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Abstract. We show that in the worst case, ~'~(r/d) sidedness queries are required to 
determine whether a set of n points in ~d is affinely degenerate, i.e., whether it contains 
d + 1 points on a common hyperplane. This matches known upper bounds. We give 
a straightforward adversary argument, based on the explicit construction of a point 
set containing f~(n a) "collapsible" simplices, any one of which can be made degenerate 
without changing the orientation of any other simplex. As an immediate corollary, 
we have an ~(n d) lower bound on the number of sidedness queries required to 
determine the order type of a set of n points in ~d. Using similar techniques, we also 
show that f2(n d§ 1) in-sphere queries are required to decide the existence of spherical 
degeneracies in a set of n points in R d. 

1. Introduction 

A fundamenta l  p rob lem in computa t iona l  geometry  is de termining whether  a given 
set of points  is in "genera l  pos i t ion ."  A simple example  of this type of  p rob lem is 
determining,  given a set of points  in the plane,  whether  any three of  them are 
collinear.  In 1983 van Leeuwen [15] asked for an a lgor i thm to solve this p rob lem 
in t ime o(n 2 log n). Chazelle et al. [2] and Edelsbrunner  et al. [6] independent ly  
discovered an a lgor i thm that  runs in t ime and space O(n 2) by const ruct ing the 
a r rangement  of lines dual  to the input  points.  Edelsbrunner  et al. 1"6] also solved 
the h igher-d imensional  version of  this problem,  which we call the affine degener- 
acy problem. Their  a lgor i thm,  given n points  in R d, determines  whether  d + 1 of 

* An earlier version of this paper was presented at the 34th Annual IEEE Symposium on 
Foundations of Computer Science [8]. This research has been supported by NSF Presidential Young 
Investigator Grant CCR-9058440. 
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them lie on the same hyperplane, in time and space O(n a) (but see also [7]). Edels- 
brunner and Guibas [5] later improved the space bound to O(n) in all dimensions. 

A basic primitive used by all of these algorithms is the sidedness query: Given 
d + 1 points Po . . . . .  Pal, does the point Po lie "above," on, or "below" the oriented 
hyperplane aft(p1 . . . . .  Pd)? These are also sometimes called orientation queries, 
simplex queries, or (in the plane) triangle queries. The result of a sidedness query 
is given by the sign of the following determinant: 

1 P o l  Po2 . . .  Poa 

1 P l l  P I E  . . .  Pld 

1 Pal Pd2 "" Pld] 

The value of this determinant is d! times the signed volume of the simplex spanned 
by Po . . . . .  pal. 

In the algebraic decision-tree and algebraic computation-tree models, there is 
a somewhat trivial lower bound of f~(n log n) on finding affine degeneracies in any 
dimension, since it takes f~(n log n) time just to determine whether all the points 
are distinct [14], [1]. Previously, no better lower bound was known under any 
model of computation. 

In this paper we derive a lower bound of t)(n d) on the number of sidedness 
queries required to determine whether a set of n points in R d is affinely degenerate. 
This matches the known upper bounds. Our lower bound holds in a decision-tree 
model of computation in which every decision is based on the result of a sidedness 
query. We are not allowed, for example, to compare the values of different 
sidedness determinants. This is not quite as unreasonable a restriction as it may 
appear at first glance; all known algorithms for determining degeneracy or order 
type rely (or can be made to rely) exclusively on sidedness queries [2], [5], [6]. 
Our lower bound implies that there is no hope of improving these algorithms 
unless other primitives are used. 

Two sets of labeled points are said to have the same order type if corresponding 
simplices have the same orientation. The order type of a set of points can be 
represented by the face lattice of its dual hyperplane arrangement or by its 
lambda-matrix [11], both representations requiring space f~(nd). Arbitrary order 
types can also be represented by canonical point sets with integer coordinates, but 
this representation can require exponential storage in the worst case [13]. The 
fastest known algorithm for determining the order type of a set of points constructs 
its dual hyperplane arrangement in time and space O(n d) [6]. Even though all 
known representations of order type require space f~(nd), there is some hope of a 
smaller representation, and, thus, a faster algorithm, since it is known that there 
are only (n/d) a(d2n) = 2 ~ log n) order types [12]. As an immediate corollary to our 
degeneracy lower bound, we show that f~(n d) sidedness queries are required to 
determine the order type of a set of n points in R a. Previously, the information- 
theoretic lower bound of D.(n log n) was the only lower bound known for this 
problem. 
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We prove our lower bounds with a straightforward adversary argument. We 
describe a nondegenerate set of points that contains a large number of independent 
"collapsible" simplices, any one of which the adversary can make degenerate 
without changing the orientation of any other simplex. If an algorithm fails to 
perform a sidedness query for every collapsible simplex, the adversary can move 
the points so that the perturbed set is degenerate, and the algorithm will be unable 
to distinguish between the original set and the perturbed set. 

