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Abstract 

Night lights data are increasingly used in applied economics, almost always from 

the Defense Meteorological Satellite Program (DMSP). These data are old, with 

production ending in 2013, and are flawed by blurring, lack of calibration, and 

top-coding. These inaccuracies in DMSP data cause mean-reverting errors. This 

paper shows newer and better VIIRS night lights data have 80% higher predictive 

power for real GDP in a cross-section of almost 300 European NUTS2 regions. 

Spatial inequality is greatly understated with DMSP data, especially for the most 

densely populated regions. A Pareto correction for top-coding of DMSP data has 

a modest effect. 
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I. Introduction  

Satellite-detected night time lights data are increasingly used in applied economics.  

The first article in an economics journal using these data was in 2002 (Sutton and Costanza, 

2002) but it was only once Henderson et al (2011, 2012) published in the American Economic 

Review using night lights that many economists became professionally interested in such 

data. One indicator of the growing use of these data comes from a search of the economics 

literature in IDEAS/RePEc, which shows 175 records (articles and working papers) since 

2010 have either “night lights” or “night time lights” or “luminosity” in their details.2 The 

production of papers using night lights data is increasing, as 41 of these 175 records date 

from either 2019 or 2020. 

There is a problem with much of the economics research using night time lights data. 

Most studies use the Defense Meteorological Satellite Program (DMSP) data, which are old 

and not very accurate. For example, of the 41 IDEAS/RePEc records from 2019 or 2020, all 

but four use DMSP data. The inaccuracies in DMSP data include: blurred images (Abrahams 

et al, 2018) and geo-location errors (Tuttle et al, 2013), so light is attributed to places other 

than where it is emitted; top-coding, where brightly-lit city centers get the same data values 

as low density, dimmer suburbs (Bluhm and Krause, 2018); and uncalibrated variation in 

DMSP sensor amplification and inter-satellite differences that impair comparability over time 

and space (Gibson et al, 2020). Also, DMSP data are increasingly out of date, as production 

of these data ended in 2013. Newer and better night lights data are available from April 2012 

from the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments on the Suomi 

National Polar-orbiting Partnership (NPP) satellite platform. The VIIRS data have monthly 

frequency, with only a short lag (data are available to December 2019 at the time of writing 

in March 2020), giving an almost real-time measure of night-lit economic activity. 

                                                 
2 Search made on 2 April, 2020. The count of 175 records excludes 60 records where the search terms capture 
papers that do not use satellite-detected night lights data.  
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The VIIRS data are far more precise than DMSP data, with 45-times greater spatial 

resolution (Elvidge et al, 2013) and have no blurring or geo-location errors.3 The VIIRS data 

accurately measure the radiance of lights on earth, in a range of lighting conditions (covering 

almost seven orders of magnitude while DMSP covers less than two), while DMSP was 

designed to measure clouds for short-term weather forecasts. Thus, DMSP data show effects 

of unrecorded changes in sensor amplification (to keep brightness of cloud-tops constant over 

the lunar cycle), in terms of temporal inconsistency and top-coding. Inter-satellite differences 

also create inconsistency. The superiority of VIIRS has resulted in a rapid switch in the 

scientific literature; now almost twice as many articles per year publish using the VIIRS night 

lights data compared to those using the older and less accurate DMSP data, yet economists 

have continued to persist with DMSP data and largely ignore VIIRS (Gibson et al, 2020). 

There are several barriers to the wider use of VIIRS night lights data by economists. 

The most widely used DMSP data are annual composites, that were cleaned by scientists at 

the National Oceanic and Atmospheric Administration (NOAA) to remove outliers created by 

ephemeral sources of light like aurora, fires, lightning, and boats. The equivalently-cleaned 

VIIRS annual composites are currently only available for 2015 and 2016. The monthly VIIRS 

data reported since April 2012 have not had the same cleaning and outlier removal, so there is 

no overlap with similarly processed DMSP data for a like-with-like comparison (Gibson et al, 

2019). Yet without such a comparison it is harder to highlight flaws in the DMSP data. While 

the remote sensing literature has studies showing the superiority of VIIRS data (e.g. Chen and 

Nordhaus, 2015), there are no similar studies in economics journals. 

To enable comparisons that illustrate measurement error properties of the DMSP data, 

this paper reports on a procedure to create cleaned annual estimates of night lights from the 

                                                 
3 VIIRS data are allocated to grids, of about 0.45×0.30 kilometres for typical European latitudes. For DMSP, the 
grids are 0.93×0.60 kilometres but the underlying spatial resolution of the DMSP sensor is far coarser than is 
implied by this resampled grid. 
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monthly VIIRS data. This procedure provides overlapping annual estimates from both DMSP 

and VIIRS for 2013, to create a common testing ground. These data are used to predict GDP 

for almost 300 NUTS2 regions in Europe. The predictive power of VIIRS data is 80% higher 

than for DMSP data across a range of specifications. A Vuong (1989) likelihood ratio test 

suggests that models using the VIIRS data are closer to the truth. If the difference between 

(log) DMSP data and VIIRS data is used as an empirical estimate of the measurement error in 

DMSP data, a mean-reverting negative correlation of this error with true radiance is seen. 

Hence, coefficient estimates will be biased when DMSP night lights data are used on either 

the left-hand side or right-hand side of regression equations.4 

Another implication of the mean-reverting error in DMSP night lights data is that 

spatial inequality will be understated if these data are used to measure patterns of economic 

activity. A Theil index calculated with DMSP data is less than one-half of what VIIRS data 

show for the NUTS2 regions, with the understatement of inequality especially in densely 

populated regions. An adjustment developed by Bluhm and Krause (2018) to deal with top-

coding in DMSP data, which relies on a Pareto distribution for lights, has a modest effect but 

the adjusted DMSP data still greatly understate spatial inequality.  

