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Abstract

Elucidating the effects of naturally occurring genetic variation is one of the major challenges for personalized health

and personalized medicine. Here, we introduce SNAP2, a novel neural network based classifier that improves over

the state-of-the-art in distinguishing between effect and neutral variants. Our method’s improved performance

results from screening many potentially relevant protein features and from refining our development data sets.

Cross-validated on >100k experimentally annotated variants, SNAP2 significantly outperformed other methods,

attaining a two-state accuracy (effect/neutral) of 83%. SNAP2 also outperformed combinations of other methods.

Performance increased for human variants but much more so for other organisms. Our method’s carefully calibrated

reliability index informs selection of variants for experimental follow up, with the most strongly predicted half of all

effect variants predicted at over 96% accuracy. As expected, the evolutionary information from automatically

generated multiple sequence alignments gave the strongest signal for the prediction. However, we also optimized

our new method to perform surprisingly well even without alignments. This feature reduces prediction runtime by

over two orders of magnitude, enables cross-genome comparisons, and renders our new method as the best

solution for the 10-20% of sequence orphans. SNAP2 is available at: https://rostlab.org/services/snap2web

Definitions used: Delta, input feature that results from computing the difference feature scores for native amino

acid and feature scores for variant amino acid; nsSNP, non-synoymous SNP; PMD, Protein Mutant Database; SNAP,

Screening for non-acceptable polymorphisms; SNP, single nucleotide polymorphism; variant, any amino acid

changing sequence variant.

Introduction

Some sequence variations matter, changing native pro-

tein function or disease-causing potential, while others

do not [1]. The distinction between the variants that

change protein function and those that are neutral is one

key to making sense of the deluge Next Generation

Sequencing (NGS) or Deep Sequencing data. Many

methods have been developed that address this challenge,

spanning a wide range of goals and applications. Some

tools are focused on non-coding regions [2-4]; others

focus on coding regions and predict the effects of single

amino acid variants (non-synonymous single-nucleotide

polymorphisms, nsSNPs, or single amino acid substitu-

tions, SAAS) on aspects such as protein structure [5],

stability [6-8], binding affinity [9], and function [10,11].

Some methods focus exclusively on the human genome

[12,13] and some aspire to identify disease-causing

variants [14-16]. Applications to personalized health are

obviously important considerations for the developers of

such tools. Generally, today’s methods are able to distin-

guish between a set with 100 disease-causing and another

with 100 less impacting variants [17,18]. However, identi-

fying one or several variants in an individual responsible

for a certain disease is often beyond our reach. Methods

have improved significantly by using more protein and

variant annotations, as demonstrated in particular in the

advance from PolyPhen [12] to PolyPhen-2 [13]. Despite

many advances, good data remains missing, in particular
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careful annotations of variant neutrality, partially because

it is to difficult to carry out “negative experiments”

(absence of change [19]).

The best variant effect prediction methods typically use

evolutionary information, and a wide variety of features

descriptive of protein function and structure. Performance

decreases substantially for proteins without informative

multiple alignments. Today few human proteins do not

map to well-studied sequence families. However, most fully

sequenced organisms, predominantly prokaryotic, contri-

bute a substantial fraction of “orphans” (10-20%) [20].

Today’s state-of-the-art prediction methods focus on

discerning disease-causing variants from the background

variation. They, e.g. differentiate between human cancer-

causing mutations and common variation. This implicitly

disregards many variants with functional effects that are

not associated with disease. In contrast, the current

version of our SNAP (Screening for Non-Acceptable Poly-

morphisms) method, SNAP2, does not predict the variant

effect as “disease or not” but rather as “change of molecu-

lar function or not”. Similar to most experimental assays,

SNAP2 does not directly connect “molecular change” to

“impact on organism"; i.e. the goal is not to support state-

ments of the type “this single variant improves survival

rate”. Also similar to many experimental methods, we

avoid distinguishing gain-of-function from loss-of-function

variants, as these outcomes are often subjective. For

instance, gaining in the ∆∆G of binding does NOT imply

a “better molecular function” and even the gain of “mole-

cular function” might decrease survival. Here, we intro-

duced several concepts each of which importantly

improved over our previous method, SNAP [11]. SNAP2

outperforms its predecessor in three major aspects: better

performance, better predictions without alignments, and

many orders of magnitude lower runtime.

Methods

Data sets

The training set for SNAP2 resembled that used for devel-

opment of the original SNAP [11]. In particular, we used

the following mixture: variants from PMD (the Protein

Mutant Database [21]), residues differing between

enzymes with the same experimentally annotated function

according to the enzyme classification commission (EC),

retrieved from SWISS-PROT [22,23], variants associated

with disease as annotated in OMIM (Online Mendelian

Inheritance in Men [24]), and HumVar [25].

PMD. We extracted all amino acid changing variants

from the Protein Mutant Database [21] (PMD) and

mapped these to their corresponding sequences. PMD

annotations with ‘no change’ (‘=’) qualification (function

equivalent to wild-type) were assigned to the ‘neutral’

class, while variants with any level of increase (‘+’, ‘++’,

‘+++’) or decrease (‘-’, ‘- -’, ‘- - -’) in function were

assigned to the ‘effect’ class. Variants with conflicting

functional effect annotations were also classified as

‘effect’. This approach identified 51,817 variants (neutral:

13,638, effect: 38,179) in 4,061 proteins.

