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Abstract. Most specification languages express only qualitative con-
straints. However, among two implementations that satisfy a given
specification, one may be preferred to another. For example, if a specifi-
cation asks that every request is followed by a response, one may prefer
an implementation that generates responses quickly but does not gen-
erate unnecessary responses. We use quantitative properties to measure
the “goodness” of an implementation. Using games with corresponding
quantitative objectives, we can synthesize “optimal” implementations,
which are preferred among the set of possible implementations that sat-
isfy a given specification.

In particular, we show how automata with lexicographic mean-payoff
conditions can be used to express many interesting quantitative proper-
ties for reactive systems. In this framework, the synthesis of optimal im-
plementations requires the solution of lexicographic mean-payoff games
(for safety requirements), and the solution of games with both lexico-
graphic mean-payoff and parity objectives (for liveness requirements).
We present algorithms for solving both kinds of novel graph games.

1 Introduction

Traditional specifications are Boolean: an implementation satisfies a specifica-
tion, or it does not. This Manichean view is not entirely satisfactory: There are
usually many different ways to satisfy a specification, and we may prefer one im-
plementation over another. This is especially important when we automatically
synthesize implementations from a specification, because we have no other way to
enforce these preferences. In this paper, we add a quantitative aspect to system
specification, imposing a preference order on the implementations that satisfy
the qualitative part of the specification. Then, we present synthesis algorithms
that construct, from a given specification with both qualitative and quantitative
aspects, an implementation that (i) satisfies the qualitative aspect and (ii) is
optimal or near-optimal with respect to the quantitative aspect. Along the way,
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we introduce and solve graph games with new kinds of objectives, namely, lexico-
graphic mean-payoff objectives and the combination of parity and lexicographic
mean-payoff objectives.

Suppose we want to specify an arbiter for a shared resource. For each
client i, the arbiter has an input ri (request access) and an output gi (ac-
cess granted). A first attempt at a specification in LTL may be

∧
i G(ri →

F gi) ∧ G
∧

i

∧
j �=i(¬gi∨¬gj). (All requests are granted eventually and two grants

never occur simultaneously.) This specification is too weak: An implementation
that raises all gi signals in a round-robin fashion satisfies the specification but
is probably undesired. The unwanted behaviors can be ruled out by adding the
requirements

∧
i G(gi → X(¬gi W ri)) ∧ ∧

i ¬gi W ri. (No second grant before a
request.)

Such Boolean requirements to rule out trivial but undesirable implementations
have several drawbacks: (i) they are easy to forget and difficult to get right (often
leading to unrealizable specifications) and, perhaps more importantly, (ii) they
constrain implementations unnecessarily, by giving up the abstract quality of a
clean specification. In our example, we would rather say that the implementation
should produce “as few unnecessary grants as possible” (where a grant gi is
unnecessary if there is no outstanding request ri). We will add a quantitative
aspect to specifications which allows us to say that. Specifically, we will assign a
real-valued reward to each behavior, and the more unnecessary grants, the lower
the reward.

A second reason that the arbiter specification may give rise to undesirable
implementations is that it may wait arbitrarily long before producing a grant.
Requiring that grants come within a fixed number of steps instead of “eventually”
is not robust, because it depends on the step size of the implementation and the
number of clients. Rather, we assign a lower reward to executions with larger
distances between a request and corresponding grant. If we use rewards both
for punishing unnecessary grants and for punishing late grants, then these two
rewards need to be combined. This leads us to consider tuples of costs that are
ordered lexicographically. We define the quantitative aspect of a specification
using lexicographic mean-payoff automata, which assign a tuple of costs to each
transition. The cost of an infinite run is obtained by taking, for each component
of the tuple, the long-run average of all transition costs. Such automata can
be used to specify both “produce as few unnecessary grants as possible” and
“produce grants as quickly as possible,” and combinations thereof.

If the qualitative aspect of the specification is a safety property, then synthesis
requires the solution of lexicographic mean-payoff games, for which we can syn-
thesize optimal solutions. (The objective is to minimize the cost of an infinite run
lexicographically.) If the qualitative aspect is a liveness property, then we obtain
lexicographic mean-payoff parity games, which must additionally satisfy a parity
objective. We present the solution of these games in this paper. We show that lex-
icographic mean-payoff games are determined for memoryless strategies and can
be decided in NP ∩ coNP, but that in general optimal strategies for lexicographic
mean-payoff parity games require infinite memory. We prove, however, that for
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any given real vector ε > 0, there exists a finite-state strategy that ensures a value
within ε of the optimal value. This allows us to synthesize ε-optimal implementa-
tions, for any ε. The complexity class of the optimal synthesis problem is NP.

Related work. There are several formalisms for quantitative specifications in the
literature [2,5,6,7,8,11,12,15,16,20]; most of these works (other than [2,8,11]) do
not consider mean-payoff specifications and none of these works focus on how
quantitative specifications can be used to obtain better implementations for the
synthesis problem. Several notions of metrics have been proposed in the literature
for probabilistic systems and games [13,14]; these metrics provide a measure
that indicates how close are two systems with respect to all temporal properties
expressible in a logic; whereas our work compares how good an implementation
is with respect to a given specification. The work [10] considers non-zero-sum
games with lexicographic ordering on the payoff profiles, but to the best of our
knowledge, the lexicographic quantitative objective we consider for games has
not been studied before.