In an analogous development, we show that determining the existence of 
spherical degeneracies, i.e., deciding whether a set of n points in ~d contains 
d + 2 points on a common sphere, requires f~(n d+ ~) in-sphere queries. Again this 
matches known upper bounds, which are typically achieved by reducing the 
spherical degeneracy problem in R d to an affine degeneracy problem in ~a+l 
(see [4]). The typically used in-sphere query decides whether a point q lies 
"inside," on, or "outside" the oriented sphere defined by d + 1 points Po . . . . .  pd. 
Algebraically, the result of this query is given by the sign of the following 
determinant: 

1 Pol P02 "'" POd ~ p 2 i  
i 

P l t  P12 " ' "  Pla Zp2i 1 
i 

Pal Pa2 ... Pad ~ p2i 1 
i 

1 ql q2 "'" qa ~ q2 
i 

In Section 2 we derive lower bounds on a simplified version of the affine 
degeneracy problem, in which vertical hyperplanes are ignored. We extend our 
results to the general problem in Section 3. In Section 4 we strengthen the model 
of computation somewhat by allowing some additional tests such as comparisons 
between coordinates. Section 5 addresses the spherical degeneracy problem. In 
Section 6 we describe an algorithm for another simplified version of the degeneracy 
problem, whose running time is less than our lower bound. Finally, we discuss 
some of the implications of our results. 

2. Lower Bounds for a Simplified Afline Degeneracy Problem 

The nonvertical affine degeneracy problem asks, given a set of n points in R d, 
whether there is a nonvertical hyperplane passing through d + 1 of them. In this 
section we prove the following theorem. 

Theorem 2.1. Any decision-tree algorithm that solves the nonvertical affine degener- 
acy problem in R d, using only sidedness queries, must have depth f~(na). 
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In order to give a more intuitive picture, we first consider the planar case, 
and then generalize to arbitrary dimensions. 

2.1. The Planar Lower Bound 

Without loss of generality, we assume n is a multiple of 3. The adversary presents 
the following set of points: 

hi3 

S & U { ( -  1, 4i), (0, 4i + 1), (1, 4i)}. 
i = 1  

The set S consists of three smaller sets of points, evenly spaced along vertical 
line segments. See Fig. l(a). If we pick points p and r from the left and right 
segments, respectively, there is a unique point q in the middle segment such that 
the vertical distance from q to pr is exactly 1. We refer to each such triple {p, q, r} 
as a collapsible triangle, for the following reason. Without loss of generality, let q 
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Fig. 1. Planar lower-bound construction. (a) initial set. (b) perturbed set, showing collapsed triangle. 
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(.) 

\\\\ 
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Fig. 2. Dual version of the planar lower-bound construction. (a) initial set, with collapsible triangles 
shaded. (b) perturbed set, showing collapsed triangle. 

lie below ~-~. If we perturb the set by moving p and r down by �89 and moving 
q up by �89 then the three points become collinear. See Fig. l(b). No other 
degeneracies are introduced by this perturbation. Moreover, no other triangle 
changes orientation. 

The adversary's point set contains n2/9 = I)(n 2) collapsible triangles. If the 
algorithm does not check the orientation of every collapsible triangle, the adver- 
sary perturbs the set so that some unchecked triangle becomes degenerate. The 
algorithm cannot distinguish between the original point set and the perturbed 
point set. This completes the proof  in the planar case. 

It may be helpful to see what this construction looks like in the dual setting. 
Here we are given n lines in the plane and asked if any three of them have a 
common intersectionJ The dual of the adversary's point set consists of three 
bundles of parallel lines. Two of the bundles meet in a mesh of squares, and the 
third cuts through the squares at a 45 ~ angle, so that each square in the mesh 
has a small triangle cut off one corner. See Fig. 2(a). Each of the small triangles 
in the mesh corresponds to a collapsible triangle in the primal point set. To collapse 
a triangle, the adversary simply moves its three bounding lines so that they 
intersect at the triangle's centroid. See Fig. 2(b). 