The research design used here relies on cross-sectional comparisons between the two 

sources of night lights data. This is because lights data are a far better proxy for differences in 

economic activity in the cross-section than for time-series changes in activity, so it is sensible 

to test these data in the context where they work best. For example, Goldblatt et al (2019) 

find changes in DMSP lights cannot predict changes in either the number of enterprises or in 

average household expenditures for communes in Vietnam (the third sub-national level), yet 

lights were highly predictive in the cross-section. Likewise, Nordhaus and Chen (2015) find 

                                                 
4 See Gibson et al (2015) and Abay et al (2019) for full derivations of mean-reverting measurement error effects. 
Note that the main correction for measurement error bias that practitioners use – instrumental variables – is 
inconsistent if errors are mean-reverting (Black et al, 2000) and bounding estimates based on reverse regression 
are also likely to be ineffective (Gibson and Kim, 2010). 
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DMSP lights data are not a reliable proxy for time-series measures of output growth at either 

the country level or grid-cell level, yet they help estimate output per person cross-sectionally 

for countries with low quality GDP data. This superior performance in cross-sections also 

extends to VIIRS: variation in lights predicts 70% of the variation in state-level GDP in the 

U.S. but less than four percent of the variation in annual rates of change in GDP is predicted 

by annual changes in lights (Chen and Nordhaus, 2019; Gibson and Boe-Gibson, 2020).  

Nevertheless, if time-series uses of night lights data are required, the procedure used 

here to clean the monthly data would enable a time-series to be constructed for 2012-2019. If 

a longer time-series is needed, the Pareto-adjusted DMSP data improve over the usual DMSP 

data and provide results that are closer to what VIIRS shows.5 Thus, if needed, a researcher 

could obtain better night lights data, for longer, by splicing the cleaned VIIRS time-series 

with the time-series of Pareto-adjusted DMSP night lights data. 

II. Sources of Mean-Reverting Errors in DMSP Night Lights Data 
The measurement errors in DMSP data are mean reverting because blurred images 

attribute light to places from where it is not emitted and top-coding causes the differences in 

brightness between places to be understated. This matters because mean-reverting errors bias 

econometric estimates of regression coefficients, even if the error-ridden variable is on the 

left-hand side. Moreover, if there is a strong enough degree of mean-reversion in a right-hand 

side variable, the regression coefficient on that variable can be exaggerated rather than having 

the usual attenuation bias from random measurement error (Gibson et al, 2015). 

The night time images that DMSP provides are inherently blurred, due to three flaws 

in the sensor and data management (Abrahams et al, 2018). First, away from the nadir of the 

                                                 
5 Notwithstanding this improvement, Pareto-adjusted DMSP data still fall far short of the VIIRS data, in terms 
of their weaker relationship with GDP, understating spatial inequality, and missing key facilities like major ports 
(Gibson et al, 2019). Moreover, other sources of time-series inconsistency in DMSP data, due to inter-satellite 
differences and to unrecorded variation in sensor amplification over time, are not dealt with by the Pareto 
adjustment. Thus, threats to the validity of analyses of the DMSP time-series still remain (Gibson et al, 2020). 
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3000 kilometre (km) wide sweep of the sensor, the earth is viewed at an angle and the Field-

of-View (FoV) expands (by four-fold at the sweep edge) but all light from the expanded FoV 

continues to be attributed to a far smaller pixel in the centre of the FoV. Second, the on-board 

computers cannot hold all the data, so pixels are aggregated to 5×5 blocks to save on memory 

storage. Third, random geo-location errors, with a mean of about 3 km, also spread recorded 

light away from its point of origin (Tuttle et al, 2013). Consequently, the ground footprint of 

the smoothed DMSP data is about 25 km2 at the nadir and is even larger towards the edge of 

the sweep. In contrast, VIIRS maintains a constant 0.55 km2 footprint over its full sweep, 

which is why remote sensing experts like Elvidge et al (2013) describe VIIRS as having at 

least 45-times greater spatial resolution than DMSP. 

The 25 km2 (or larger) ground footprint of the DMSP sensor is much larger than the 

30 arc second (roughly 0.9×0.6 km at European latitudes) output grid onto which DMSP data 

are allocated. This may have created a confusion in economics that DMSP sensors can detect 

differences in lights for such small areas. For example, Baskaran et al (2015: 66) write about 

DMSP: “[t]hese images record average light output at the 30 arc second level, equivalent to 

about 1 km2 at the equator.” This is not correct, with the underlying spatial resolution of the 

sensor far coarser than the resolution of the grid used to output the resampled data. A related 

confusion is to attribute any spreading from the point of emission to where light is recorded 

in the DMSP data as due to environmental factors like snow and water (due to the reflection 

causing overglow), which should matter in only a few places.6 In fact, blurring is an inherent 

feature of the DMSP data, and occurs in all environments. 

Figure 1 illustrates blurring in DMSP data, using images for Oxford (and environs) in 

the 2015 VIIRS annual composite and the 2013 DMSP annual composite. The maps use the 

same scale and colour scheme. With VIIRS, it is clear that the nearby towns of Woodstock, 

                                                 
6 For example, see the discussion in footnote 3 of Michalopoulos and Papaioannou (2014). 
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Abingdon, Didcot (where a power station increases the brightness) and Chilton are all distinct 

from Oxford, with unlit space lying between each town. Even Kidlington just to the north 

(where the London Oxford Airport is located) has unlit space separating it from Oxford. The 

VIIRS image also shows the two most brightly lit parts of Oxford are the MINI car factory at 

Cowley in east Oxford, and the area near Westgate Mall and Cornmarket street (the main 

shopping area). The brightness of these areas is about 160 nanoWatts per cm2 per steradian.  

In panel (b) of Figure 1, the blurring in the DMSP image of the same area is obvious. 

With DMSP it appears that a continuous lit area extends for almost 40 km from Woodstock 

through Oxford to Didcot and Chilton. Moreover, a lot of this area is given a Digital Number 

(DN) of 63 that DMSP allocates to the most brightly lit areas.7 The apparently lit area is also 

much larger in the DMSP image. This exaggerated size is seen clearly for three small outer 

towns of Witney (population: 30,000), Wantage and Wallingford (population: 11,000 each) 

whose lit area in the DMSP image is 5-6 times larger than their actual lit area shown in the 

VIIRS image.8 It also appears in the DMSP data that most of Oxfordshire is covered in light, 

with very little of the map in part (b) of Figure 1 showing the green colour for no light. Yet 

the reality is that much of Oxfordshire is unlit, as seen in panel (a). One impact of overstating 

lit area, through DMSP data wrongly attributing light to unlit hinterland areas, is to create a 

mean-reverting error. 