EC. 74% of the PMD data were ‘effect’ annotations. We

balanced this with evidence for neutral variants from

enzyme alignments. Assume independent experiments

reveal two enzymes to have the same function, i.e. the

same EC number (Enzyme Commission number [26]).

If these two proteins are very sequence similar, most var-

iants between them are likely ‘neutral’ with respect to the

EC number. While not always correct, the procedure cre-

ates a set heavily enriched in truly ‘neutral’ variants. To

turn this concept into data, we aligned all enzymes with

experimentally assigned EC numbers in SWISS-PROT

[22] using pairwise BLAST [27]. We retrieved all enzyme

pairs with pairwise sequence identity >40% and HSSP-

values>0 [28-30]. This yielded 26,840 ‘neutral’ variants in

2,146 proteins [11].

Disease. We extracted 22,858 human disease-associated

variants in 3,537 proteins from OMIM [24] and HumVar

[25]. All disease-associated variants were classified as

‘effect’. For many of these variants the change in protein

function has not explicitly been demonstrated. These

variants may be not causative but, possibly, in linkage

disequilibrium with the actual disease-causing variants.

Alternatively, they may be affecting splice-sites and/or

regulatory elements in the DNA, finally showing up as

amino acid substitutions. Hence, by compiling these into

the effect class we may be over-estimating functional

changes. However, we previously established that rela-

tionships to disease provide much stronger evidence for

functional effect of variants than any other experimental

evidence [17]. Thus, disease variants are clearly strongly

enriched in functional significance.

Protein specific studies. We also included data from

comprehensive studies of particular proteins, namely

LacI repressor from Escherichia coli [31] (4,041 variants)

and the HIV-1 protease [32] (336 variants). Variants

functionally equivalent to wild-type were considered

‘neutral’; all others were deemed ‘effect’. These variants

were not included in training, overlaps (same variant in

one of the sets above and these) were removed.

Evaluation sets. We created three subsets of our data

for evaluation/development of SNAP2. First, PMD + EC

+ Disease were compiled into one comprehensive set

termed ALL with 101,515 variants (40,478 neutral,

61,037 effect) in 9,744 proteins. We also split the PMD

data into two subsets: one containing only human muta-

tions (PMD_HUMAN; 9,657 variants in 678 human

sequences) and one consisting of all others (PMD_NON-

HUMAN; 42,160 variants in 3,383 sequences).
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Cross-validation

We clustered our data such that the sets used for training

(optimizing neural network connections), cross-training

(picking best method) [33,34], and testing (results

reported) were not significantly sequence similar. Toward

this end, we all-against-all PSI-BLASTed all proteins in

our data sets and recorded all hits with E-values<10-3.

Starting with these, we built an undirected graph, where

vertices are proteins and edges link vertices to the corre-

sponding BLAST hits. We then clustered all proteins

using single linkage clustering; i.e. all connected vertices

were assigned to the same cluster. This yielded 1,241 clus-

ters of related protein sequences with 1 to 1,941 members.

We randomly grouped the clusters into ten subsets of

roughly similar size. This approach ascertained that no

two proteins between any sets were significantly sequence

similarity. Due to extremely varied cluster sizes one of

these subsets was nearly three times larger than the others.

This imbalance was acceptable since the cross-validation

procedure ensured sufficiently more training data than

testing data in each rotation. In tenfold cross-validation,

we rotated through the subsets using eight for training,

one for cross-training and the tenth for testing, such that

each subset (and therefore each protein) was used for test-

ing exactly once. As a result no variant, protein sequence,

or even close homologue, was ever used simultaneously

for training and testing. All performance estimates that we

reported were solely based on the testing set.

Prediction method

We applied the different machine learning tools in the

WEKA suite [35] to our data with default parameters.

Support Vector Machines (SVMs) and Neural Networks

performed similarly and slightly better than Decision

Trees and Random Forests. Due to runtime efficiency,

we decided to proceed with standard neural networks.

As in similar applications [11,36], we used two output

units: one for ‘neutral’, the other for ‘effect’. All free net-

work parameters were optimized on the training (opti-

mizing connection weights) and cross-training

(optimizing number of hidden units, learning rate, and

momentum; stop training before over-fitting) sets. Ten-

fold cross-validation implies training ten networks:

which one to use for future applications? Taking the

“best” of the ten risks over-training. We avoid this by

using all ten networks to predict for new proteins, com-

piling separate averages for ‘neutral’ and ‘effect’ over all

ten networks. The final prediction is the difference

between these averages that ranges from -100 (strongly

predicted ‘neutral’) to +100 (strongly predicted ‘effect’).

Input features

Biophysical amino acid features and predicted aspects of

protein function and structure help to predict the

impact of variants. Not knowing connections between

residues (our method does not require the knowledge of

3D structures), we scanned sliding windows of up to 21

consecutive residues around the central variant position.

We compiled the original SNAP features: biophysical

amino acid properties, explicit sequence, PSIC profiles

[37], secondary structure and solvent accessibility

[38-40], residue flexibility [41], and SWISS-PROT anno-

tations. Additionally, we introduced new features for

SNAP2: amino acid properties as provided by the AAin-

dex database [42], predicted binding residues [43], pre-

dicted disordered regions [44], proximity to N- and

C-terminus, statistical contact potentials [45], co-evolving

positions, residue annotations from Pfam [20] and PRO-

SITE [46], low-complexity regions, and other global fea-

tures such as secondary structure and solvent accessibility

composition (Additional File 1, Input feature calculation).