2.2. H i g h e r  D i m e n s i o n s  

For  the d-dimensional problem, the adversar3~'s point set consists of d + 1 smaller 
sets. The points in each smaller set are evenly spaced along vertical line segments 
l o, l~ . . . . .  1 a. These line segments intersect any horizontal hyperplane at the 
centroid and vertices of a regular (d - 1)-simplex. 

Without loss of generality, we assume n is a multiple of 3d. Each of the outer 
segments 11 . . . . .  la contains 2 n / 3 d  points, and lo contains the remaining n/3 points. 
The xa coordinates of the outer points are multiples of 2d between 0 and 4n/3  - 2d. 

1 The restriction to nonvertical collinearities in the primal setting is reflected in the dual by ignoring 
the intersection points "at infinity" between parallel lines. 
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Thus, any hyperplane defined by d points, one from each outer segment, intersects 
the xd-axis at an even integer coordinate between 0 and 4n/3 - 2d. The points in 
the inner set lie at alternate odd integer coordinates between 1 and 4n/3 + 1. This 
gives us [_(d - 1)/2/ "wasted" points at the top of the inner segment, which we 
can ignore. 

Suppose we pick one point from each of the outer sets. These points define a 
hyperplane h. The vertical distance between h and the unique point in the inner 
set that is closest to h is exactly 1. We refer to each such set of d + 1 points as a 
collapsible simplex. The adversary can make any collapsible simplex degenerate 
by simultaneously moving the inner point up and the outer points down (or vice 
versa) a distance of �89 Clearly, no other simplex changes orientation because of 
this perturbation. There are (2n/3d) d = ~(n d) collapsible simplices in the adversary's 
point set, each of which must be checked by the algorithm. 

This completes the proof of Theorem 2.1. 

2.3. Lower Bounds for Determining Order Type 

Two sets of labeled points have the same order type if and only if corresponding 
sidedness queries return the same value. Since collapsing a simplex changes the 
order type of the set, we immediately have the following corollary. 

Corollary 2.2. Any decision-tree algorithm that determines the order type of a set 
o f  n points in •d, using only sidedness queries, must have depth ~(na). 

3. Lower Bounds for the General Problem 

In this section we modify the arguments of the previous section to derive a lower 
bound for the general affine degeneracy problem: Given n points in R a, is there 
a hyperplane that passes through more than d of them? 

In the plane we can explicitly modify the set S given in the previous section. 
Specifically, the adversary presents a set of points closely approximating S, except 
that the vertical line segments are replaced by very steep parabolas: 

S*=~ - 1 , 4 i  , , 4 i +  1 , + 1,4i . 
i = l  

Any line through two points on the same parabola misses the points on the other 
two parabolas. Since no three points on a parabola can be collinear, the set is 
clearly nondegenerate. As in the original construction, there are n2/9 collapsible 
triangles. (Actually, there are slightly more, but we only care about the collapsible 
triangles with one point in each parabola.) Each point in S* is at most ~ away 
from the corresponding point in S. Thus, in each collapsible triangle, the vertical 
distance from the inner vertex to the line connecting the outer vertices is between 
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and ~ .  To collapse a triangle, the adversary slides its vertices along the 
corresponding parabolas. This ensures that no other triangle collapses or changes 
orientation. 

The situation in higher dimensions is not so simple, since there are many more 
possibilities for degeneracies than in the plane. We would like to simply specify 
moment curves that approximate the original vertical line segments, and place 
points on these curves at regular intervals. In the plane, if the approximating curves 
are steep enough, we only have to ensure that no three points from the same curve 
segment can be collinear. Even in three dimensions, the situation is much more 
complicated. Simply by choosing moment curves, we ensure that no four points 
from the same segment are coplanar, but there are other ways of choosing four 
points--three from one segment and one from another, two each from two 
segments, and so forth--and we must guarantee that none of these choices is 
coplanar, even after we collapse an arbitrary collapsible simplex�9 With sufficient 
patience, an appropriate three-dimensional point set can be constructed, but as 
the dimension increases, we quickly face a combinatorial explosion, and the 
problem becomes intractable. 

