case/average-

case equivalence. Electronic Colloquium on Computational Complexity (ECCC), 14(97), 2007.

On p. 2.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.

Preliminary version in STOC 1996. On pp. 1 and 2.

[AKS01] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem.

In STOC, pages 601–610. 2001. On p. 12.

[Ale03] M. Alekhnovich. More on average case vs approximation complexity. In FOCS, pages 298–307.

2003. On pp. 2 and 6.

[Bab85] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,

6(1):1–13, 1986. Preliminary version in STACS 1985. On pp. 3 and 11.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.

Mathematische Annalen, 296(4):625–635, 1993. On p. 4.

[Ban95] W. Banaszczyk. Inequalites for convex bodies and polar reciprocal lattices in Rn. Discrete &

Computational Geometry, 13:217–231, 1995. On p. 4.

[BHY09] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and

commitment secure under selective opening. In EUROCRYPT, pages 1–35. 2009. On p. 10.

[BKW03] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the

statistical query model. J. ACM, 50(4):506–519, 2003. On p. 10.

[CHKP10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In

EUROCRYPT, pages 523–552. 2010. On p. 1.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

On p. 1.

[GN08] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, pages 31–51. 2008.

On pp. 3, 13, and 14.

[GNR10] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In EURO-

CRYPT, pages 257–278. 2010. On pp. 12 and 15.

19



[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic

constructions. In STOC, pages 197–206. 2008. On pp. 1, 2, 4, 6, 10, and 14.

[HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In

ANTS, pages 267–288. 1998. On p. 2.

[Kle00] P. N. Klein. Finding the closest lattice vector when it’s unusually close. In SODA, pages 937–941.

2000. On pp. 3 and 11.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings.

In EUROCRYPT, pages 1–23. 2010. On pp. 2, 6, and 8.

[LPS10] V. Lyubashevsky, A. Palacio, and G. Segev. Public-key cryptographic primitives provably as

secure as subset sum. In TCC, pages 382–400. 2010. On pp. 2 and 6.

[LV01] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. J. Cryptology, 14(4):255–293,

2001. On p. 18.

[Mic02] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.

Computational Complexity, 16(4):365–411, 2007. Preliminary version in FOCS 2002. On p. 2.

[Mic10] D. Micciancio. Duality in lattice cryptography. In Public Key Cryptography. 2010. Invited talk.

On pp. 2 and 6.

[MR09] D. Micciancio and O. Regev. Lattice-based cryptography. In Post Quantum Cryptography, pages

147–191. Springer, February 2009. On pp. 2, 3, 4, 5, 6, 10, 14, 16, 17, and 18.

[MV10a] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most

lattice problems based on Voronoi cell computations. In STOC, pages 351–358. 2010. On p. 12.

[MV10b] D. Micciancio and P. Voulgaris. Faster exponential time algorithms for the shortest vector

problem. In SODA, pages 1468–1480. 2010. On p. 12.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,

pages 333–342. 2009. On pp. 1 and 5.

[Pei10] C. Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO, pages 80–97.

2010. On pp. 2, 5, and 6.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious

transfer. In CRYPTO, pages 554–571. 2008. On pp. 2, 6, 10, 14, and 16.

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages

187–196. 2008. On pp. 1 and 6.

[Reg03] O. Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942, 2004.

Preliminary version in STOC 2003. On pp. 1 and 2.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,

56(6):1–40, 2009. Preliminary version in STOC 2005. On pp. 1, 2, 5, 6, 14, and 16.

20



[RS10] M. Rückert and M. Schneider. Selecting secure parameters for lattice-based cryptogra-

phy. Cryptology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.org/.

On pp. 3, 4, and 10.

[Sch03] C.-P. Schnorr. Lattice reduction by random sampling and birthday methods. In STACS, pages

145–156. 2003. On p. 13.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving

subset sum problems. Mathmatical Programming, 66:181–199, 1994. On p. 12.

[Sho] V. Shoup. Number theory library 5.5.2 (NTL) for C++. http://www.shoup.net/ntl/.

On pp. 12 and 14.

[Wag02] D. Wagner. A generalized birthday problem. In CRYPTO, pages 288–303. 2002. On p. 10.

21

http://eprint.iacr.org/
http://www.shoup.net/ntl/

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Discrete Gaussians
	Learning with Errors

	LWE-Based Encryption
	Cryptosystem
	Parameters for Correctness
	Security Proof

	Lattice Decoding Attacks
	Basis Reduction and Experiments
	Basis Reduction for q-ary Lattices
	Extrapolating BKZ Runtimes

	Cryptosystem Parameters