2 Examples

After giving necessary definitions, we illustrate with several examples how quan-
titative constraints can be a useful measure for the quality of an implementation.

Alphabets, vectors, and lexicographic order. Let I and O be finite sets of
input and output signals, respectively. We define the input alphabet ΣI = 2I and
the output alphabet ΣO = 2O. The joint alphabet Σ is defined as Σ = 2I∪O. Let
R

d be the set of real vectors of dimension d with the usual lexicographic order.

Mealy machines. A Mealy machine is a tuple M = 〈Q, q0, δ〉, where Q is
a finite set of states, q0 ∈ Q is the initial state, and δ ⊆ Q × ΣI × ΣO × Q
is a set of labeled edges. We require that the machine is input enabled and
deterministic: ∀q ∈ Q . ∀i ∈ ΣI , there exists a unique o ∈ ΣO and a unique
q′ ∈ Q such that 〈q, i, o, q′〉 ∈ δ. Each input word i = i0i1 · · · ∈ ΣI

ω has a unique
run q0i0o0q1i1o1 . . . such that ∀k ≥ 0 .〈qk, ik, ok, qk+1〉 ∈ δ. The corresponding
I/O word is i0 ∪ o0, i1 ∪ o1, · · · ∈ Σω. The language of M , denoted by LM , is the
set of all I/O words of the machine. Given a language L ⊆ Σω, we say a Mealy
machine M implements L if LM ⊆ L.

Quantitative languages. A quantitative language [8] over Σ is a function
L : Σω → V that associates to each word in Σω a value from V , where V ⊂ R

d

has a least element. Words with a higher value are more desirable than those
with a lower value. In the remainder, we view an ordinary, qualitative language
as a quantitative language that maps words in L to true (= 1) and words not in
L to false (= 0). We often use a pair 〈L, L′〉 of a qualitative language L and a
quantitative language L′ : Σω → V as specification, where L has higher priority
than L′. We can also view 〈L, L′〉 as quantitative language with 〈L, L′〉(w) = 0
if L(w) = 0, and 〈L, L′〉(w) = L′(w)−v⊥+1 otherwise, where v⊥ is the minimal
value in V . (Adding constant factors does not change the order between words).
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We extend the definition of value to Mealy machines. As in verification and
synthesis of qualitative languages, we take the worst-case behavior of the Mealy
machine as a measure. Given a quantitative language L over Σ, the value of a
Mealy machine M , denoted by L(M), is infw∈LM L(w).

Lexicographic mean-payoff automata. We use lexicographic mean-payoff
automata to describe quantitative languages. In lexicographic mean-payoff au-
tomata each edge is mapped to a reward. The automaton associates a run with
a word and assigns to the word the average reward of the edges taken (as in
mean-payoff games [17]). Unlike in mean-payoff games, rewards are vectors.

Formally, a lexicographic mean-payoff automaton of dimension d over Σ is
a tuple A = 〈〈S, s0, E〉, r〉, where S is a set of states, E ⊆ S × Σ × S is a
labeled set of edges, s0 ∈ S is the initial state, and r : E → N

d is a reward
function that maps edges to d-vectors of natural numbers. Note that all rewards
are non-negative. We assume that the automaton is complete and deterministic:
for each s and σ there is exactly one s′ such that 〈s, σ, s′〉 ∈ E. A word w =
w0w1 · · · ∈ Σω has a unique run ρ(w) = s0e0s1e1 . . . such that si ∈ S and
ei = 〈si, wi, si+1〉 ∈ E for all i ≥ 0. The lexicographic mean payoff LM (ρ) of a
run ρ is defined as LM(ρ) = lim infn→∞ 1

n

∑n
i=0 r(ei). The automaton defines a

quantitative language with domain R
d by associating to every word w the value

LA(w) = LM (ρ(w)).
If the dimension of A is 1 and the range of LA is {0, 1} then, per definition,

LA defines a qualitative language. We say that A is a safety automaton if it
defines a qualitative language and there is no path from an edge with reward 0
to an edge with reward > 0. Safety automata define safety languages [1]. Note
that in general, ω-regular languages and languages expressible with mean-payoff
automata are incomparable [8].

Example 1. Let us consider a specification of an arbiter with one client. In
the following, we use r, r̄, g, and ḡ to represent that r or g are set to true and
false, respectively and � to indicate that a signal can take either value. A slash
separates input and output.

Take the specification ϕ = G(r → g ∨ X g): every request is granted within
two steps. The corresponding language Lϕ maps a word w = w0w1, . . . to true
iff for every position i in w, if r ∈ wi, then g ∈ wi ∪ wi+1. Fig. 1 shows three
implementations for Lϕ. Machine M1 asserts g continuously independent of r,
M2 responds to each request with a grant but keeps g low otherwise, and M3

delays its response if possible.
We use a quantitative specification to state that we prefer an implementation

that avoids unnecessary grants. Fig. 2 shows two mean-payoff automata, A1 and
A2 that define rewards for the behavior of an implementation. Note that we
have summarized edges using Boolean algebra. For instance, an arc labeled g
in the figure corresponds to the edges labeled rg and r̄g. Automata A1 and A2

define quantitative languages that distinguish words by the frequency of grants
and the condition under which they appear. Specification A1 defines a reward
of 1 except when a grant is given; A2 only withholds a reward when a grant is
given unnecessarily. Consider the words w1 = (rg, r̄ḡ)ω and w2 = (rḡ, r̄g, r̄g)ω.