Because of these difficulties, rather than giving an explicit construction, we 
content ourselves with a pure existence proof. Given a set of points S and 
a nondegenerate simplex tr with vertices in S, we say ~ is reversible if S can 
be continuously deformed to a new set in which the orientation of tr is 
reversed, without changing the orientation of any other simplex at any time. 
Clearly, every reversible simplex is collapsible. Furthermore, we easily verify that 
each of the collapsible simplices in the adversary sets described in Section 2 is 
reversible. 

Lemma 3.1. A nondegenerate set of n points in ~d containin9 f~(n a) reversible 
sirnplices exists. 

Proof. We can think of any set of n points in ~a as a single point in the 

�9 ( n ) possible sidedness determi- "configuration space" ~d, [12]. Each of the d + 1 

nants implicitly define an algebraic surface in ~n,, and these surfaces define a 
cellular decomposition�9 Nondegenerate sets correspond to points in dn-dimen- 
sional cells in this decomposition; degenerate sets correspond to points in cells of 
lower dimension. 

Each configuration of points in ~d corresponds to a point in some cell C in 
this decomposition. As long as the order type of the set does not change, moving 
points in the set corresponds to moving the configuration point within C. 
Reversing a nondegenerate simplex moves the configuration point through the 
corresponding surface tr. If no other simplex changes orientation, then the 
configuration point neither meets nor crosses any other surface, except those 
surfaces containing the entire path of the configuration point. In this case we say 
that a nicely bounds C. More formally, tr uniquely spans a boundary facet of C 
and cuts the" intersection of the surfaces that contain C at some point on that 
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boundary  facet. 2 Thus,  there is a one- to-one correspondence between reversible 
simplices and nice bounding surfaces. To  prove the lemma, it suffices to show that  
there is a dn-dimensional  cell that  is nicely bounded  by ~)(n d) distinct surfaces. 

Let C be an arbi t rary  ceil, and let C' be one of the cells in its boundary.  Then 
every surface a that  nicely bounds  C' also nicely bounds  C. Thus,  if there is a cell 
of any dimension nicely bounded  by f~(n d) surfaces, then, by induction, there must  
be a dn-dimensional cell bounded  by ~(n d) surfaces. Since reversible simplices 
correspond to nice bounding surfaces, it suffices to show that  a (possibly degener- 
ate) set of points  containing fl(n a) reversible simplices exists. We described such a 
set in the p roo f  of Theorem 2.1. [ ]  

Our  adversary  a rgument  now immediately gives us the following two theorems. 

Theorem 3.2. Any decision-tree algorithm that solves the general affine degeneracy 
problem in R d, using only sidedness queries, must have depth ~(nd). 

Theorem 3.3. Any decision-tree algorithm that determines the order type of a 
nondegenerate set of n points in ~d, using only sidedness queries, must have depth 
~(nd). 

4. Strengthening the Model of Computation 

If we modify  our p lanar  construct ion slightly, we can also allow compar i sons  
between coordinates  of  points  and between slopes of lines defined by pairs of 
points, thus strengthening the model  under  which our  lower bound holds. In fact, 
even with these extra tests, f~(n 2) sidedness queries are still required in the worst  
case. 

It is somewhat  easier to explain the modif icat ion in dual space. We use the 
duality t ransformat ion  of Edelsbrunner  et al. [6], which takes each point  (a, b) to 
the line y = ax + b, and vice versa. We modify our  original collection of lines, 
illustrated in Fig. 2(a), so that  any a lgor i thm can compare  coordinates  of inter- 
section points,  slopes of lines, and intercepts of lines with either coordinate  axis. 

We can already allow compar isons  between slopes, since the adversary 's  
per turbat ion  does not  change the slope of any line. We can translate the set of 
lines so tha t  all intersection points  lie in the same quadrant ,  even after the 
adversary collapses any triangle. The translated set has the proper ty  that  the order 
in which the lines intersect either coordinate  axis is not changed when a triangle 
is collapsed. 

To  allow compar isons  between coordinates  of  intersection points, we modify  
the set as follows. First, we shrink all the " d o w n "  triangles in the mesh to points. 

2 Let N~(p) denote the open ball of radius e centered at the point p. Suppose an algebraic surface 
a intersects an algebraic variety V at a point p. We say that tr cuts V at p if, for all sufficiently small 
e, V intersects both components of N~(p)\a. 
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\ 

Fig. 3. Modified dual construction. Each triple intersection point is actually a very small collapsible 
triangle. 

Second, we rotate the entire construction slightly, so that every intersection point 
has a unique x- and y-coordinate. Finally, we expand the triple intersection points 
back into very small triangles, all the same size. If the intersection points are 
ordered by either coordinate, the vertices of any of the small triangles are adjacent 
in the ordering. See Fig. 3. 