Most uses of DMSP night lights in economics are at much larger scale than the areas 

shown in Figure 1, so it might be felt that the blurring issue is unimportant. The results for the 

NUTS2 regions shown below will allow this claim to be assessed, as this level of aggregation 

combines several counties into one unit (e.g. UKJ1 combines Oxfordshire with Berkshire and 

                                                 
7 The DN comes from 6-bit quantization (26=64) and ranges from 0 (no lights) to 63 (brightest lights). The same 
DN value does not necessarily refer to the same brightness level in different years, due to the lack of calibration 
for DMSP sensors and due to inter-satellite differences (Doll, 2008). 
8 The exaggeration of lit area is a feature of DMSP data. Gibson et al (2020) show a 150% overstatement in 
estimated area of a very big city (Dar es Salaam), and up to 500% overstatement in area for smaller towns, while 
Abrahams et al (2018) find that DMSP data overstate city area by an average of 77% across 15 big cities. 
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Buckinghamshire). Moreover, a recent trend in economics is to use DMSP night lights data 

for ever smaller areas and so concern about blurring should have become more apparent, yet 

it remains largely ignored, as seen in the review by Gibson et al (2020). For example, the 

spatial units used by Heger and Neumayer (2019) are about one-tenth of the size of the area 

mapped in Figure 1, and those used by Lee (2018) are about one-hundredth of the size of 

Figure 1, yet the issue of blurring is ignored in these papers. Even when DMSP data are used 

for larger spatial units, such as at the national level, researchers always repeat the claim that 

the DMSP data have spatial resolution of about 1 km2, and this apparent precision is likely to 

have given an unjustified air of confidence to their results.  

The second source of mean-reverting error in the DMSP data is top-coding, which is 

due to three factors. First, the aim of DMSP was to measure clouds rather than to measure 

lights on earth, so the sensor amplification was turned up going into the dark part of the lunar 

cycle when cloud-tops are no longer visible in raw moonlight. Second, the sensor has only a 

low dynamic range, so when amplification is increased the images for brightly lit parts of the 

earth, such as central business districts, are saturated with light. Third, data storage limits 

meant that pixels were aggregated to 5×5 blocks to save on memory before the data were 

transmitted to earth, so the original 8-bit values for the so-called ‘fine pixels’ were divided by 

four and top-censored at 63, to give the 6-bit DN value widely used in economics. Globally, 

about six percent of pixels have top-coded DN values of 63, and, consequently, city centers 

often seem no brighter than lower density suburbs (Bluhm and Krause, 2018).9  

Figure 2 illustrates top-coding in the DMSP data, using images for Inner and Outer 

London in the 2015 VIIRS annual composite and the 2013 DMSP annual composite. The 

most brightly lit part of London is Heathrow airport, whose radiance is 499 nW/cm2/sr, which 

                                                 
9 There also are radiance-calibrated DMSP lights data (for 1996, 1999, 2000, 2002, 2004, 2005 and 2010) from 
experiments where NOAA had the Air Force reduce amplification on a few nights to see what settings avoid DN 
values being top-coded in urban areas. However, these data rely on the pre-flight calibration of the sensor, rather 
than its actual (degraded) performance as it is exposed to dust and radiation over time, reducing their usefulness. 
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is over three times as bright as the most brightly lit part of Oxford in Figure 1(a). Some of the 

brightly lit areas of Inner London include Canary Wharf, Mayfair and Covent Garden, and 

the City of London; radiance in these areas is up to twice that recorded for the brightest parts 

of Oxford. Smaller, isolated, bright spots in panel (a) of Figure 2 include Wembley stadium, 

Twickenham, and Emirates stadium.10 It is also clear that much of Outer London, especially 

to the south and northeast, is not brightly lit. Even in Inner London, large areas such as Hyde 

Park and The Regent’s Park show almost no light output in the VIIRS image. 

The DMSP data give a completely different picture of London, as seen in panel (b) of 

Figure 2. The entire city, including most of Outer London, appears to be an undifferentiated 

blob, with 77% of the pixels given the top DN value of 63, and 10% given a DN value of 62. 

In the DMSP image, Heathrow looks no brighter than its surrounds and other locations of 

concentrated economic activity, like Canary Wharf or the City of London, are also not 

identified.11 Moreover, according to the DMSP data, the brightest areas of London are no 

brighter than the brightest areas of Oxford, when in fact they are 2-3 times as bright in the 

VIIRS data. It is evident that top-coding causes differences in brightness between places to be 

greatly understated, which is another source of mean-reverting errors. 

III. From Monthly VIIRS Night Lights Data to Annual Estimates  
The maps shown in Figures 1 and 2 rely on global annual composites created by 

NOAA scientists, that screen out ephemeral sources of light, such as from aurora, fires, and 

boats. Currently, the only annual composites for VIIRS are for 2015 and 2016, and so there is 

no overlap with the DMSP annual composites that ended in 2013. While monthly VIIRS data 

                                                 
10 The 2015 VIIRS image for London uses 2940 pixels, each having from 52 to 77 cloud-free nights (mean: 64) 
primarily in winter (due to solar glare in summer months). These sports stadiums will be repeatedly lit on winter 
nights, so even if the lights are not on every night, they still count as sources of non-ephemeral lights. 
11 This failure of the DMSP data to highlight intra-city heterogeneity is not restricted to London. Gibson et al 
(2019) show that 82% of Jakarta is given a DN value of 63 and 17% gets DN=62, while the major port that 
handles two-thirds of Indonesia’s goods trade (and is the 22nd busiest port in the world ranked just ahead of the 
port of New York/New Jersey) cannot be distinguished from its surrounding area (yet VIIRS shows it clearly). 
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are filtered to omit pixel-nights affected by stray light and clouds, the remaining data are still 

affected by ephemeral sources of light such as aurora, fires and gas flares and so are not 

directly comparable to cleaned annual DMSP data (there are no monthly DMSP data). 