Feature selection

In order to determine the optimal feature combination,

we systematically sieved through our feature space using

greedy bottom-up feature selection. For the following

procedure one of the ten training folds (specific to each

network) was kept out so that it had no part in feature

selection and parameter optimization at any point. We

trained ten networks, using 9 of the 10 data subsets: 8 for

training and 1 for cross-testing as described above, using

each feature and selecting the highest scoring feature

separately for each network (highest AUC, Area Under

ROC Curve, in cross-training). In the next round, the

selected feature was combined with each of the remain-

ing features to train another round of ten networks and

the best performing combination of features was selected

- again, for each network separately. We repeated until

no additional feature improved performance. We consid-

ered different sequence window sizes for each feature

independently; i.e. each feature could be selected in a

window of w = 1,5,9,13,17, or 21 consecutive residues

around the observed variant at the center of the window.

We tried to avoid local maxima in training via the fol-

lowing steps: S1: Train with balanced data sets [38,40].

S2: Determine the AUC on the cross-training set after

each repetition. Record the step with maximal AUC. S3:

Train and determine AUC for the cross-training set at

least another ten repetitions from the highest-scoring

step. Repeat S2-S3 until no additional improvement is

recorded.

We collected all features that improved performance on

any of the individual networks into a single combined fea-

ture set and trained all networks on this set. In a subse-

quent backward elimination, we removed all features the

removal of which did not alter the average overall predic-

tion accuracy. After determining the final feature space,

we optimized the number of hidden nodes, learning rate,
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and learning momentum to obtain the best-performing

network architecture. As an exhaustive screening of the

entire parameter space was not intended, we heuristically

selected parameter combinations for optimization: learn-

ing rate 0.005-0.1, learning momentum 0.01-0.3, and hid-

den nodes 10-100. The best-performing architecture for

each network, as determined by its performance on the

corresponding cross-training set, was chosen for the final

method.

Finally, we tested the resulting trained networks (of

specific feature space and the network architecture

each) against the test sets that were initially kept out of

feature selection and parameter optimization. Since the

performance on these test sets did not differ signifi-

cantly from that estimated during the optimization pro-

cedure, we concluded that we had not over-fitted the

networks to the data.

Predicting effects without alignments

We repeated the above feature selection restricted to

global features (features based on the entire protein,

such as amino acid and secondary structure composi-

tions), amino acid indices, alignment-free secondary

structure predictions, and the biophysical amino acid

properties. We explicitly left out evolutionary informa-

tion. We wanted to add a generic average for ‘potential

effect’. Toward this end, we used the complete version

of SNAP2 to predict effects for all possible variants at

each residue position in our entire ALL set. From these

results, we generated a novel amino acid substitution

matrix of effect probabilities [47] which we included as

an additional feature in the feature selection. This pro-

cedure was aimed at developing a method that can be

applied without alignments. The resulting method

(SNAP2noali) predicts functional effects using only single

sequences. Note that our SNAP2 implementation selects

the best method given the available information, SNAP2

by default and SNAP2noali for orphans. In the latter

case, users are notified about the possibly reduced accu-

racy of predictions.

Performance measures

We evaluated performance via a variety of measures. For

simplicity, we used the following standard annotations:

True positives (TP) were correctly predicted experimental

‘effect’ variants, while false positives (FP) were experimen-

tally ‘neutral’ substitutions incorrectly predicted to have an

effect. True negatives (TN) were correctly predicted

neutrals and false negatives (FN) were effect variants

incorrectly predicted to be neutral. Here, like everywhere

else in computational biology, we accept incorrect esti-

mates originating from the triviality that “not observed”

does not always imply “not existing”, i.e. some of the FP

might have an effect that was not experimentally tested.

We calculated accuracy (precision) and coverage (recall)

separately for ‘effect’ (Eqn. 1) and ‘neutral’ (Eqn. 2) predic-

tions:

Accuracyeffect = Precisioneffect = Positive predictive value =
TP

TP + FP

Coverageeffect = Recalleffect = Sensitivity =
TP

TP + FN

(1)

Accuracyneutral = Precisionneutral = Negative predictive value =
TN

TN + FN

Coverageneutral = Recallneutral = Specificity =
TN

TN + FP

(2)

We used the F-measure (F1-Score; Eqn. 3) to asses

‘neutral’ and ‘effect’ variants individually. Combined per-

formance was measured by the overall two-state accu-

racy (Q2; Eqn. 4) and the Matthews Correlation

Coefficient (MCC; Eqn. 5).

Feffect = 2 ·
precisioneffect · recalleffect

precisioneffect + recalleffect

Fneutral = 2 ·
precisionneutral · recallneutral

precisionneutral + recallneutral

(3)

Q2 = Accuracy =
TP + TN

(TP + FP + TN + FN)
(4)

MCC =
TP · TN − FP · FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

Standard deviation and error for all measures were

estimated over n = 1000 bootstrap sets; for each set we

randomly selected 50% of all variants from the original

test set without replacement. Note that due to over-

representation of certain protein families, in our experi-

ence, bootstrapping without replacement typically yields

error estimates that are more accurate than those with

replacement. Standard deviation was calculated as the

difference of each test set (xi) from the overall perfor-

mance 〈x〉 (Eqn. 6). Standard error was calculated by

dividing s by the square root of sample size (Eqn. 7).