Each of the [-n2/187 small triangles is reversible, and thus collapsible. If the 
adversary collapses one of these triangles, the only place the coordinate orders 
change is at the vertices of that triangle. However, since none of our lines are 
horizontal or vertical, comparing the coordinates of two intersection points of a 
triangle is algebraically the same as performing a sidedness query. So for each 
collapsible triangle, any algorithm must perform a sidedness query on its three 
lines. 

Theorem 4.1. Any decision-tree algorithm that solves the nonverticat affine 
degeneracy problem in the plane, using only sidedness queries, coordinate com- 
parisons, and slope comparisons, must make fl(n 2) sidedness queries in the worst case. 

We can apply the technique of Section 3 to achieve lower bounds on the general 
problem. 

Theorem 4.2. Any decision-tree algorithm that solves the general affine degeneracy 
problem in the plane, using only sidedness queries, coordinate comparisons, and slope 
comparisons, must make [~(n 2) sidedness queries in the worst case. 

Proof. Each sidedness query, slope comparison, and coordinate comparison 
implicitly defines an algebraic surface in the configuration space •2,. (We ignore 
any slope comparison between two sides of the same triangle, since such a test is 
algebraically equivalent to a sidedness query.) For notational convenience, we 
color each surface "red"  if it is defined by a sidedness determinant, and "green" 
otherwise. These surfaces define a cellular decomposition of R 2n. There is a 
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one-to-one correspondence between the reversible triangles in any set of points in 
the plane and the red surfaces that nicely bound the cell containing the correspond- 
ing configuration point. 

The set of points we described above corresponds to a configuration point in 
a low-dimensional cell nicely bounded by f~(n 2) red surfaces. Every cell in the 
decomposition is nicely bounded by at least as many red surfaces as any cell in 
its boundary. By induction, therefore, there must be a 2n-dimensional cell nicely 
bounded by f~(n 2) red surfaces. The theorem follows immediately) [] 

Corollary 4.3. Any decision-tree algorithm that determines the order type of a 
nondegenerate set of n points in the plane, using only sidedness queries, coordinate 
comparisons, and slope comparisons, must make fl(n 2) sidedness queries in the worst 
case. 

5. Lower Bounds for Finding Spherical Degeneracies 

The spherical degeneracy problem asks, given n points in R d, if any d + 2 lie on 
the same sphere. This problem can be transformed into the affine degeneracy 
problem in ~d+l by projecting the input vertically onto the paraboloid Xd§ = 
X 2 + "'" + X 2. The images of cospherical points in ~d under this projection are 
coplanar points in ~d§ 1. Furthermore, if the point q lies inside (resp. outside) the 
sphere defined by d + 1 points Po . . . . .  Pa in ~d, then the image of q lies below 
(resp. above) the hyperplane in R d§ defined by the images of Po . . . . .  Pd [4]. 
Sidedness queries on this (d + 1)-dimensional point set are thus equivalent to 
in-sphere queries in the original d-dimensional point set. 

In this section we prove a lower bound on the number of in-sphere queries 
required to solve the spherical degeneracy problem, using the techniques in 
Sections 2 and 3. As before, we first consider only a simplified version of the 
problem, in which spheres with infinite radius (i.e., hyperplanes) are ignored. We 
refer to any set of d + 2 points lying on a common sphere of finite radius as a 
proper spherical degeneracy. 

We give a simple construction that deals with the planar case, followed by a 
more complicated construction that deals with the general d-dimensional case. 

5.1. The Planar Lower Bound 

The adversary presents the following set of points: 

n/6 n/2 

s k) (( 0), (2 0), (0, U {(0, 
i = 1  i = 1  

Actually, this statement is stronger than the theorem requires. It suffices that some cell, contained 
in only green surfaces, is nicely bounded by D.(n 2) red surfaces. 
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The set consists of four subsets of points, two contained in each positive coordinate 
axis. We easily verify that this set contains no proper circular degeneracies, using 
the fact that four points (a, 0), (b, 0), (0, c), and (0, d) are cocircular if and only if 
ab = cd. 

Theorem 5.1. Any decision-tree algorithm that solves the proper circular degener- 
acy problem, usin 9 only in-circle queries, must have depth ~'~(n3). 