144 R. Bloem et al.

M1 M2 M3

�/g

r̄/ḡ
r/g r̄/ḡ

r/ḡ

�/g

Fig. 1. Three Mealy machines that im-
plement G(r → g ∨ X g)

A1

q0

ḡ(1)

g(0)

A2

q0 q1

r̄ḡ(1)
rg(1)

r̄g(0)

ḡ(1)
rḡ(1)

g(1)

Fig. 2. Two specifications that provide
different ways of charging for grants

Specification A1 defines the rewards LA1(w1) = 1/2, and LA1(w2) = 1/3. For A2,
we get LA2(w1) = 1 and LA2(w2) = 2/3. Both specifications are meaningful but
they express different preferences, which leads to different results for verification
and synthesis, as discussed in Section 4.

Recall the three implementations in Fig. 1. Each of them implements Lϕ.
For A1, input rω gives the lowest reward. The values corresponding to the in-
put/output word of M1, M2, and M3 are 0, 0, and 1/2, respectively. Thus, A1

prefers the last implementation. The values of the implementations for A2 are
minimal when the input is r̄ω; they are 0, 1, and 1, respectively. Thus, A2 prefers
the last two implementations, but does not distinguish between them.

Example 2. Assume we want to specify an arbiter for two clients that answers
requests within three steps. Simultaneous grants are forbidden. Formally, we
have ϕ =

∧
i∈{1,2} G

(
ri → ∨

t∈{0,1,2} Xt gi

) ∧ G(¬g1 ∨ ¬g2). We want grants to
come as quickly as possible. Fig. 3 shows a mean-payoff automaton A3 that
rewards rapid replies to Client 1. Suppose we want to do the same for Client 2.
One option is to construct a similar automaton A′

3 for Client 2 and to add
the two resulting quantitative languages. This results in a quantitative language
LA3 + LA′

3
that treats the clients equally. Suppose instead that we want to give

Client 1 priority. In that case, we can construct a lexicographic mean-payoff
automaton that maps a word w to a tuple 〈s1(w), s2(w)〉, where the first and
second elements correspond to the payoff for Clients 1 and 2, resp. Part of this
automaton, A4, is shown in Fig. 3.

Automaton A3 distinguishes words with respect to the maximal average dis-
tance between request and grant. For instance, LA3((r1g1, r̄1ḡ1)ω) = 1 and
LA3((r1ḡ1, r̄1g1)ω) = 1/2. Automaton A4 associates a vector to every word.
For instance, LA4((r1g1r2ḡ2, r̄1ḡ1r̄2g2)ω) = 1/2 · (〈1, 0〉+ 〈1, 1〉) = 〈1, 1/2〉, which
makes it preferable to the word (r1ḡ1r2g2, r̄1g1r̄2ḡ2)ω , which has value 〈1/2, 1〉.
This is what we expect: the first word gives priority to requests from Client 1,
while the second gives priority to Client 2.

Example 3. Let us consider the liveness specification ϕ = G(r → F g) saying
that every request must be granted eventually. This languages can usefully be
combined with A3, stating that grants must come quickly. It can also be com-
bined with A1 from Fig. 2 stating that grants should occur as infrequently as
possible. A Mealy machine may emit a grant every k ticks, which gives a reward
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A3

q0

q1

r̄1(1)
g1(1)

ḡ1(0)

r1ḡ1(0) g1(1)

A4

q′00

q′10

q′01

q′11

r̄1r̄2〈1, 1〉
r̄1g2〈1, 1〉
g1r̄2〈1, 1〉
g1g2〈1, 1〉

r1ḡ1g2〈0, 1〉
r1ḡ1r̄2〈0, 1〉

g1r2ḡ2〈1, 0〉
r̄1r2ḡ2〈1, 0〉

. . .

Fig. 3. A specification that rewards quick grants for a request from Client 1, and a
specification that rewards quick grants for both clients, while giving priority to Client 1

of 1 − 1/k. Thus, there is an infinite chain of ever-better machines. There is
no Mealy machine, however, that obtains the limit reward of 1. This can only
be achieved by an implementation with infinite memory, for instance one that
answers requests only in cycle 2k for all k [9].

3 Lexicographic Mean-Payoff (Parity) Games

We show how to solve lexicographic mean-payoff games and lexicographic mean-
payoff parity games, which we will need in Section 4 to solve the synthesis prob-
lem for quantitative specifications.

3.1 Notation and Known Results

Game graphs and plays. A game graph over the alphabet Σ is a tuple
G = 〈S, s0, E〉 consisting of a finite set of states S, partitioned into S1 and
S2, representing the states of Player 1 and Player 2, an initial state s0 ∈ S,
and a finite set of labeled edges E ⊆ S × Σ × S. We require that the la-
beling is deterministic, i.e., if 〈s, σ, t〉, 〈s, σ, t′〉 ∈ E, then t = t′. We write
Ē = {〈s, t〉 | ∃σ ∈ Σ : 〈s, σ, t〉 ∈ E}. At S1 states, Player 1 decides the suc-
cessor state and at S2 states, Player 2 decides the successor states. We assume
that ∀s ∈ S . ∃t ∈ S .〈s, t〉 ∈ Ē. A play ρ = ρ0ρ1 · · · ∈ Sω is an infinite sequence
of states such that for all i ≥ 0 we have 〈ρi, ρi+1〉 ∈ Ē. We denote the set of all
plays by Ω.