Standard deviation (SD) =

√

∑

(xi − 〈x〉)2

n
(6)

Standard error (SE) =
SD

√

(n − 1)
(7)

The reliability index (RI; Eqn. 8) for each prediction

was computed by normalizing the difference between

the two output nodes (one for ‘neutral’, the other for

‘effect’) into integers between 0 (low reliability) and 10

(high reliability):

RI = 10 · |int(Outputeffect − Outputneutral)| (8)
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Results

SNAP2 significantly improves predictions

First, we assessed the performance of SNAP2 via cross-

validation on the original SNAP data. Here, we observed

a performance increase over our original SNAP, originat-

ing from novel features used in SNAP2. However, by

adding in more and better variant data, we found a

further (and significantly higher) improvement in perfor-

mance over SNAP. Many computational methods predict

variant effects. As most of these methods focus on pre-

dicting disease-associated variants, assessing their perfor-

mance on our data is inappropriate. Therefore, we

explicitly compared SNAP2 only to widely used methods

that explicitly aim at the prediction of functional effects:

SIFT [10] and PolyPhen-2 [13]. All estimates for the per-

formance of SNAP2 given in this work are based on full

cross-validation testing, i.e. on data never used for any

step in the development. Note that this is not true for

other methods in our comparisons.

On the ALL data set (Methods), SNAP2 outperformed

its predecessor SNAP [11], as well as both PolyPhen-2

and SIFT (Figure 1). However, the direct comparison is

complicated due to a variety of issues. Firstly, the

original SNAP was trained on PMD, suggesting a perfor-

mance overestimate. Secondly, SIFT scores were nor-

malized and optimized for simple defaults. This is

implicitly ignored by showing ROC-curves that provide

values for a wide set of thresholds that had been

deemed non-optimal by the developers. Thirdly, Poly-

Phen-2 is optimized on human variants that account for

only 25% of our ALL data. For these, we over-estimate

PolyPhen-2’s performance. Although the authors

assumed that PolyPhen-2 would perform similarly for

other eukaryotes, it might not. To address these compli-

cations we compared the methods using additional data

sets.

Performance differed between the human and non-

human PMD data

The F-measure for predicting effect (Feffect, Eqn. 3), the

two state-accuracy (Q2, Eqn. 4), and the Matthew’s cor-

relation coefficient (MCC, Eqn. 5) were slightly higher

for SNAP2 when tested on the non-human than on the

human set (Table 1). For the human PMD data, Poly-

Phen-2 performed on par with SNAP2, while SIFT was

best for predicting neutrals. For the non-human data,

SNAP2 was either on par (Fneutral, Eqn. 3) or outper-

formed (Feffect, Q2, MCC) all other methods (Table 1).

Again, this comparison is not entirely fair to SNAP2

and SIFT since the human PMD variants overlapped

substantially with the PolyPhen-2 training set, i.e. Table

1 likely over-estimates PolyPhen-2.

Blind method combinations might be worse than a

good single method

If in doubt which method is best, users often mix sev-

eral methods. One strategy is to exclusively consider

predictions for which several methods agree. We

assessed the benefit of this strategy by applying SNAP2,

SIFT and PolyPhen-2 on the PMD_HUMAN data set.

All methods performed significantly worse for neutral

than for effect variants. This can largely be attributed to

the difference in the number of variants. The combina-

tion of SIFT and PolyPhen-2 improved slightly over

SIFT alone for neutral variants (green curve vs. brown

arrow/triangle in Figure 2A) and, in terms of accuracy

(Eqn. 2) over PolyPhen-2 alone (orange curve vs. brown

arrow/triangle in Figure 2A). However, for effect var-

iants combining PolyPhen-2 and SIFT did not improve

over the individual methods at all. Moreover, through-

out the curves (Figure 2) of both neutral and effect var-

iants, the combined method did not improve over using

SNAP2 alone. Methods such as PredictSNP [48], Condel

[49], and MetaSNP [50] have been explicitly optimized

to combine different methods, mostly to annotate dis-

ease-variant relationships (as opposed to functional

changes). Such meta-methods often tend to improve

Figure 1 SNAP2 performs best for the ALL data set. This figure

shows performance estimates for the ALL data set. Our new

method SNAP2 (dark blue, AUC = 0.905) outperforms its

predecessor SNAP (light blue, AUC = 0.880), PolyPhen-2 (orange,

AUC = 0.853) and SIFT (green, AUC = 0.838) over the entire

spectrum of the Receiver Operating Characteristic (ROC) curve.

Curves are significantly different from each other at a significance

level of P < 10-4 as measured by the DeLong method [59]. All

SNAP2 results were computed on the test sets not used in training

after a rigorous split into training, cross-training and testing. Results

for PolyPhen-2 and our original SNAP included some of those

proteins in their training, suggesting over-estimated performance.
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over the simple combinations individually attempted by

many users and tested here.