Proof. For each 1 _< i,j, k < n/6, the following points are "almost" cocircular: 

(2 si+z, 0), (25/-2, 0), (0, 25k), (0, 25"+j-k)+ 1). 

Each such set of points is a reversible 4-tuple. The adversary can collapse any such 
tuple by changing the four points to the following: 

(2 51+ 3/2, 0), (2 sj- 3/2, 0), (0, 25k-I/z), (0, 25ti+J-k)+ t/2). 

We easily verify that this change does not introduce any other new circular 
degeneracies or change the result of any other in-circle query. There are n3/216 = 
~(n 3) collapsible 4-tuples, each of which must be checked by the algorithm. [] 

Once again, we can extend this result to the general problem using the technique 
of Section 3, since each of the collapsible 4-tuples in S is actually reversible. 

Theorem 5.2. Any decision-tree alyorithm that solves the 9eneral circular degener- 
acy problem, usin9 only in-circle queries, must have depth ~(n3). 

The adversary's perturbation does not change the relative coordinate orders of 
any pair of points or the orientation of any triangle. Thus, using the techniques 
of Section 4, we can strengthen the model under which our lower bound holds. 

Theorem 5.3. Any decision-tree algorithm that solves the 9eneral circular degener- 
acy problem, usin9 only in-circle queries and sidedness queries, must make ~(n 3) 
sidedness queries in the worst case. 

5.2. Higher Dimensions 

In order to extend this lower bound to the d-dimensional case, we exhibit a set S 
of O(n) points in ~a that contains ft(n d+l) reversible (d + 2)-tuples, i.e., sets of 
d + 2 noncospherical points in S that can be moved so that they become 
cospherical, without changing the result of any other in-sphere query. 

The point set S in question is the union of d + 1 smaller sets, S~ w- ' .  • Sd u D, 
where each Si consists n/2 even integer points on the positive xl-axis, and D consists 
of about (d + 1)n/2 "odd"  points on the main diagonal (t . . . . .  t). At the risk of 
confusing the reader, we let each subscripted variable tl refer simultaneously to a 
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point on the xraxis and that point's nonzero coordinate. Similarly, each un- 
subscripted variable t refers simultaneously to a point on the main diagonal and 
the value of all its coordinates. 

To make our construction precise, the sets S~ include points ti such that tl is 
even and 

a i < t i ~ a i + n, 

where a 1 = 0, a i is large for all 1 < i <  d (say a i = n 3 +  in), and a d is huge 
(say ad = 2n). The set D includes points t such that d t  is odd and 

A < d t  < _ A  + ( d  + l )n ,  

where A = (a l  + "'" + ad). 

Lemma 5.4. T h e  se t  S c o n t a i n s  no  p r o p e r  s p h e r i c a l  d e g e n e r a c i e s .  

P r o o f .  For all 1 < i < d, let t i and t'i be two distinct points in S~, and let t and 
t' be two distinct points in D. Note that with our choice of values for al we have 
the following bounds: 

- ( d +  1 ) n < t  l + ' ' ' + t d - d t < d n ,  

1 1 1 1 
< - - + . - . +  - < 1 ,  

n t t  ta t 

d - 2  o [ 1 " ~  1 1 1 d - 2  

n 3 ~, ) ~  < - - + " ' + - - - - -  < - -  t 2 t d t n 3 

By examining the appropriate in-sphere determinants, we find that the 
cosphericality of any set of d + 2 points from S is expressed by the vanishing of 
one of the following algebraic expressions: 

�9 Two points from the xl-axis, one from each of the other axes, and one from 
the main diagonal: 

(ill l i t )  t t  + " "  + td - -  d t  + t~t~ + ' " +  . 
td 

(1) 

�9 Two points from the main diagonal, and one from each axis: 

t~ + . ." + td - -  d t  + d t t '  + " "  + . 
td 

(2) 
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�9 Two points  from the xl-axis, two points from the xj axis, and d - 2 points 
elsewhere: 

tit' i - t fi). (3) 

�9 Two points from the xi-axis , two points from the main diagonal,  and d - 2 
points elsewhere: 

t, t'i - dtt'. (4) 

With ti, t'i, t, t' chosen in the indicated ranges and with the indicated parities, 
expression (1) never vanishes, since the last term dominates  when i > 1, and the 
whole expression differs from an odd integer by less than d/n when i =  1. 
Expression (2) never vanishes, since the last term always dominates.  Expression 
(3) never vanishes, since the xi-range and the x l r a n g e  are disjoint. Finally, 
expression (4) never vanishes, since the second term dominates  when i < d, and 
the first term dominates  when i = d. [ ]  

Lemma 5.5. The set S contains ~)(n a+ l) reversible (d + 2)-tuples. 