The labels and the initial state are not relevant in this section. They are
used later to establish the connection between specifications, games, and Mealy
machines. They also allow us to view automata as games with a single player.

Strategies. Given a game graph G = 〈S, s0, E〉, a strategy for Player 1 is a
function π1 : S∗S1 → S such that ∀s0 . . . si ∈ S∗S1 we have 〈si, π1(s0s1 . . . si)〉 ∈
Ē. A Player-2 strategy is defined similarly. We denote the set of all Player-
p strategies by Πp. The outcome ρ(π1, π2, s) of π1 and π2 on G starting at
s is the unique play ρ = ρ0ρ1 . . . such that for all i ≥ 0, if ρi ∈ Sp, then
ρi+1 = πp(ρ0 . . . ρi) and ρ0 = s.
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A strategy πp ∈ Πp is memoryless if for any two sequences σ = s0 . . . si ∈ S∗Sp

and σ′ = s′0 . . . s′i′ ∈ S∗Sp such that si = s′i′ , we have πp(σ) = πp(σ′). We
represent a memoryless strategy πp simply as a function from Sp to S. A strategy
is a finite-memory strategy if it needs only finite memory of the past, consisting
of a finite-state machine that keeps track of the history of the play. The strategy
chooses a move depending on the state of the machine and the location in the
game. Strategies that are not finite-memory are called infinite-memory strategies.

Quantitative and qualitative objectives. We consider different objectives for
the players. A quantitative objective f is a function f : Ω → R

d that assigns
a vector of reals as reward to every play. We consider complementary objectives
for the two players; i.e., if the objective for Player 1 is f , then the objective for
Player 2 is −f . The goal of each player is to maximize her objective. Note that
Player 2 tries to minimize f by maximizing the complementary −f . An objective
f : Ω → {0,±1} that maps to the set {0, 1} (or {0,−1}) is per definition a qual-
itative objective. Given a qualitative objective f : Ω → V we say a play ρ ∈ Ω is
winning for Player 1 if f(ρ) = max(V ) holds, otherwise the play is winning for
Player 2.

Value. Given an objective f , the Player-1 value of a state s for a strategy π1 is
the minimal value Player 1 achieves using π1 against all Player-2 strategies, i.e.,
V1(f, s, π1) = infπ2∈Π2 f(ρ(π1, π2, s)). The Player-1 value of a state s is the max-
imal value Player-1 can ensure from state s, i.e., V1(f, s) = supπ1∈Π1

V1(f, s, π1).
Player-2 values are defined analogously. If V1(f, s)+V2(−f, s) = 0 for all s, then
the game is determined and we call V1(f, s) the value of s.

Optimal, ε-optimal, and winning strategies. Given an objective f and
a vector ε ≥ 0, a Player-1 strategy π1 is Player-1 ε-optimal from a state s if
V1(f, s, π1) ≥ V1(f, s) − ε. If π1 is 0-optimal from s, then we call π1 optimal
from s. Optimality for Player-2 strategies is defined analogously. If f : Ω →
V is a qualitative objective, a strategy π1 is winning for Player 1 from s if
V1(f, s, π1) = max(V ).

We now define various objectives.

Parity objectives. A parity objective consists of a priority function p : S →
{0, 1, . . . , k} that maps every state in S to a number (called priority) between 0
and k. We denote by |p| the maximal priority (i.e., |p| = k). The objective
function P of Player 1 maps a play ρ to 1 if the smallest priority visited infinitely
often is even, otherwise ρ is mapped to 0.

Lexicographic mean-payoff objectives. A lexicographic mean-payoff ob-
jective consists of a reward function r : E → N

d that maps every edge
in G to a d-vector (called reward) of natural numbers. We define |r| =∏

1≤i≤d maxe∈E ri(e), where ri(e) is the i-component of r(e). The objective
function of Player 1 for a play ρ is the lexicographic mean payoff LM r(ρ) =
lim infn→∞ 1

n

∑n
i=0 r(〈ρi, ρi+1〉). If d = 1, then LM r(ρ) is the mean payoff [17]

and we refer to it as Mr(ρ).
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Lexicographic mean-payoff parity objectives. A lexicographic mean-payoff
parity objective has a priority function p : S → {0, 1, . . . , k} and a reward func-
tion r : E → N

d. The lexicographic mean-payoff parity value LMPr(ρ) for
Player 1 of a play ρ is the lexicographic mean-payoff LM r(ρ) if ρ is winning
for the parity objective (i.e., Pp(ρ) = 1), else the payoff is −1. If d = 1, then
LMPr,p(ρ) defines the mean-payoff parity value [9] and we write MPr,p(ρ). If p
or r are clear from the context, we omit them.

Games and automata. A game is a tuple G = 〈G, f〉 consisting of a game
graph G = 〈S, s0, E〉 and an objective f . An automaton is a game with only one
player, i.e., S = S1. We name games and automata after their objectives.

3.2 Lexicographic Mean-Payoff Games

In this section, we prove that memoryless strategies are sufficient for lexico-
graphic mean-payoff games and we present an algorithm to decide these games
by a reduction to simple mean-payoff games. We first present the solution of
lexicographic mean-payoff games with a reward function with two components,
and then extend it to d-dimensional reward functions. Consider a lexicographic
mean-payoff game GLM = 〈〈S, s0, E〉, r〉, where r = 〈r1, r2〉 consists of two re-
ward functions.