SNAP2 is clearly best for difficult cases

Although overall performance levels were similar for all

methods tested on the ALL data set, the actual predic-

tions for a single variant differed substantially between

methods. Variants for which methods agree could be

considered “easy” (every method right) or “unsolvable”

(no method right). In contrast, variants for which meth-

ods disagree could be considered “difficult”. This classifi-

cation yielded 67,912 easy (~68% of the total; 27,370

neutral and 40,542 effect), 9,624 unsolvable (~10% of the

total; 4,750 neutral and 4,874 effect), and 22,625 difficult

variants (~22% of the total; 7,504 neutral and 15,121

effect). SNAP2 outperformed others on the difficult

cases, correctly predicting 69%, as compared to SNAP

with 53% and SIFT with 41% compared to 53±1% for

random.

We repeated the same analysis for the PMD_HUMAN

subset (Figure 3). For the 3,963 human variants (1,374

neutral and 2,589 effect) for which any two of the methods

disagreed, SNAP2 and PolyPhen-2 were correct in ~58%

of the cases compared to 50% for SNAP, 46% for SIFT

and 44±1% for random predictions. Again, the PolyPhen-2

training set overlapped with these data, suggesting a per-

formance over-estimate.

In this set of 3,963 human variants, 305 (45 neutral

and 260 effect) were only correctly predicted by SNAP2.

We investigated these cases in detail, and found that the

effect variants in this set often localized to positions at

which the variant residue had been observed in another

protein in the alignment. For most methods, this implies

“neutral” prediction. Indeed, SNAP2noali, the version of

Table 1. Method performance on PMD *

Method Feffect (Eqn. 3) Fneutral (Eqn. 3) Q2 (Eqn. 4) MCC (Eqn. 5)

human SNAP2 78.0% ± 0.6 46.3% ± 1.3 68.8% ± 0.7 0.24 ± 0.01

PolyPhen-2 78.4% ± 0.4 ** 45.1% ± 1.1 ** 68.9% ± 0.5 ** 0.23 ± 0.01 **

SNAP 74.9% ± 0.5 46.7% ± 1.1 65.8% ± 0.6 0.22 ± 0.01

SIFT 72.2% ± 0.6 49.0% ± 1.0 63.6% ± 0.6 0.23 ± 0.01

non-human SNAP2 79.9% ± 0.3 45.8% ± 0.8 70.7% ± 0.4 0.26 ± 0.01

PolyPhen-2 77.1% ± 0.4 44.7% ± 0.8 67.6% ± 0.5 0.22 ± 0.01

SNAP 77.2% ± 0.3 45.5% ± 0.9 67.9% ± 0.5 0.23 ± 0.01

SIFT 77.0% ± 0.3 45.8% ± 0.8 67.7% ± 0.4 0.23 ± 0.01

* Data set consisting of 9,657 variants (2,788 neutral, 6,869 effect) from 678 human proteins in the top rows and 42,160 variants (10,850 neutral, 31,310 effect)

from 3,383 non-human proteins in the bottom rows. For each measure and species group, significantly best results are highlighted in bold. Measures with no

bold highlighting indicate absence of a statistically significant best performer.

** Values might over-estimate performance for PolyPhen-2 due to overlap between data set used here and one used for training PolyPhen-2.

Figure 2 Naïve combination is not better than individual methods for PMD_HUMAN data. This figure shows accuracy-coverage curves for

the PMD_HUMAN data. The x-axes indicate coverage (also referred to as ‘recall’; Eqn. 1.2), i.e. the percentage of observed neutral (a) and of

observed effect (b) variants that are correctly predicted at the given threshold. The y-axes indicate accuracy (also referred to as ‘precision’; Eqn.

1.2), i.e. the percentage of neutral (a) and effect (b) variants among all variants predicted in either class at the given threshold. Arrows mark the

performance at the default thresholds for our new method SNAP2 (dark blue), for SIFT (green), and for PolyPhen-2 (orange). A brown triangle/

arrow marks the performance of a (non-optimized) method that combines PolyPhen-2 and SIFT. This combination did not perform better than

SNAP2 alone (brown triangle vs. blue SNAP2 curves).
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our method that does not use alignments, predicted 75%

of these effect variants at over 90% accuracy, i.e. reached

a performance substantially above its average for these

cases. Thus, one important source of SNAP2 improve-

ment for difficult cases originates from its use on var-

ious pieces of information, not just alignments. One

example of this improvement is the R109Q variant in

the IL4 sequence (interleukin-4 isoform 1 precursor;

NCBI reference sequence: NP_000580.1), a pleiotropic

cytokine produced by activated T-cells and involved in

B-cell activation as well as co-stimulation of DNA

synthesis [51]. Variations in this gene were shown to be

associated with susceptibility to ischemic stroke [52] and

knee osteoarthritis [53]. While our R109Q was not

explicitly found to increase disease susceptibility, there

is evidence [54] that it reduces T-cell proliferation and

receptor binding activity. In this case, the variant gluta-

mine is more conserved in the protein alignment than

the human native arginine (11% Q vs. 8% R), making

predictions difficult for methods that over-rely on

alignments.

Another potential source of improvement, although one

for which we could not find explicit and experimentally

verified examples in our data, lies in the usage of informa-

tion about co-evolving residues (Additional File 1, Input

Feature Calculation). Specifically, some of the variant posi-

tions in this set exhibited (computationally-determined)

strong correlations with other positions in the protein,

suggesting that this particular feature also made a

difference.