Proof. For  any choice of two distinct points tl, t ' l  f rom St and one point  ti from 
each of the other  Si, we can choose the point  from D with all coordinates  equal 
to (t~ + ".. + td + t'l -- 1)/d, so that  these points form a reversible (d + 2)-tuple. 
To reverse the tuple, we can decrease the nonzero coordinates  of the axis points 
by 1/(2d + 2) and increase each coordinate  of the main diagonal  point by 
1/2d + 1/n. [] 

Appealing to the previous method  of per turbing S into nondegenerate  position, 
we conclude: 

Theorem 5.6. Any decision-tree algorithm that solves the general spherical degener- 
acy problem in ~ ,  using only in-sphere queries, must have depth I'2(n ~+ 1). 

The correspondence between affine degeneracies in ~d and spherical degener- 
acies in ~d-  1 immediately  implies the following stronger version of Theorem 3.2. 

Corollary 5.7. For all d > 2, any decision-tree algorithm that solves the general 
affine degeneracy problem in ~ ,  using only sidedness queries, must have depth ~')(nd), 
even if the input is restricted to sets of  points in convex position. 

Given a set of  points  in convex position in the plane, we can easily determine 
whether  any three are collinear in O(n log n) time. 
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6. Beating the Lower Bound 

In this section we describe two simple algorithms which beat our lower bound 
for another simplified version of the affine degeneracy problem. Our algorithms 
do not use only sidedness queries, but also compute the signs of certain linear 
forms. In addition to providing a pedagogical example of the importance of 
choosing the right model of computation, these algorithms indicate that a new 
approach will be required to extend our lower bounds into more general models 
of computation, at least in higher dimensions. 

Consider the following problem. Suppose we have d + 1 sets So . . . . .  Sa ~ ~a, 
each containing n points, such that each set S i is contained in a vertical line Ii. 
Given such a collection of points, is there a nonvertical hyperplane containing 
d + 1 of them? We call this the restricted affine degeneracy problem. Clearly, the 
results in Section 2 show that D(n a) sidedness queries are required to solve this 
problem in the worst case. 

Since all the points lie on d + 1 vertical lines, the only possible nonvertical 
degeneracies consist of one point from each line. For each input, there exist 
constants 0q, determined by the positions of the lines l~, such that any collection 
of points Po~ lo . . . . .  Pa e In contained in a nonvertical hyperplane satisfies the 
equation 

d 

oq P~a = O. 
i = 0  

We describe two algorithms, one for even dimensions and one for odd 
dimensions. Our algorithms compare the weighted sums of k-tuples of xa- 
coordinates of points, where the weight of each point is determined by the set from 
which it is taken. We call such a query a k-tuple comparison. Both algorithms 
work in two phases, a sorting phase and a scanning phase. In the sorting phase 
both algorithms perform [d/2]-tuple comparisons. In the scanning phase both 
algorithms perform sidedness queries. However, in the odd-dimensional case the 
sidedness queries we perform are actually (d + 1)/2-tuple comparisons. 

In the discussion that follows, Pl always refers to a point in the set Si. 
If d is even, we sort all possible values of the expressions 

d / 2  - 1 d -  I 

Z ~ and Z 
i = 0 i = d / 2  

~ i  P i a .  

Then, for each point Pa ~ Sa. we scan through the two lists, looking for a pair of 
elements whose sum is -o~apaa. This algorithm runs in O(n a/2+ 1) time. 

If d is odd, we sort all possible values of the expressions 

Ldl2J d 

Z ~iP,. and E 
i = o i = fa/2q 

-- cq Pia, 

and then simultaneously scan through the two lists for duplicate elements. This 
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algorithm runs in O(n re+ 1)/2 log n) time. A simple variant of this algorithm can be 
used to solve a slightly more general problem, in which the points are only 
constrained to lie on two vertical (d + 1)/2-flats, which necessarily intersect at a 
vertical line l. Instead of sorting weighted sums, we sort the possible positions at 
which the affine hulls of (d + 1)/2-tuples of points from the same (d + 1)/2-flat 
intersect l. This algorithm also runs in O(n (a+ 1)/2 log n) time. 