One way to clean the monthly VIIRS data to improve comparability with the annual 

composites is to remove observations for any pixels that are recorded as having no permanent 

lights in the cleaned annual composites. In other words, if a pixel is recorded as having light 

in a monthly record from 2013 but shows up as unlit area in 2015 after the NOAA scientists 

have applied their algorithms to clean the annual composite, then a reasonable assumption is 

that the light recorded in the monthly file was ephemeral.12 This same principle can extend to 

using the 2016 annual composite; a looser criteria for having non-ephemeral lights is that the 

pixel was classified as lit area in either the 2015 or the 2016 annual composite. This approach 

leverages off the earlier cleaning efforts of the NOAA scientists, by using a background noise 

mask derived from the annual composite(s), which is then applied to the monthly data. 

One issue with implementing this procedure is that for typical European latitudes the 

VIIRS files for several months record no lights because the data have been filtered out due to 

the impact of stray light on long summer evenings. There is a clear north-to-south pattern in 

the map in Figure 3, with more northerly NUTS2 regions having only six months with data 

(January to March and October to December).13 In contrast, regions in southern Europe have 

nine or more months with data, although only Cyprus has data for all 12 months. To ensure 

consistency over space, the VIIRS annual estimates that I create only use monthly data for 

January to March and October to December, even if other months have data available. 

To test if this procedure for getting annual estimates from monthly VIIRS data yields 

a good proxy for the annual composites made by NOAA scientists, and therefore lets one 

                                                 
12 There is a very weak, or even no, relationship between changes in local economic activity and changes in 
night lights (Chen and Nordhaus, 2019, Goldblatt et al, 2019, Gibson and Boe-Gibson, 2020) so a local 
economic downturn would not necessarily cause pixels in the area to switch from being lit to unlit. 
13 The one region in northern Norway with only five months of data is excluded from the analyses. 
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expand VIIRS annual data beyond 2015 and 2016 to allow like-with-like comparisons with 

DMSP annual composites in 2013, I use the following three regression specifications: 

ln(2015 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 ln(𝑜𝑜𝐴𝐴𝐶𝐶 𝐶𝐶𝑜𝑜 𝐶𝐶𝐶𝐶𝐴𝐴𝑜𝑜ℎ𝐴𝐴𝑙𝑙 𝐴𝐴𝑜𝑜𝑙𝑙ℎ𝑜𝑜𝑜𝑜)𝑖𝑖 + 𝜀𝜀𝑖𝑖   (1) 

ln(2015 𝑟𝑟𝑜𝑜𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺)𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 ln(2015 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)𝑖𝑖 + 𝜀𝜀𝑖𝑖           (2) 

ln(2015 𝑟𝑟𝑜𝑜𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺)𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽 ln(𝑜𝑜𝐴𝐴𝐶𝐶 𝐶𝐶𝑜𝑜 𝐶𝐶𝐶𝐶𝐴𝐴𝑜𝑜ℎ𝐴𝐴𝑙𝑙 𝐴𝐴𝑜𝑜𝑙𝑙ℎ𝑜𝑜𝑜𝑜)𝑖𝑖 + 𝜀𝜀𝑖𝑖                  (3) 

In all three specifications, the i units are NUTS2 regions in Europe. While night lights data 

are typically used for places that have either missing or unreliable GDP, the focus on Europe 

is helpful here because reliable GDP data for NUTS2 regions give a benchmark for assessing 

the success of the various night lights data as a proxy for economic activity.   

 The annual composites appear to provide an effective mask to filter out ephemeral 

lights and other background noise in the monthly VIIRS data.14 The results in the first three 

columns of Table 1 are for equation (1), with three different types of monthly lights used: 

unmasked (so simply the sum of all lights in a NUTS2 region across six months of the year); 

masked using the 2015 annual composite, so monthly lights coming from any pixel that was 

classified as unlit in the 2015 annual composite are excluded; and, using the combination of 

the 2015 and 2016 annual composites to mask out background noise in the monthly VIIRS 

data. If the unmasked data are used, the sum of monthly lights predicts lights in the annual 

composite with an adjusted-R2 of 0.938 (or 0.956 if country dummy variables are included). 

In contrast, if either of the two masking approaches are used, the  adjusted-R2 is over 0.99, 

with or without country dummy variables. Additional support for using the sum of masked 

monthly lights as a proxy for the VIIRS annual composite comes from the elasticities of 1.0 

that are estimated from the equation (1) regressions reported in Table 1. 

Further evidence that the sum of masked monthly lights is a good proxy for the annual 

                                                 
14 The VIIRS data are available from: https://eogdata.mines.edu/download_dnb_composites.html The annual 
composite is the “vcm-orm-ntl” product that, at the pixel level, excludes nights if images are affected by stray 
light or by clouds, has outliers due to ephemeral lights removed, and the background (non-lights) is set to zero. 

https://eogdata.mines.edu/download_dnb_composites.html
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composite comes from estimates of the relationship between annual lights and annual GDP at 

the NUTS2 level. If the VIIRS annual composite for 2015 is used to estimate equation (2), 

the elasticity is 0.929 and the adjusted-R2 is 0.766 (if country dummies are not included the 

corresponding values are 0.666 and 0.427). The elasticity and the predictive power are much 

lower if the unmasked sum of monthly lights is used to estimate equation (3), with the 

adjusted-R2 dropping by more than 10 percentage points. This suggests that unmasked 

monthly lights are not a good proxy for the VIIRS annual composite. In contrast, using the 

same monthly VIIRS data, but applying a mask to filter out ephemeral light and background 

noise for pixels that were classified as unlit in the annual composite gives results that are 

almost exactly the same as using the annual composite constructed by the NOAA scientists. 

In particular, the results in the last two columns of Table 1 are almost identical, in terms of 

the elasticities and the predictive power, to the results using the VIIRS annual composite. 

IV. Night Lights, GDP and Measurement Error  
 The results in Table 1 provide support for the use of masked monthly VIIRS data to 

form an annual estimate that is comparable to the annual composites constructed by NOAA. 