Evolutionary information most important, other features

vary

The input features related to evolutionary information

were consistently most informative for SNAP2 (Addi-

tional File 1, Fig. SOM_1: SNAP2 vs. SNAP2noali).

Which other input features best distinguished neutral

from effect depended on the data set. This dependency

might originate from annotation inconsistencies and/or

set size differences or it might genuinely reflect the data.

By selecting the best features separately for subsets of

related proteins, we tried to differentiate between these

alternatives. The majority of our subsets considered

structural features (secondary structure and solvent

accessibility) informative, followed by biophysical amino

acid properties (more precisely: charge and hydrophobi-

city). However, the optimal window sizes (number of

consecutive residues used as input) for these features

differed. For instance, residue flexibility was considered

informative by most subsets, but the optimal window

size for this feature varied between three and nine resi-

dues around the variant.

The final SNAP2 network included the following

features: global features (amino acid composition, sec-

ondary structure and solvent accessibility composition,

and protein length), PSI-BLAST [27] profiles and deltas,

PSIC [12] profiles and deltas (differences between mutant

and wild-type residue annotations; see Methods for

details), residue flexibility, sequence and variant profiles,

disorder, secondary structure and relative solvent accessi-

bility and their deltas, physicochemical properties

(charge, hydrophobicity, volume, and their deltas), con-

tact potential profiles and deltas, correlated positions and

low complexity regions. In addition to these, SWISS-

PROT [22] annotations and SIFT [10] predictions were

included in SNAP2, if available. For the sequence-only

network (SNAP2noali) the following features where

included: amino acid composition, protein length,

sequence and variant profiles, contact potential profiles

and delta, volume and hydrophobicity along with the

corresponding delta features as well as several amino

acid indices from the AAindex [42] (Additional File 1,

Table SOM_1).

SNAP2noali important for many proteins

For eight proteins in the ALL data set we found fewer

than five PSI-BLAST hits in UniProt when we first

checked in Oct. 2012. On this tiny set SNAP2noali
appeared better than SNAP2 (Eqn. 4: Q2SNAP2noali =

61% vs. Q2SNAP2 = 60%; Eqn. 5: MCCSNAP2noali = 0.19

vs. MCCSNAP2 = 0.17). PolyPhen-2 made predictions for

Figure 3 SNAP2 and PolyPhen-2 are best for difficult human

variants. Bars mark the two-state accuracy (Q2; Eqn. 4) at the

default thresholds for SNAP2 (dark blue), SNAP (light blue), SIFT

(green), and PolyPhen-2 (orange). Random prediction performance

assuming 60:40 effect:neutral background are given in pink. Analysis

is based on 3,963 ‘difficult’ cases (2,589 effect; 1,374 neutral) from

PMD_HUMAN set. Difficult cases were defined as variants where any

of the above method’s predictions disagreed; i.e. cases where not all

methods, excluding random, gave the same prediction.
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only three of these eight proteins (103 variants, Q2Poly-

Phen-2 = 60%) and SIFT gave no predictions. Recently

repeating the analysis, we found homologues for all

eight. SNAP2, SIFT and PolyPhen-2 now outperformed

SNAP2noali. Our “outdated” analysis was important. On

the one hand, over 600 human proteins (~3% of all

human) still find less than 5 homologues today. On the

other hand, for most organisms for which we know the

sequences, the corresponding value is much closer to

10-20%, i.e. millions of the proteins we know today can

only be handled well by SNAP2noali.

For our entire training data, SNAP2noali reached Q2 =

68%, i.e. seven percentage points more than for the sub-

set of proteins with small/no families (68% on ALL vs.

61% on NOALI eight protein set). About 10-20% of all

proteins in newly sequenced organisms continue not to

map anywhere else in today’s databases [33,34,55]; for

those 10-20% of proteins, SNAP2noali appears to be the

best method available to predict the effect of mutations.

Performance confirmed for additional data sets

We avoided over-optimistic performance estimates by

removing sequence similarity between proteins used for

method development (training/cross-training) and test-

ing. In addition, we also tested our final method on two

data sets of variants from the Escherichia coli LacI

repressor and from the HIV-1 protease (Additional File

1, Table SOM_2). Given the small size and lack of

diversity, these results are likely to be more error-prone

than our cross-validation estimates. However, they pro-

vide independent evidence to estimate the performance

of SNAP2: Q2 = 78% for 4,041 LacI variants and Q2 =

72% for 336 HIV-1 variants. None of these variants was

used during method development. Moreover, our train-

ing data did not contain variants from any homologs of

these proteins.

Reliability index allows zooming into best predictions

The difference between the raw output units reason-

ably estimates prediction confidence [11,36]. We used

this difference to define a reliability index (RI, Eqn. 6)

and demonstrated its excellent correlation to predic-

tion strength, i.e. the reliability index and performance

(Figure 4). The final binary predictions (neutral/effect)

of SNAP2 are calculated from the network outputs

based on the user-defined decision threshold (default:

-0.05). By moving the threshold, users can vary the

accuracy-coverage balance. Higher thresholds result in

more accurate predictions at the cost of covering fewer

variants; lower thresholds cover more variants while

reducing accuracy. By dialing through the entire

threshold spectrum for our non-disease data (PMD/EC

data), we estimated and fixed the default decision

threshold (Figure 4A). To put this into perspective:

when predicting effect/neutral for all variants, SNAP2

is correct in about 75% of its neutral predictions and

in 86% of its effect predictions (Figure 4B rightmost

points). If users focus on the 50% strongest predictions

(Figure 4B; x-axis at 0.5), they could expect the ~92%

of the neutral predictions and ~96% of the effect pre-

dictions to be correct (RI≥8, Figure 4B). Note that for

the purposes of simplified visualization, to display

SNAP2 reliability with one digit per residue (e.g. to

view along with multiple sequence alignments), we

projected the actual RI onto integers from 0 (low relia-

bility - worst prediction) to 9 (high reliability - best

prediction, Figure 4B).