In the odd-dimensional case we can show that our original algorithm is within 
a logarithmic factor of being optimal when only (d + 1)/2-tuple comparisons are 
allowed. Note that the odd-dimensional restricted affine degeneracy problem is a 
special case of the following problem: Given a set of n real numbers, decide whether 
any two subsets of size (d + 1)/2 have the same sum. Dietzfelbinger [3] has derived 
lower bounds for this more general problem, and his techniques immediately imply 
the following lower bound. 

Theorem 6.1. Any decision-tree algorithm that solves the restricted affine degener- 
acy problem in •a, usin 9 only (d + 1)/2-tuple comparisons, must have depth 
~)(ntd+ ly2), for all odd d. 

Results of Fredman [9] imply the existence of a nonuniform family of decision 
trees that solve this problem, using only (d + 1)/2-tuple comparisons, with depth 
O(ntd+l)/2). Thus, despite the fact that the fastest known uniform algorithm is 
slower by a logarithmic factor, this lower bound cannot be improved. Closing this 
logarithmic gap, even in the simple case d = 3, is a long-standing and very difficult 
open problem. 

We do not know whether our even-dimensional algorithm is optimal in this 
model, except in the case d = 2, where optimality follows from Theorem 4.2. It 
seems unlikely that the odd-dimensional lower bound can be extended to more 
general versions of the affine degeneracy problem, since the model itself breaks 
down unless the points are in special position. 

7. Implications 

We have presented lower bounds for a number of degeneracy-detection problems, 
under fairly natural models of computation. Our results are based on two 
fundamental techniques. First, we consider a simplified version of the problem, 
and we present an explicit nondegenerate input containing several independent 
"collapsible" configurations. We argue that any algorithm must explicitly check 
each collapsible configuration; otherwise, an adversary could perturb some un- 
checked configuration, resulting in a degenerate input which the algorithm could 
not distinguish from the original input. Second, by invoking a simple property of 
cellular decompositions, we argue that lower bounds on the simplified problem 
hold for the general problem as well. 

A problem similar to finding degeneracies is finding the minimum measure 
simplex. Unfortunately, our results are not sufficient to improve the fl(n log n) 
lower bound on this problem. Any algorithm that finds the minimum measure 
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simplex must at least be able to compare the values of the sidedness determinants. 
Such comparisons are not allowed in our model of computation. This difference 
may be best understood by looking at the one-dimensional case: f~(n log n) simple 
comparisons are required to sort a list of n numbers, but a stronger model is 
required to say anything about finding the closest pair. 

Gajentaan and Overmars [10] discuss a wide range of so-called nZ-hard 
problems in computational geometry. They give strong reductions from the 
nonvertical planar affine degeneracy problem to a number of separation, covering, 
visibility, and motion-planning problems. Theorem 2.1 implies t)(n 2) lower bounds 
for a very small number of these problems. Even in the few cases where the lower 
bound carries over, the models of computation under which they hold are 
extremely weak. 

For  most of the problems discussed in [10], the reduction from planar affine 
degeneracy uses primitives that our model of computation does not allow. In these 
cases it may still be possible to achieve quadratic lower bounds by directly applying 
the techniques in this paper. For example, consider the following problem, which 
Gajentaan and Overmars call SEPARATOR2: Given a set of n nonintersecting line 
segments in the plane, is there a nonintersecting line that separates the set into 
two nonempty subsets? Using the techniques in this paper, a quadratic lower 
bound can be derived for this problem, under a model that allows sidedness 
queries, coordinate comparisons, and slope comparisons, using the endpoints of 
the segments as input. 

Even so, many of the problems in [10] cannot even be solved in the models 
under which our techniques apply, as is the case with the minimum-measure 
simplex problem. Finally, many n2-hard problems already have O(n 2) solutions 
that use primitives outside our model. 

In light of these shortcomings, an obvious question is whether our lower bound 
also holds in models where other decisions are allowed. Several possibilities suggest 
themselves. A natural model would allow the signed volumes of simplices to be 
compared. In the plane, Jifi Matou~ek and Leo Guibas [personal communication] 
have independently suggested looking at "second-order" queries of the following 
form: Given points Pl, P2, ql, q2, r,  is the point r closer to ~ or to q'~2? These 
second-order queries and slope comparisons are both special cases of signed area 
comparisons. Ultimately, of course, we would like a lower bound that holds in 
the algebraic decision-tree model. 
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