Consequently, a like-with-like test of the DMSP night lights data can be carried out, using the 

constructed VIIRS annual estimate for 2013 as the benchmark. Three main variables are used 

for this test: the 2013 VIIRS annual estimate discussed above; the DMSP annual composite 

from satellite F18 for 2013;15 and, real GDP in terms of purchasing power standards.16  

This test is a cross-sectional comparison and so it does not inform about time-series 

measurement errors in the DMSP data. However, it does test the lights data in the context in 

which they work best. Also of note is that it is an equation like equation (3) that is estimated, 

with lights on the right-hand side and GDP on the left-hand side. This setup is not meant to 

                                                 
15 These data can be downloaded from https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html 
16 These data are available from Eurostat: https://ec.europa.eu/eurostat/web/products-datasets/-/tgs00004 

https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ec.europa.eu/eurostat/web/products-datasets/-/tgs00004
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imply that lights cause GDP because as a production function it should be the other way 

around. Instead, the aim is to see how well various night lights data proxy for GDP. Most 

uses of night lights data in economics are to proxy for local economic activity in places where 

GDP data are either not reported with sufficient spatial detail or are reported but considered 

unreliable. Given that the aim of most studies using night lights data is to estimate the impact 

of some treatment, such as a natural disaster or sanctions, on local economic activity, what is 

implied when lights are used as the outcome measure is that underlying the reported effects is 

a relationship like: (𝜕𝜕𝐺𝐺𝐺𝐺𝐺𝐺 𝜕𝜕𝐴𝐴𝑜𝑜𝑙𝑙ℎ𝑜𝑜𝑜𝑜⁄ ) ∙ (𝜕𝜕𝐴𝐴𝑜𝑜𝑙𝑙ℎ𝑜𝑜𝑜𝑜 𝜕𝜕𝑜𝑜𝑟𝑟𝑜𝑜𝐴𝐴𝑜𝑜𝐶𝐶𝑜𝑜𝐴𝐴𝑜𝑜⁄ ) because we are generally not 

interested in lights, per se. Thus, the usually unobserved relationship with local GDP on the 

left and lights data on the right is of interest for interpreting the results from this literature, 

especially if lights are a poor proxy for local GDP. 

The results in Table 2 are based on a double-log specification to examine how well 

GDP is predicted by the sum of lights (either DMSP or VIIRS) at the NUTS2 level. One set 

of results includes country dummy variables, to allow for national-level factors that shift the 

level of GDP in a region conditional on luminosity. If the VIIRS data are used to predict 

GDP, the results in column (1) show that the adjusted-R2 is 0.757 and the elasticity is 0.93 (or 

0.434 and 0.69 if country dummy variables are omitted). In contrast, if the DMSP data are 

used, the results in column (2) show that the adjusted-R2 is just 0.303 (or 0.460 with country 

dummy variables) and the elasticity is 0.57 (or 0.63 with country dummies). Thus, predictive 

power is 43-65% higher with VIIRS than with the widely used DMSP night lights data. 

The NUTS2 regions vary widely in population, from 30,000 in the least populous to 

14 million in the most populous (median: 1.5 million). These population differences also flow 

through into density differences, as population and area of NUTS2 regions are uncorrelated. 

Given that GDP is concentrated in high density areas, giving equal weight to all regions may 

be unwarranted, so the results in columns (4) and (5) are population-weighted. In these results 
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the superior predictive performance of the VIIRS data is even more apparent; the adjusted-R2 

of the models using the DMSP data falls while there is almost no change in the predictive 

power for the regressions using the VIIRS data. One reason why weighting may affect the 

predictive power of DMSP data is that the DMSP sensor attenuates the differences between 

brightly lit big cities and smaller towns (as seen if Figures 1 and 2 for London and Oxford). 

So if all regions are treated as equals in a regression, the flaws in DMSP data are less exposed 

than they are when allowance is made for the fact that much of the population and economic 

activity is concentrated in a few regions. In contrast, more accurate data like VIIRS that show 

the true extent of luminosity differences between places do not produce results that are very 

sensitive to weighting by population.  

Across the four sets of results in columns (1), (2), (4) and (5), using the VIIRS data to 

predict regional GDP gives 80% higher predictive power than using DMSP data, on average. 

Another way to compare between models using the two sources of night lights data is to use 

Vuong’s (1989) likelihood ratio test that relies on the Kullback-Leibler Information Criterion 

(KLIC). Intuitively, the KLIC is the log-likelihood function under the hypothesis of the true 

model minus the log-likelihood function for the (potentially misspecified) model under the 

assumption of the true model. A model is better than a competitor if it is closer to the truth 

under the KLIC (Greene, 2012, p.535). For all four models, the Vuong test indicates that a 

model using VIIRS data is significantly closer to the truth than a model using DMSP data. 

The last set of results in Table 2, reported in columns (3) and (6), use Pareto-adjusted 

DMSP data for 2013, developed by Bluhm and Krause (2018) and made available at their 

website: http://lightinequality.com/top-lights.html. To form these adjusted data, Bluhm and 

Krause assume that lights follow a Pareto distribution, and use this to replace the top-coded 

DN=63 values with higher DN values. This Pareto adjustment does improve the performance 

of DMSP data in predicting regional GDP, raising the adjusted-R2 by an average of about 

http://lightinequality.com/top-lights.html
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21 points compared to what was estimated using the original DMSP data. However, it is still 

the case that the VIIRS data provide greater predictive power, with the adjusted-R2 values 

being up to 20% higher than what the Pareto-adjusted data give. The Vuong tests also show 

that models using VIIRS data are significantly closer to the truth than those using Pareto-

adjusted DMSP data (for specifications that include country dummy variables).17 However, 

any research that requires splicing the VIIRS time-series with the DMSP time-series would 

benefit from using the Pareto-adjusted DMSP data, which provide elasticities that are much 

closer to those coming from VIIRS data, especially in the population-weighted models. 

 The result in Table 2 that DMSP data are less successful at predicting regional GDP, 

in a like-with-like comparison using annual estimates for 2013, suggests that measurement 

errors in the DMSP data are having an impact. These errors can be empirically studied, if the 

VIIRS data are treated as the truth, which is implied by the Vuong test results. If the (log) 

sum of masked monthly VIIRS lights is subtracted from the sum of the DMSP DN values at 

NUTS2 level (these are two of the right-hand side variables used in Table 2) the differences 

are negatively correlated with the true radiance values (as measured by VIIRS). This same 

pattern is found in several other contexts and is referred to as mean-reverting error (see 

Abay, 2019 for a compilation of estimates of the mean-reverting error parameter). 