Memoryless strategies suffice. We show that memoryless strategies suffice
by a reduction to a finite cycle forming game. Let us assume we have solved
the mean-payoff game with respect to the reward function r1. Consider a value
class of r1, i.e., a set of states having the same value with respect to r1. It is
not possible for Player 1 to move to a higher value class, and Player 1 will never
choose an edge to a lower value class. Similarly, Player 2 does not have edges to
a lower value class and will never choose edges to a higher value class. Thus, we
can consider the sub-game for a value class.

Consider a value class of value � and the sub-game induced by the value class.
We now play the following finite-cycle forming game: Player 1 and Player 2
choose edges until a cycle C is formed. The payoff for the game is as follows: (1)
If the mean-payoff value of the cycle C for r1 is greater than �, then Player 1
gets reward |r2|+ 1. (2) If the mean-payoff value of the cycle C for r1 is smaller
than �, then Player 1 gets reward −1. (3) If the mean-payoff value of the cycle
C for r1 is exactly �, then Player 1 gets the mean-payoff value for reward r2 of
the cycle C.

Lemma 1. The value of Player 1 for any state in the finite-cycle forming game
is (i) strictly greater than −1 and (ii) strictly less than |r2| + 1.

Lemma 2. Both players have memoryless optimal strategy in the finite-cycle
forming game.

Proof. The result can be obtained from the result of Björklund et al. [3]. From
Theorem 5.1 and the comment in Section 7.2 it follows that in any finite-cycle
forming game in which the outcome depends only on the vertices that appear in



148 R. Bloem et al.

the cycle (modulo cyclic permutations) we have that memoryless optimal strate-
gies exist for both players. Our finite-cycle forming game satisfies the conditions.

��
Lemma 3. The following assertions hold.

1. If the value of the finite-cycle forming game is β at a state s, then the value
of the lexicographic mean-payoff game is 〈�, β〉 at s.

2. A memoryless optimal strategy of the finite-cycle forming game is optimal
for the lexicographic mean-payoff game.

The proof can be found in [4].

Reduction to mean-payoff games. We now sketch a reduction of lexico-
graphic mean-payoff games to mean-payoff games for optimal strategies. We
reduce the reward function r = 〈r1, r2〉 to a single reward function r∗. We en-
sure that if the mean-payoff difference of two cycles C1 and C2 for reward r1 is
positive, then the difference in reward assigned by r∗ exceeds the largest possible
difference in the mean-payoff for reward r2. Consider two cycles C1 of length n1

and C2 of length n2, such that the sum of the r1 rewards of Ci is αi. Since all
rewards are integral, |α1

n1
− α2

n2
| > 0 implies |α1

n1
− α2

n2
| ≥ 1

n1·n2
. Hence we multiply

the r1 rewards by m = |S|2 · |r2|+1 to obtain r∗ = m ·r1+r2. This ensures that if
the mean-payoff difference of two cycles C1 and C2 for reward r1 is positive, then
the difference exceeds the difference in the mean-payoff for reward r2. Observe
that we restrict our attention to cycles only since we have already proven that
optimal memoryless strategies exist.

We can easily extend this reduction to reduce lexicographic mean-payoff games
with arbitrarily many reward functions to mean-payoff games. The following
theorem follows from this reduction in combination with known results for mean
payoff parity games [17,21].

Theorem 1 (Lexicographic mean-payoff games). For all lexicographic
mean-payoff games GLM = 〈〈S, s0, E〉, r〉, the following assertions hold.
1. (Determinacy.) For all states s ∈ S, V1(LMP , s) + V2(−LMP , s) = 0.
2. (Memoryless optimal strategies.) Both players have memoryless optimal

strategies from every state s ∈ S.
3. (Complexity). Whether the lexicographic mean-payoff value vector at a state

s ∈ S is at least a rational value vector v can be decided in NP ∩ coNP.
4. (Algorithms). The lexicographic mean-payoff value vector for all states can

be computed in time O(|S|2d+3 · |E| · |r|).

3.3 Lexicographic Mean-Payoff Parity Games

Lexicographic mean-payoff parity games are a natural lexicographic extension of
mean-payoff parity games [9]. The algorithmic solution for mean-payoff parity
games is a recursive algorithm, where each recursive step requires the solution of
a parity objective and a mean-payoff objective. The key correctness argument of
the algorithm relies on the existence of memoryless optimal strategies for parity
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and mean-payoff objectives. Since memoryless optimal strategies exist for lexi-
cographic mean-payoff games, the solution of mean-payoff parity games extends
to lexicographic mean-payoff parity games: in each recursive step, we replace the
mean-payoff objective by a lexicographic mean-payoff objective. Thus, we have
the following result.

Theorem 2 (Lexicographic mean-payoff parity games). For all lexico-
graphic mean-payoff parity games GLMP = 〈〈S, s0, E〉, r, p〉, the following asser-
tions hold.

1. (Determinacy). V1(LMP , s) + V2(−LMP , s) = 0 for all state s ∈ S.
2. (Optimal strategies). Optimal strategies for Player 1 exist but may require

infinite memory; finite-memory optimal strategies exist for Player 2.
3. (Complexity). Whether the value at a state s ∈ S is at least the vector v can

be decided in coNP.
4. (Algorithms). The value for all states can be computed in time O

(|S||p| ·
(min{|S| |p|

3 · |E|, |S|O(
√

S)} + |S|2d+3 · |E| · |r|)).

