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Model transferability is an emerging and important branch of predictive science that has  grown 9 
primarily from a need to produce ecological forecasts in the face of widespread data deficiency 10 
and escalating environmental novelty. In our recent article in TREE [1], we outlined some of 11 
the major roadblocks that currently undermine the practice of model transfers in ecology. 12 
Radchuk et al. [2]’s response to our work stresses the value of considering ‘first principles’ in 13 
projections of ecosystem change [3], and offers insights into outstanding challenges specific 14 
to mechanistic (synonym: process-based) models [4]. 15 

We strongly agree that improving ecological prediction under novel conditions requires a 16 
mechanistic understanding of natural systems [5]. Indeed, several of the research priorities 17 
we identified reflect this very idea (see [1] - Box 3 and pp. 795, 799). However, as Radchuk et 18 
al. [2] point out, the majority of mechanistic models are data-hungry by nature and rely heavily 19 
on imposed parameters derived from field observations or empirical relationships [6]. Given 20 
the real-world constraints of data availability, obtaining the detailed measurements necessary 21 
for robust model calibration and setup is not only time-consuming but also costly [6], such that 22 
mechanistic models have only been successfully built for the most charismatic, well-studied, 23 
and/or economically valuable species [7]. This limits their utility to support many of the 24 
management decisions that model transfers could inform. Data constraints also mean that 25 
Radchuk et al. [2]’s recommendation to capture what are largely unquantified and dynamic 26 
biotic interactions (e.g. competition, facilitation, predation) appears, for now, more aspirational 27 
than realistic. Borrowing information from related (and better known) taxa can partially 28 
circumvent the problem of data scarcity [7], but often at the cost of accepting unverified 29 
assumptions about parameter validity, and with potentially large biases in model outputs 30 
introduced by seemingly trivial changes in parameter values and initial conditions [6]. This 31 
uncertain behaviour perhaps explains why process-based models have received less attention 32 
in the literature to date, and remain less prominent overall in the context of model transfers 33 
[1]. 34 

While we see tremendous appeal in a process-based view of ecological inquiry, we therefore 35 
wish to temper general expectations. Significant advances in data collection are still imperative 36 
to pushing the discipline forward [8], and model transfers remain most urgently needed in 37 
knowledge-poor contexts [1], where information gaps make correlative descriptions of patterns 38 
the only viable pathway to ecological prediction. As a result, ecologists have proven rather 39 
slow to embrace mechanistic approaches [9]. For instance, although dynamic vegetation 40 
models built on first principles (e.g. physiology, photosynthesis) have been available for a few 41 
decades, they are either only applicable at coarse spatial resolutions or need detailed 42 
parameterisations to local site conditions [9]. Likewise, animal ecology has only very recently 43 
started to consider first principles such as dynamic energy budgets or foraging theory for 44 
modelling population dynamics reflecting individual-based processes [9]. 45 

Importantly, and as Radchuk et al. [2] remind us, mechanistic and correlative models also 46 
share many of the same underlying issues (e.g. equifinality, nonstationarity, model 47 
misspecification, model complexity) [4]. Rigorous tests of mechanistic models in non-analogue 48 
contexts are largely lacking (but see [10, 11]), meaning that external model evaluation should 49 
be seen as a critical step in determining their benefits for transferability. Until this is addressed, 50 
the relative value of mechanistic models over correlative models will arguably remain 51 
equivocal [11], and neither ‘correlationists’ nor ‘mechanists’ should thus feel entitled to claim 52 
holding the moral high ground [4].  53 



 

Ultimately, the complexity of conservation challenges in the Anthropocene requires that we 54 
invest in finding efficient solutions grounded in an understanding of the inner workings of 55 
nature [3]. A modelling philosophy that allows parameters to naturally emerge from first 56 
principles could offer exciting opportunities to attain this goal, as long as it is subjected to 57 
meticulous testing and that principles can be defined explicitly and consistently [7,12]. Without 58 
a common and consistent definition, one ecologist’s first principles could easily become 59 
another’s phenomenologies [12], making transfers strongly dependent on correctly identifying 60 
the key processes driving system behaviour in the first place, lest the model fails [7]. Whilst 61 
we agree with Radchuk et al. [2] that both mechanistic and correlative models are equally 62 
valuable, the latter still remain, in many cases, the most utilisable. As a result, we argue that 63 
the most immediate advances in transferability will be achieved by encouraging the 64 
development of correlative models grounded in well-established mechanisms [1]. 65 
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