More formally, consider the model: 𝑙𝑙 = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝐴𝐴, for an outcome variable y, an 

independent variable x, response coefficient β, and with a pure random error, u. The outcome 

variable has an observed value 𝑙𝑙∗ that is related to the true value by:  

𝑙𝑙∗ = 𝜃𝜃 + λy + 𝑣𝑣                      (4) 

The textbook case of classical measurement error makes the assumptions that 𝜃𝜃 = 0, λ = 1 

and 𝐸𝐸(𝑣𝑣) = 𝑐𝑐𝐶𝐶𝑣𝑣(𝑙𝑙, 𝑣𝑣) = 𝑐𝑐𝐶𝐶𝑣𝑣(𝛽𝛽, 𝑣𝑣) = 𝑐𝑐𝐶𝐶𝑣𝑣(𝐴𝐴, 𝑣𝑣) = 0, so that just white noise is added to the 

                                                 
17 If Figure 2(a) for London is compared with the London map of Bluhm and Krause (2018) that is based on 
their Pareto-adjusted data, it is evident that the Pareto adjustment is not able to unmask key economic features, 
like Heathrow airport, that have been blurred by the DMSP sensor. So despite the improved results in predicting 
regional GDP there are still remaining flaws in these adjusted DMSP data. 



15 

true value. In contrast, if measurement errors are mean-reverting, 0 < λ < 1. The estimator of 

the response coefficient if the error-ridden dependent variable is used is: 

𝛽𝛽𝑦𝑦∗𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦∗,𝑥𝑥)
𝑐𝑐𝑣𝑣𝑣𝑣(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐(λα+λβx+λu−v,x)

𝑐𝑐𝑣𝑣𝑣𝑣(𝑥𝑥) = λβ    (5) 

Equation (5) provides a motivation for forming a point estimate, λ̂ that can help to assess the 

extent to which published results using DMSP night lights as the left-hand side variable will 

have reported regression coefficients that have been attenuated.  

For completeness, note that in the less common case where DMSP data are the right-

hand side variable (and the setup for the error-ridden right-hand side variable is the same as 

in equation (4) and the outcome variable is measured without error), then it can be shown 

(e.g. Gibson et al, 2015) that the estimator of the response coefficient becomes: 

𝛽𝛽𝑦𝑦𝑥𝑥∗ = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑦𝑦,𝑥𝑥∗)
𝑐𝑐𝑣𝑣𝑣𝑣(𝑥𝑥∗) = β λ𝜎𝜎𝑥𝑥2

λ2𝜎𝜎𝑥𝑥2+𝜎𝜎𝑣𝑣2
      (6) 

For the special case of classical measurement error, with λ = 1, equation (6) simply gives the 

usual result, that the attenuation of the estimated response coefficient will be in proportion to 

the reliability ratio of the mis-measured right-hand side variable. However, for a sufficiently 

strong degree of mean reversion, the smaller first term in the denominator due to multiplying 

by λ2 (for 0<λ<1) may outweigh the effect of adding the variance of the random noise term 

),( 2
vσ  and in that case the denominator of equation (6) becomes smaller than the numerator, 

and the regression coefficient will be exaggerated rather than attenuated. 

 It is likely that regression models with DMSP night lights data as their left-hand side 

variable have response coefficients that are attenuated by at least one-quarter. This claim is 

based on estimates of λ̂ that range from 0.61 to 0.85, and average 0.73, and are all statistically 

significantly less than the value of 1.0 needed for the classical measurement error that does 

not bias coefficients when the error-ridden variable is on the left-hand side (Table 3). These 

estimates are based on equation (4) and relate only to cross-sectional use of night lights data. 
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There are additional time-series errors, discussed in Gibson et al (2020), that may further 

attenuate regression coefficients when DMSP data are on the left-hand side.18 

The mean-reverting measurement errors in cross-sections of DMSP data have two 

potential sources: blurred images that attribute light to places from where it is not emitted and 

top-coding that attenuates the differences in brightness between places. The Pareto-adjusted 

DMSP data are meant to deal with the top-coding issue so remaining measurement error in 

these data should be due to the blurring that spreads light into places where it is not emitted. 

If the Pareto-adjusted data are treated as the error-ridden variable, and equation (4) is 

re-estimated, the estimates of λ̂ range from 0.76 to 0.91, and average 0.83 (Table 3). All of the 

λ̂ estimates are statistically significantly less than one, so even with the Pareto adjustment 

there is still mean-reverting error in the DMSP data. Given the results with and without the 

Pareto adjustment, it seems that the top-coding problem is causing a bit over one-third of the 

mean-reverting measurement error in the DMSP data, with blurring being the larger problem.  

V. Night Lights and Spatial Inequality  
The mean-reverting measurement errors in DMSP data, whose characteristics are 

described in Table 3, may distort a range of empirical economic analyses and should not just 

be thought of as a source of biased regression coefficients. As seen in Figures 1 and 2, the 

DMSP night lights data greatly understate spatial differences in night-lit economic activity. 

Many national, sub-national, and supra-national institutions have concerns about spatial 

inequality. Such concerns are prominent in Europe, with public transfers to sub-national 

regions being a key feature of the European Union. For example, Cohesion Funds are the 

second largest budget item after agricultural payments (which are also a form of regional 

                                                 
18 For situations where the DMSP data are on the right-hand side, the estimates of λ are not so close to zero as to 
cause exaggerated regression coefficients (based on equation (6)). One indicator of such strong mean-reversion 
is that the variance of the error-ridden variable is smaller than the variance of the error-free variable. The DMSP 
data have a larger variance than the VIIRS data (scaling by their different means, given their different units). 
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policy), and these funds aim to promote a balanced development between regions in Europe. 

While spatial inequality in Europe can be studied with GDP data at the NUTS2 level, many 

other countries lack reliable sub-national GDP data and so DMSP night lights data have been 

used to study regional inequality (e.g., Lessmann and Seidel, 2017). 

In line with expectations formed by looking at the London and Oxford maps, spatial 

inequality is considerably understated when using the DMSP data (Table 4). Across all of the 

NUTS2 regions, the Theil index calculated with DMSP data is less than one-half of what the 

VIIRS data show for the same year (0.26 versus 0.54). The understatement of spatial 

inequality is less pronounced with the Gini coefficient (0.40 versus 0.51) because the Gini is 

less sensitive to differences at the top of the distribution than is the Theil index.  