In the following, we prove two properties of mean-payoff parity games that are
interesting for synthesis. For simplicity, we present the results for mean-payoff
parity games. The results extend to lexicographic mean-payoff parity games as in
Theorem 2. First, we show that the algorithm of [9] can be adapted to compute
finite-memory strategies that are ε-optimal. Then, we show that Player 1 has
a finite-memory optimal strategy if and only if she has a memoryless optimal
strategy.

Finite-memory ε-optimal strategy. In mean-payoff parity games, though
optimal strategies require infinite memory for Player 1, there is a finite-memory
ε-optimal strategy for every ε > 0. The proof of this claim is obtained by a
more detailed analysis of the optimal strategy construction of [9]. The optimal
strategy constructed in [9] for Player 1 can be intuitively described as follows.
The strategy is played in rounds, and each round has three phases: (a) playing
a memoryless optimal mean-payoff strategy; (b) playing a strategy in a sub-
game; (c) playing a memoryless attractor strategy to reach a desired priority.
Then the strategy proceeds to the next round. The length of the first phase
is monotonically increasing in the number of rounds, and it requires infinite
memory to count the rounds. Given an ε > 0, we can fix a bound on the number
of steps in the first phase that ensures a payoff within ε of the optimal value.
Hence, a finite-memory strategy can be obtained.

s0 s1

10
10

0

Fig. 4. Game in which the optimal strategy requires infinite memory
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We illustrate the idea with an example. Consider the example shown in Fig. 4
where we have a game graph where all states belong to Player 1. The goal of
Player 1 is to maximize the mean-payoff while ensuring that state s1 is visited
infinitely often. An optimal strategy is as follows: the game starts in round 1. In
each round i, the edge s0 → s0 is chosen i times, then the edge s0 → s1 is chosen
once, and then the game proceeds to round i + 1. Any optimal strategy in the
game shown requires infinite memory. However, given ε > 0, in every round the
edge s0 → s0 can be chosen a fixed number K times such that K > 10

ε −2. Then
the payoff is 10·K+10

K+2 = 10− 10
K+2 ≥ 10− ε (since K > 10

ε − 2); which is within ε
of the value. It may also be noted that given ε > 0, the finite-memory optimal
strategy can be obtained as follows. We apply the recursive algorithm to solve
the game to obtain two memoryless strategies: one for the mean-payoff strategy
and other for the attractor strategy. We then specify the bound (depending on
ε) on the number of steps for the mean-payoff strategy for each phase (this
requires an additional O(1

ε ) time for the strategy description after the recursive
algorithm).

Theorem 3. For all lexicographic mean-payoff parity games and for all ε > 0,
there exists a finite-memory ε-optimal strategy for Player 1. Given ε > 0, a finite-
memory ε-optimal strategy can be constructed in time O(|S||p| · |E|2d+6 · |r|+ 1

ε ).

Optimal finite-memory and memoryless strategies. Consider a mean-
payoff parity game G = 〈〈S, s0, E〉, r, p〉. Our goal is to show that if there is a
finite-memory optimal strategy for Player 1, then there is a memoryless optimal
strategy for Player 1. Suppose there is a finite-memory optimal strategy π̂1 for
Player 1. Consider the finite graph Ĝ obtained by fixing the strategy π̂1. (Ĝ is
obtained as the synchronous product of the given game graph and finite-state
strategy automaton for π̂1.) For a state s ∈ S, consider any cycle Ĉ in Ĝ that is
reachable from 〈s, q0〉 (where q0 is the initial memory location) and Ĉ is executed
to ensure that Player 1 does not achieve a payoff greater than the value of the
game from s. We denote by Ĉ|G the sequence of states in G that appear in Ĉ.
We call a cycle C of G that appears in Ĉ|G a component cycle of Ĉ. We have the
following properties about the cycle Ĉ and its component cycles.

1. min(p(Ĉ|G)) is even.
2. Suppose there is a component cycle C of Ĉ such that the average of the

rewards of C is greater than the average of the rewards of Ĉ. If Player 2
fixes a finite-memory strategy that corresponds to the execution of cycle Ĉ,
then an infinite-memory strategy can be played by Player 1 that pumps the
cycle C longer and longer to ensure a payoff that is equal to the average of
the weights of C. The infinite memory strategy ensures that all states in Ĉ|G
are visited infinitely often, but the long-run average of the rewards is the
average of the rewards of C. This would imply that for the cycle Ĉ, Player 1
can switch to an infinite-memory strategy and ensure a better payoff.

3. If there is component cycle C of Ĉ such that min(p(C)) > min(p(Ĉ|G)), then
the cycle segment of C can be ignored from Ĉ without affecting the payoff.
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4. Suppose we have two component cycles C1 and C2 in Ĉ such that
min(p(C1)) = min(p(C2)) = min(p(Ĉ|G)), then one of the cycles can be
ignored without affecting the payoff.