Discussion

Performance related to experimentally biased balance of

neutral vs. effect variants

Machine learning tends to work best when testing and

training data are sampled from the same distribution.

What are the true data that we want to assess our

method upon? One proxy for this type of truth might be

the next “one million variants” experiment: test 1,000

randomly selected naturally occurring variants in 1,000

representative proteins. One question is: how many var-

iants will be identified as being neutral with respect to

protein function? The answer remains importantly vague.

Several seemingly contradictory findings are the follow-

ing. On the one hand, for almost every sequence position

(residue) there is a non-native variant that has very little

effect on one particular experimental assay [56]. Loosely

put: “sequence can change without effect”. On the other

hand, for almost every residue there is a variant that

affects function somehow [56]. Loosely put: “every resi-

due in a protein matters and its variation can change

function”. There is evidence that individuality of people

is partially caused by many slightly non-neutral variants

[19]. However, this does not help in estimating the “true”

ratio neutral/effect for the next one million. Clearly,

today’s data sets are strongly biased toward effect var-

iants, simply because it is simpler to measure and easier

to publish an effect than a neutral variation. Unfortu-

nately, most of our performance estimates crucially

depend on the true ratio neutral/effect. Thus, our esti-

mates remain almost as incomplete as the experimental

data.

What to expect from variant prediction?

Methods that identify variants related to disease try to

pick up changes that are strong enough to cause pheno-

typic effects that can be classified as disease. This is dif-

ficult for two reasons. Firstly, the causality between

variant and disease is only clear for the simplest cases

such as monogenic or Mendelian diseases. Most diseases

appear to be complex, in the sense that they are onset
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only in the presence of several variants and proper envir-

onmental conditions. GWAS have shown that variants

associated with disease are found in healthy individuals,

and vice versa. Loosely put: the definition of a disease var-

iant may depend on other variants present in the particu-

lar genotype of the phenotype carrier. Secondly, even for

seemingly clear-cut cases, the classification of “disease”

might be misleading. Consider the example of the sickle-

cell anemia variants of the hemoglobin B-chain, which can

result in a number of chronic health problems on the one

hand but grant immunity to some malaria types on the

other. In other words, the definition of a disease variant

may depend on the environment of the individual.

In contrast to disease, the prediction of the effect of a

variant upon molecular function focuses only on the

native function of one particular protein. For many

examples, such effects are independent of the individual

and, often (although not always), of the environment.

However, such a focus bears another set of problems: (1)

Today’s computational methods cannot reliably distin-

guish between gain and loss of function. They simply

predict whether or not the mutation affects native func-

tion at all. (2) It is often difficult to relate the strength of

a functional effect to its biological relevance. For

instance, a “bit” of change in p53 functionality may cause

severe phenotypes, whereas a “large” functional effect on

other proteins may have little biological impact. In other

words, predicted effects have to be put into perspective

of the protein in question.

SNAP2 not limited to human variants

Functional effects of sequence variations are not limited

to pathogenicity in humans. As most experimental data

are human-centric, and as the disease variants are gener-

ally most consistent with functional effect [17], SNAP2

performed best for those. This might also explain why for

these SNAP2 performed similar to PolyPhen-2 that has

been optimized to human data. On non-human variants,

however, SNAP2 predictions were most accurate and

reliable as compared to other methods. This suggests

SNAP2 as a valuable tool for the preliminary analysis of

variants in any organism. Specifically, SNAP2 might be

the ideal starting point for the comparison of variants

between species, e.g. human vs. chimp vs. mouse.

Neutral variants predicted worse

All methods performed significantly better for effect

than for neutral variants. This in agreement with find-

ings reported in Bromberg et al [19] and can be

explained in two ways.

(1) The imbalance might originate from incomplete

experimental evidence. The effect of variants is typically

evaluated on the basis of one or a few phenotypes/

assays. If these produce no visible difference as com-

pared to wild-type control the variant is reported as

neutral. However, it might still have an effect on other

assays that are not performed.

(2) The variants for experimental analysis are usually

not selected at random. Instead, researchers prudently

Figure 4 SNAP2 threshold and reliability. The reliability index provides a means of focusing on the most accurate predictions. Panel (a) shows

SNAP2 performance on the balanced PMD/EC data set over the entire spectrum of accuracy (solid lines) and coverage (dotted lines) for both effect

(red) and neutral (green) variants depending on the chosen threshold (x-axis). The default threshold was set to -0.05, where neutral and effect

predictions performed alike (black arrow). By moving the decision threshold users can optimize predictive behavior towards their research needs:

predictions at higher absolute scores (e.g. TP>0.5 or TN<-0.5) are much more likely correct but they are not available for all variants. Panel