Another way to show that the mean-reverting errors in DMSP data matter especially 

for more brightly lit regions with greater density of economic activity or population (which 

shows up as the Theil being more sensitive than the Gini to using DMSP rather than VIIRS) 

is to divide regions into two groups, using the median population density as the threshold. 

The results in Table 4 show that it is especially for high density regions that DMSP data 

understate spatial inequality; in these regions the Theil index calculated with the VIIRS data 

is 3.6 times as high as what is calculated with the DMSP data (and with the Gini index it is 

1.7 times as high). In contrast, in low density regions, using VIIRS gives a Theil index just 

1.2 times as high as what DMSP shows (and 1.1 times as high using the Gini). 

The Pareto-adjusted DMSP data provided by Bluhm and Krause (2018) are designed 

to correct top-coding so it might be expected that these data would yield inequality statistics 

that are much more like what VIIRS data show. In fact, using the Pareto-adjusted data closes 

only a fraction of the gap in inequality measures, in terms of what is estimated from VIIRS 

data compared to what is estimated from DMSP data. Specifically, if the Pareto-adjusted data 

are used, one-third of the VIIRS-DMSP gap is closed when using the Theil index, and 40% of 
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the gap is closed when using the Gini coefficient. Unexpectedly, using the Pareto-adjusted 

DMSP data closes even less of the DMSP-VIIRS inequality gap in more densely populated 

regions, which are exactly the places where correcting for top-coding of night lights data 

should do most good. Specifically, just 29% of the VIIRS-DMSP gap is closed for the Theil 

index and 36% of the gap is closed for the Gini index, when using the Pareto-adjusted data. 

Another concern with these Pareto-adjusted data is that they show no difference in spatial 

inequality between high density and low density regions, even as the VIIRS data show that 

spatial inequality is twice as high (using the Theil index, or almost one-third higher, using the 

Gini) in the more densely populated regions compared to the sparsely populated ones. So 

although the Pareto-adjusted data are helpful in giving a better fitting equation for predicting 

regional GDP, they do not seem to be very helpful for measuring spatial inequality. 

VI. Conclusions 
Applied economists have been busy in the last few years using satellite-detected night 

lights data to study many research questions. Almost all of these studies use data from the 

Defense Meteorological Satellite Program, which was set up to observe clouds for short-term 

weather forecasts rather than to observe lights on earth for economists. These DMSP data are 

flawed by blurring and top-coding, due to intrinsic features of the DMSP sensors and data 

management. While some economics studies using DMSP data acknowledge that these data 

may provide a noisy measure of true radiance (e.g. Henderson et al, 2012), the fact that the 

measurement errors are mean-reverting, and thus will cause econometric bias even when 

lights data are on the left-hand side, has not been highlighted. These mean-reverting errors 

also cause spatial inequality to be greatly understated. 

Even while applied economists have increasingly used the flawed DMSP data, newer 

and better VIIRS data on night lights are available for the last eight years. One contribution 

of the current paper is to provide a procedure for practitioners to process the monthly VIIRS 
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data into annual estimates that are comparable to cleaned annual composites produced by 

NOAA scientists. Such a procedure is needed because, to date, the cleaned annual composites 

have not been for an overlapping year with both DMSP data and VIIRS data. This lack of 

overlap has prevented a systematic comparison of the two data sources on night-time lights. 

With these newly processed VIIRS data, that overlap with DMSP data in 2013, I am able to 

establish four facts about satellite-detected night lights data: 

• The VIIRS data are a much better proxy for sub-national GDP, with predictive power 

about 80% higher than for the DMSP data in a cross-section of NUTS2 regions 

• Mean-reverting measurement errors in DMSP data will cause regression coefficients 

to be attenuated by at least one-quarter if DMSP night-lights are on the left-hand side 

• The mean-reverting errors are due to top-coding and blurring, so dealing with just one 

problem, as with the Pareto-adjustment for top-coding, still yields error-ridden data 

that will distort reality (e.g. by greatly understating spatial inequality) 

• Nevertheless, if a time-series based on VIIRS data needs to extend back before 2012, 

the Pareto-adjusted DMSP data are likely to provide a better proxy for sub-national 

GDP than what is provided by the usual DMSP data. 

These findings provide a basis for practitioners to switch to using better night lights data, 

which are available for longer because the VIIRS time-series can extend beyond 2013. 

 In addition to these forward-looking conclusions, the findings reported in this paper 

also have a backward-looking implication. Many applied economics papers published using 

DMSP night lights data highlight the supposed precision of these data, in terms of being able 

to detect differences in light for areas as small as 1 km2 where these differences are meant to 

indicate, at fine scale, the local economic effects of the various interventions studied. Some 

of the confidence in these results is likely to be misplaced because DMSP data are revealed 

here to be far cruder measures than is usually admitted. For example, visual comparisons in 
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this paper show that DMSP data make a big city like London look no brighter than Oxford, 

make a fairly rural county like Oxfordshire seem to be almost entirely covered in lights, and 

cannot distinguish the most brightly lit feature in all of England – Heathrow airport – from 

the surrounding area. These flaws, and others, are likely repeated in all of the contexts where 

DMSP data have been used, and so there may need to be a reappraisal of some economics 

results based on DMSP night lights data. 
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Figure 1: Illustrating Blurring in DMSP Night Lights: Oxford and Environs 
(a) VIIRS Outlier Removed Annual Composite, 2015 

 
(b) DMSP Stable Lights Annual Composite, 2013 
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Figure 2: Illustrating Top-Coding in DMSP Night Lights: Inner and Outer London 
(a) VIIRS Outlier Removed Annual Composite, 2015 

 
(b) DMSP Stable Lights Annual Composite, 2013 
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Figure 3: Number of Months With VIIRS Data, 2013: Europe NUTS2 Regions 

 

 

 



 

Table 1: Using Masked Monthly Lights to Create Annual Estimates Closely Approximates VIIRS Outlier-removed Annual Composites 
 ln (2015 VIIRS annual composite)  ln (2015 GDP, real Purchasing Power Standards) 
 Panel A: Excluding Country Dummy Variables 
ln (lights), outlier-removed annual composite     0.666    
     (0.047)    
         

ln (lights), sum of monthly, no pixels masked 0.986     0.590   
(0.014)     (0.052)   