It follows from above that if the finite-memory strategy π̂1 is an optimal one,
then it can be reduced to a strategy π′

1 such that if Player 2 fixes a finite-memory
counter-optimal strategy π2, then every cycle C in the finite graph obtained from
fixing π′

1 and π2 is also a cycle in the original game graph. Since finite-memory
optimal strategies exist for Player 2, a correspondence of the value of the game
and the value of the following finite-cycle forming game can be established. The
finite-cycle forming game is played on G and the game stops when a cycle C is
formed, and the payoff is as follows: if min(p(C)) is even, then the payoff for
Player 1 is the average of the weights of the C, otherwise the payoff for Player 1
is −1. The existence of pure memoryless optimal strategy in the finite-cycle
forming game can be obtained from the results of Björklund et al. [3]. This
concludes the proof of the following theorem.

Theorem 4. For all lexicographic mean-payoff parity games, if Player 1 has a
finite-memory optimal strategy, then she has a memoryless optimal strategy.

It follows from Theorem 4 that the decision whether there is a finite-memory
optimal strategy for Player 1 is in NP. The NP procedure goes as follows: we
guess the value v0 of state s0 and verify that the value at s0 is no more than
v0. We can decide in coNP whether the value at a state is at least v, for v ∈ Q.
Thus, we can decide in NP whether the value at state s0 is no more than v0 (as it
is the complement). Then, we guess a memoryless optimal strategy for Player 1
and verify (in polynomial time) that the value is at least v0 given the strategy.

4 Quantitative Verification and Synthesis

We are interested in the verification and the synthesis problem for quantitative
specifications given by a lexicographic mean-payoff (parity) automaton. In the
following simple lemma we establish that these automata also suffice to express
qualitative properties.

Lemma 4. Let A = 〈G, p〉 be a deterministic parity automaton and let A′ =
〈G′, r〉 be a lexicographic mean-payoff automaton. We can construct a lexico-
graphic mean-payoff parity automaton A × A′ = 〈G × G′, r, p〉, where G × G′ is
the product graph of G and G′ such that for any word w and associated run ρ,
LMPA×A′(ρ) = −1 if the run of w is lost in A, and LM A′(ρ′) otherwise, where
ρ′ is the projection of ρ on G′.

Note that 〈LA, LA′〉 = LA×A′ + 1, assuming that infw∈Σω LA′(w) = 0. If A is a
safety automaton, the language 〈LA, LA′〉 can be presented by a lexicographic
mean-payoff automaton (see Example 4). Thus, lexicographic mean-payoff au-
tomata suffice to express both a quantitative aspect and a safety aspect of a
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Fig. 5. Safety automaton B for G(r → g ∨ X g) and automaton C for 〈LB, LA2〉

specification. Lexicographic mean-payoff parity automata can be used to in-
troduce a quantitative aspect to liveness specifications and thus to the usual
linear-time temporal logics.

Example 4. Let us resume Example 1. Fig. 5 shows a safety automaton B for
the specification G(r → g∨X g). It also shows the mean-payoff automaton C for
〈LB, LA2〉. (See Fig. 2 for the definition of A2.)

4.1 Quantitative Verification

We now consider the verification problem for quantitative specifications. For
qualitative specifications, the verification problem is whether an implementa-
tion satisfies the specification for all inputs. For quantitative specifications, the
problem generalizes to the question if an implementation can achieve a given
value independent of the inputs.

Let A = 〈〈S, s0, E〉, r, p〉 be a lexicographic mean-payoff parity automaton and
let M = 〈Q, q0, δ〉 be a Mealy machine. The quantitative verification problem is to
determine LA(M). The corresponding decision problem is whether LA(M) ≥ c
for a given cutoff value c. Clearly, verification of qualitative languages is a special
case in which the cutoff value is 1.

Theorem 5. The value LA(M) can be computed in time O(|S| · |Q| · |E| · |δ| ·
d · lg(|Q| · |δ| · |r|)).

Proof. We reduce the lexicographic mean-payoff parity automata to a mean-
payoff parity automaton A′ using the reduction stated in Section 3.2 and build
the product automaton of A′ and M . Then, we check if it contains a cycle that
is not accepted by the parity algorithm [19]. If so, we return −1. If not, in the
second step we find the minimal mean-weight cycle [18].

Example 5. In Example 1, we computed the values of Implementations M1,
M2, and M3 (Fig. 1) for the specifications A1 and A2 given in Fig. 2. Specifica-
tion A1 requires the number of grants to be minimal. Under this specification,
M3 is preferable to both other implementations because it only produces half
as much grants in the worst case. Unfortunately, A1 treats a grant the same
way regardless of whether a request occurred. Thus, this specification does not
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Fig. 6. A game (optimal strategy shown in bold) and corresponding Mealy machine

distinguish between M1 and M2. Specification A2 only punishes “unnecessary”
grants, which means that A2 prefers M2 and M3 to M1.

A preference between the eagerness of M2 and the laziness of M3 can be
resolved in either direction. For instance, if we combine the two quantitative
languages using addition, lazy implementations are preferred.

4.2 Quantitative Synthesis

In this section, we show how to automatically construct an implementation from
a quantitative specification given by a lexicographic mean-payoff (parity) au-
tomaton. First, we show the connection between automata and games, and
between strategies and Mealy machines, so that we can use the theory from
Sections 3 to perform synthesis. Then, we define different notions of synthesis
and give their complexity bounds.

We will show the polynomial conversions of an automata to a game and of a
strategy to a Mealy machines using an example.