(b) directly relates the reliability index (RI) to the performance on our data. Shown is the cumulative percentage of predictions (x-axis) against

accuracy (solid lines) and coverage (dotted lines) above a given reliability index (RI; Methods). Accuracy and coverage are shown separately for

neutral (green) and effect (red) predictions. Each marker depicts a reliability threshold ranging from 0 (right most marker, low reliability) to 9 (left

most marker, high reliability). Labels for RI >= 2, 4 and, 6 are skipped for simplicity. For instance, 58% of all predictions in our cross-validation were

made at reliability levels of 7 or higher (gray arrows). At this reliability, 95% of all effect predictions and 90% of all neutral predictions were correct.
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focus on the most important changes; often those

changes are related to diseases. Such a prioritized selec-

tion samples the feature space incompletely. This may

hamper computational detection of relevant patterns for

neutral variants. The incomplete sampling may also

skew performance estimates: the variants most trivially

expected to be neutral might be predicted by the meth-

ods but might not be tested experimentally because they

are simple to guess. For this reason, comprehensive test-

ing as performed for the E. Coli LacI repressor or the

HIV-1 protease is an invaluable source of information

for computational prediction of variant effects. Such

data will likely be crucial in overcoming the neutrality

dilemma and will significantly further our understanding

of the underlying molecular mechanisms of variant

effects.

SNAP2noali succeeded where others failed

We specifically trained a classifier to predict functional

effects without using evolutionary information. This

unique novel resource might become increasingly useful

as ongoing sequencing efforts bring in more data. The

current release of the UniRef50 (March 2014) contains

~9.5 million sequence clusters of which over 6.5 million

(~68%) contain only one protein, i.e. are proteins so far

unique to one organism. For those over 6.5 million, very

little evolutionary information is available to guide other

variant effect predictions and the fraction of orphan

clusters appears to be increasing; i.e. in October 2012,

the UniRef50 contained ~64% orphan clusters - a 4%

increase over 1.5 years. This difference might originate

from the decreasing quality of increasing sequencing

data. However, a similar trend had been observed

12 years ago with arguably more accurate sequencing

data [57]. Except for SNAP2noali, all methods perform

significantly worse for orphans and, in some cases, at

the level of throwing a coin. Often they produce no

results, which also is at the random level. By including a

variety of specific features, we developed a classifier that

still achieves a two-state accuracy Q2 around 68% from

sequence alone even for these 6.5 million orphan

families. This unique type of predicted information

might become very relevant for uncharacterized protein

families.

Best prediction of difficult cases

By comparing predictions for variants for which com-

monly applied methods disagreed, we extracted variants

that were difficult to classify. For these difficult cases, our

new method SNAP2 significantly outperformed SNAP

(set ALL-difficult: Q2(snap2) = 69%, Q2(snap) = 53%)

and SIFT (Q2(sift) = 41%). For the difficult variants from

human PMD, SNAP2 performed just as well as Poly-

Phen-2, although this comparison gave PolyPhen-2 an

unfair advantage because the data set used had partially

been used to train PolyPhen-2.

More and better data needed to advance further?

SNAP2 and PolyPhen-2 reached similar levels of perfor-

mance with rather different approaches, but we made so

many so important changes to SNAP that we were sur-

prised not to improve more. Was this because predic-

tion performance has reached a plateau, i.e. have we

reached the limits for a method using only sequence

information as input? Many observations suggest that

our data sets remain importantly incomplete. For

instance, we observed that our EC data was inconsistent

but that we fared worse by leaving it out. We improved

a little through the addition of the OMIM data, but pos-

sibly only so much so because the data had implicitly

already been predicted correctly [17]. In other words:

OMIM samples exhibit, on average, extreme signals that

are somewhat ‘easy’ to predict. Thus, adding samples

from the top end of the effect distribution did not help

improve our prediction of difficult cases where we often

find unclear/contradicting signals. Another indication of

incompleteness of experimental data was the result that

we needed to use all available data to achieve peak perfor-

mance, i.e. smaller subsets reduced performance (data not

shown). Still, are we close to a saturation of performance,

or can we expect another leap? The lessons learned from

advancing secondary structure prediction through the

combination of machine learning and evolutionary infor-

mation suggest that there is yet no way to tell.

Conclusions

We significantly improved over our seven-year-old

method SNAP for the prediction of functional effects

from single point variants or mutations in the amino

acid sequence. SNAP2, the new method improved

through more and better data and through more input

features. SNAP2 annotates functional effects of variants

with little preference to particular species and/or parti-

cular types of effects. This allows users to perform bias-

free cross-species comparisons, such as looking at

sequence positions that differ between human and

mouse. We believe that this might be helpful for under-

standing and predicting disease-causing variation, as

well as for facilitating drug development. A measure of

prediction reliability (Reliability Index; RI) allows users

to focus on the most promising candidates. Additionally,

a big achievement of this work is the development of

SNAP2noali - a model that predicts effects of variants

without using evolutionary information. Ongoing deep-

sequencing efforts bring in novel sequences and novel

variants alike. Many of these variants occur in sequences

without families. Possibly for millions of proteins

SNAP2noali provides a reliable prediction of variant
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effects and allows for a quick assessment of functionally

relevant positions in novel proteins. Both versions of

SNAP2 have been optimized towards runtime efficiency

to enable large-scale in silico mutagenesis studies that

probe the landscape of protein mutability [56,58] to

learn important news about protein structure and

function.
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