         

ln (lights), sum of monthly, for pixels that are lit  1.004     0.670  
 in the 2015 outlier-removed annual composite  (0.005)     (0.047)  
         

ln (lights), sum of monthly, for pixels that are lit in the   1.013     0.683 
 2015 or 2016 outlier-removed annual composites   (0.005)     (0.048) 
         

Constant -1.880 -1.816 -1.988  2.905 2.548 1.675 1.473 
 (0.194) (0.061) (0.070)  (0.534) (0.695) (0.622) (0.627) 
Adjusted R2 0.938 0.993 0.992  0.427 0.324 0.426 0.433 
 Panel B: Including Country Dummy Variables 
ln (lights), outlier-removed annual composite     0.929    
     (0.037)    
         

ln (lights), sum of monthly, no pixels masked 1.014     0.855   
 (0.016)     (0.048)   
         

ln (lights), sum of monthly, for pixels that are lit  1.001     0.922  
 in the 2015 outlier-removed annual composite  (0.005)     (0.038)  
         

ln (lights), sum of monthly, for pixels that are lit in the   1.007     0.927 
 2015 or 2016 outlier-removed annual composites   (0.006)     (0.039) 
         

Constant -2.373 -1.774 -1.900  0.782 -0.345 -0.774 -0.880 
 (0.210) (0.065) (0.075)  (0.408) (0.626) (0.485) (0.492) 
Adjusted R2 0.956 0.995 0.994  0.766 0.636 0.752 0.750 
         

Observations 311 311 311  269 269 269 269 
         

Notes: The dependent variables in the first three columns are log lights for the 2015 VIIRS annual composite (cloud mask, outlier removed and non-lit background set to zero) at the 
NUTS2 region level, and for the last four columns are log real GDP (in purchasing power standard terms) in 2015. The sum of monthly lights uses images for January to March and 
October to December, as images for other months of the year are affected by glare from evening sunlight. Robust standard errors in parentheses. 
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Table 2: Estimated Relationships Between Night Lights and Real GDP in 2013 for NUTS2 Regions  
 Unweighted  Population Weighted 
 (1) (2) (3)  (4) (5) (6) 

        
        

 Panel A: Excluding Country Dummy Variables 
ln (sum of VIIRS masked monthly lights) 0.688    0.690   
 (0.055)    (0.069)   

ln (sum DMSP annual lights)  0.570    0.564  
  (0.078)    (0.099)  

ln (sum Pareto-adjusted DMSP annual lights)   0.738    0.811 
   (0.059)    (0.080) 

Constant 1.386 3.444 1.306  1.495 3.880 0.642 
 (0.728) (0.956) (0.732)  (0.910) (1.244) (0.984) 
        

Adjusted R2 0.434 0.303 0.463  0.454 0.223 0.443 
Vuong test (p-value)  ---- 0.003 0.347  ---- 0.000 0.402 
        
 Panel B: Including Country Dummy Variables 
ln (sum of VIIRS masked monthly lights) 0.932    1.065   
 (0.050)    (0.112)   

ln (sum DMSP annual lights)  0.626    0.560  
  (0.079)    (0.125)  

ln (sum Pareto-adjusted DMSP annual lights)   0.841    1.056 
   (0.062)    (0.131) 
        

Adjusted R2 0.757 0.460 0.646  0.726 0.328 0.606 
Vuong test (p-value) ---- 0.000 0.000  ---- 0.000 0.000 
        

        

Notes: Robust standard errors in ( ), N=268 NUTS2 regions. Models in panel B include 29 country dummy variables (so the intercept is not reported). The dependent variable is log real GDP 
(in purchasing power standards) in 2013. The VIIRS lights are based on the sum of six months (January to March and October to December) using the combined 2015 and 2016 VIIRS 
annual composites as a mask to filter out ephemeral lights and background noise. The Vuong test establishes which of two models is closer to the truth. A p-value less than 0.05 indicates 
statistically significant evidence in favour of the truth of the null model (the model using VIIRS data, in this case), rather than the truth of the competitor model.  
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Table 3: Estimates of the Mean-Reverting Measurement Error Parameter in DMSP and Pareto-Adjusted DMSP Data  
 Unweighted  Population Weighted 
 DMSP Pareto-adjusted  DMSP Pareto-adjusted 

        
 1       

 Panel A: Excluding Country Dummy Variables 

Mean-reverting error parameter, λ� 0.790 0.845  0.651 0.758 
 (0.060) (0.046)  (0.050) (0.033) 

t-test for non-classical errors 𝐻𝐻0:λ = 1,𝐻𝐻1:λ < 1  3.50*** 3.40***  7.03*** 7.26*** 
       

        
 Panel B: Including Country Dummy Variables 

Mean-reverting error parameter, λ� 0.845 0.910  0.610 0.782 
 (0.085) (0.063)  (0.062) (0.048) 

t-test for non-classical errors 𝐻𝐻0:λ = 1,𝐻𝐻1:λ < 1  1.82** 1.42*  6.28*** 4.55*** 
        

        

Notes: Coefficients are from estimating equation (4) with VIIRS data as the right-hand side variable and the left-hand side variable is either DMSP or Pareto-adjusted DMSP data. Robust 
standard errors in ( ), ***, **, * denote statistical significance at 1%, 5% and 10% level. N=269 NUTS2 regions. Models in panel B include 29 country dummy variables.  
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Table 4: DMSP Data on Night Lights Considerably Understate Spatial Inequality, Even After Pareto Adjustment for Top-Coding 
 Gini coefficient  Theil Index 
 All regions Low density High density  All regions Low density High density 

        
        

DMSP (‘stable lights’) 0.397 0.306 0.245  0.261 0.146 0.100 
 (0.020) (0.022) (0.018)  (0.027) (0.021) (0.013) 

DMSP (Pareto-adjusted  0.444 0.324 0.307  0.355 0.164 0.175 
for top-coding) (0.023) (0.024) (0.021)  (0.036) (0.025) (0.023) 

VIIRS Day-Night Band 0.508 0.333 0.417  0.536 0.178 0.356 
 (0.024) (0.025) (0.031)  (0.069) (0.027) (0.073) 
Number of observations 310 155 155  310 155 155 

        

Notes: Bootstrapped standard errors in ( ) from 1000 replications. Inequality statistics are based on the share of total lights (in 2013) and of total area from each NUTS2 region. 
 
 