Example 6. Fig. 6(left) shows the game G corresponding to the automaton C
shown in Fig. 5. Note: The alphabet 2AP has been split into an input alphabet 2I

controlled by Player 2 (squares) and an output alphabet 2O controlled by Player 1
(circles). Accordingly, each edge e of C is split into two edges e2 and e1; the
reward of e2 is zero and the reward of e2 is double the reward of e. It should be
clear that with the appropriate mapping between runs, the payoff remains the
same. Because we want a Mealy machine, the input player makes the first move.

The figure also shows an optimal strategy (bold edges) for G with payoff 2.
The right side of the figure shows the Mealy machine M corresponding to the
strategy. It is constructed by a straightforward collection of inputs and chosen
outputs. It is easily verified that LC(M) = 2.

Definition 1. Let L be a quantitative language and let c ∈ R
d be a cutoff value.

We say that L is c-realizable if there is a Mealy machine M such that L(M) ≥ c.
We say that L is limit-c-realizable if for all ε > 0 there is a Mealy machine M
such that L(M) + ε ≥ c.

Suppose the supremum of L(M) over all Mealy machines M exists, and denote
it by c∗. We call L realizable (limit-realizable) if L is c∗-realizable (limit-c∗-
realizable). A Mealy machine M with value L(M) ≥ c∗ (L(M) + ε ≥ c∗) is
called optimal (ε-optimal, resp.).
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Clearly, realizability implies limit-realizability. Note that by the definition of
supremum, L is limit-c∗-realizable iff c∗ is defined. Note also that realizability
for qualitative languages corresponds to realizability with cutoff 1. Synthesis is
the process of constructing an optimal (ε-optimal) Mealy machine. Note that
for a cutoff value c, if L is c-realizable, then we have that L(M) ≥ c for any
optimal Mealy machine M . If L is limit-c-realizable, then L(Mε) + ε ≥ c holds
for any ε-optimal Mealy machine Mε.

Example 7. We have already seen an example of a realizable specification ex-
pressed as a mean-payoff automaton (See Figs. 2 and 5 and Example 4.) Exam-
ple 3 shows a language that is only limit-realizable.

For the combination of safety and quantitative specifications, we have Theorem 6.

Theorem 6. Let A = 〈〈S, s0, E〉, r〉 be a lexicographic mean-payoff automaton
of dimension d, and let c be a cutoff value. The following assertions hold.

1. LA is realizable (hence limit-realizable); LA is c-realizable iff LA is limit-c-
realizable.

2. c-realizability (and by (1) limit-c-realizability) of LA are decidable in NP ∩
coNP.

3. An optimal Mealy machine can be constructed in time O(|E|4d+6 · |r|).
The first results follow from the existence of memoryless optimal strategies for
lexicographic mean-payoff games. The second and third results follows from the
complexity and algorithms of solving these games. (See Theorem 1.) For liveness,
we have the following result.

Theorem 7. Let A = 〈〈S, s0, E〉, r, p〉 be a lexicographic mean-payoff parity au-
tomaton of dimension d and let c be a cutoff value. The following assertions
hold.

1. LA is limit-realizable, but it may not be realizable; limit-c-realizability of LA

does not imply c-realizability.
2. Realizability and c-realizability of LA are decidable in NP, and limit-c-

realizability of LA is decidable in coNP.
3. For ε > 0, an ε-optimal Mealy machine can be constructed in time O(|S||p| ·

|E|4d+6 · |r|+ 1
ε ). If LA is realizable, then an optimal Mealy machine can be

constructed in time O(|S||p| · |E|4d+6 · |r|).
Explanation. Following Theorem 4, realizability and c-realizability can be com-
puted in NP. We have that LA is limit-c-realizable iff c is not higher than the
value of the initial state, which can be decided in coNP. (Theorem 2.) Limit-
realizability follows from Theorem 3.

Example 8. In Example 3 we discussed the specification ϕ = G(r → F g). In
combination with the quantitative language given by A3 in Fig. 3, this specifica-
tion is optimally realizable by a finite implementation: implementations M1 and
M2 from Fig. 1 are two examples. The combination of ϕ and the quantitative
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language given by A1 in Fig. 2 only yields a specification that is optimally limit-
realizable. Automaton A1 prefers as few as possible requests. An implementation
that is optimal within 1/k could simply give a request every k cycles. It may not
be useful to require that something happens as infrequently as possible in the
context of liveness specifications. Instead, more subtle approaches are necessary;
in this case we could require that unnecessary grants occur as little as possible.
(Cf. A2 in Fig. 2.)

5 Conclusions and Future Work

We introduced a measure for the “goodness” of an implementation by adding
quantitative objectives to a qualitative specification. Our quantitative objec-
tives are mean-payoff objectives, which are combined lexicographically. Mean-
payoff objectives are relatively standard and, as we demonstrated, sufficiently
expressive for our purposes. Other choices, such as discounted objectives [12],
are possible as well. These give rise to different expressive powers for specification
languages [8].

Finally, we have taken the worst-case view that the quantitative value of an
implementation is the worst reward of all runs that the implementation may pro-
duce. There are several alternatives. For instance, one could take the average-
case view of assigning to an implementation some expected value of the cost
taken over all possible runs, perhaps relative to a given input distribution. An-
other option may be to compute admissible strategies. It can be shown that
such strategies do not exist for all mean-payoff games, but they may exist for an
interesting subset of these games.
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