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Abstract

This contribution provides experimental evidence for the two-wave with diffuse power (TWDP) fading model. We

have conducted two indoor millimetre wave measurement campaigns with directive horn antennas at both link ends.

One horn antenna is mounted in a corner of our laboratory, while the other is steerable and scans azimuth and

elevation. Our first measurement campaign is based on scalar network analysis with 7 GHz of bandwidth. Our second

measurement campaign obtains magnitude and phase information; it is additionally sampled directionally at several

positions in space. We apply Akaike’s information criterion to decide whether Rician fading sufficiently explains the

data or the generalised TWDP fading model is necessary. Our results indicate that the TWDP fading hypothesis is

favoured over Rician fading in situations where the steerable antenna is pointing towards reflecting objects or is

slightly misaligned at line-of-sight. We demonstrate TWDP fading in several different domains, namely, frequency,

space, and time.
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1 Introduction
Accurate modelling of wireless propagation effects is a

fundamental prerequisite for a proper communication

system design. After the introduction of the double-

directional radio channel model [1], wireless propagation

research (< 6GHz) started to model the wireless chan-

nel agnostic to the antennas used. More than a decade

later, propagation research focusses now on millimetre

wave bands to unlock the large bandwidths available in

this regime [2–5]. At millimetre waves (mmWaves), omni-

directional antennas have small effective antenna areas,

resulting in a high path loss [6–10]. To overcome this high

path loss, researchers have proposed to apply highly direc-

tive antennas on both link ends [11–14]. Most researchers

aim to achieve high directivity with antenna arrays

[15–20] and a few with dielectric lenses [21–23]. When

the link quality depends so much on the achieved beam-

forming gain, antennas must be considered as part of the
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wireless channel again. Small-scale fading is then influ-

enced by the antenna.

According to Durgin [24, p. 137], “The use of directive

antennas or arrays at a receiver, for example, amplifies

several of the strongest multipath waves that arrive in

one particular direction while attenuating the remain-

ing waves. This effectively increases the ratio of specular

to nonspecular received power, turning a Rayleigh or

Rician fading channel into a TWDP fading channel.” The

mentioned two-wave with diffuse power (TWDP) fading

channel describes this spatial filtering effect by two non-

fluctuating receive signals together with many smaller

diffuse components.

1.1 Related work

The authors of [25] investigated a simple wall scatter-

ing scenario and analysed how fading scales with various

antenna directivities and different bandwidths. Increas-

ing directivity [25], as well as increasing bandwidth

[25, 26], results in an increased Rician K-factor. The

authors of [27] analysed fading at 28GHz with high gain

horn antennas on both link ends. They observe high

Rician K-factors even at non-line-of-sight (NLOS). This

effect is explained by spatial filtering of directive antennas,
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as they suppress many multipath components [25]. Out-

door measurements in [28, 29], show a graphical agree-

ment with the Rice fit, but especially Fig. 10 in [29] might

be better explained as TWDP fading.

TWDP fading has already successfully been applied to

describe 60GHz near body shadowing [30]. Furthermore,

as quoted above, TWDPmust be considered for arrays, as

they act as spatial filters [24, 31]. While theoretical work

on TWDP fading is already advanced [32–37], experimen-

tal evidence, especially at millimetre waves, is still limited.

For enclosed structures, such as aircraft cabins and buses,

the applicability of the TWDP model is demonstrated

by Frolik [38–42]. A deterministic two ray behaviour in

ray tracing data of mmWave train-to-infrastructure com-

munications is shown in [43]. A further extension of

the TWDP-fading model, the so-called fluctuating two-

ray fading model, was also successfully applied to fit

mmWave measurement data [44–46]. This model brings

in another degree of freedom and allows for common

shadowing of both specular waves. The wireless channels

in this present study are unblocked; thus, this model is not

considered here.

Our group has conducted two measurement campaigns

[47, 48] to directionally analyse receive power and small-

scale fading parameters for mmWaves. This contribution

is based on the measurement data gathered in [47, 48].

1.2 Outline and contributions

With this contribution, we aim to bring scientific rigour

to the small-scale fading analysis of millimetre wave

indoor channels. We show in Section 2 —by means of

an information-theoretic approach [49] and null hypoth-

esis testing [50]—that the TWDP model has evidence in

mmWave communications.

We have conducted two measurement campaigns

within the same laboratory with different channel sound-

ing concepts. Our measurements are carried out in the

V-band; the applied centre frequency is 60 GHz. For both

measurement campaigns, 20 dBi horn antennas are used

at the transmitter and at the receiver. The first measure-

ment campaign (MC1) samples the channel in azimuth

(ϕ) and elevation (θ ), keeping the antenna’s (apparent)

phase centre ([51, pp. 799] ) at a fixed (x, y) coordinate.

The transmitter is mounted in a corner of our labora-

tory. The sounded environment as well as the mechanical

set-ups are explained in Section 3. For MC1, we sounded

the channel in the frequency domain by aid of scalar

network analysis, described in Section 4. These channel

measurements span over 7GHz bandwidth, supporting us

to analyse fading in the frequency domain.

For the second measurement campaign (MC2),

described in Section 5, we improved the set-up mechani-

cally and radio frequency (RF) wise. By adding another

linear guide along the z-axis, we keep the antenna’s phase

centre constant in (x, y, z) coordinate, irrespective of

the antenna’s elevation. Furthermore, we changed the

sounding concept to time-domain channel sounding.

This approach allows us to utilise the time domain and to

show channel impulse responses in Section 7. Addition-

ally, by adjusting (x, y, z,ϕ, θ), we sample the channel in

the spatial domain at all directions (ϕ, θ). These improve-

ments enable us to show spatial correlations in Section 6,

a further analysis tool to support the claims fromMC1.

In summary, we demonstrate TWDP fading for direc-

tional mmWave indoor channels in the frequency-domain,

in the spatial-domain, and in the time-domain.

2 Methodology—fadingmodel identification
TWDP fading captures the effect of interference of two

non-fluctuating radio signals and many smaller so-called

diffuse signals [31]. The TWDP distribution degener-

ates to Rice if one of the two non-fluctuating radio sig-

nals vanishes. This is analogous to the well-known Rice

degeneration to the Rayleigh distribution with decreasing

K-factor. In the framework ofmodel selection, TWDP fad-

ing, Rician fading, and Rayleigh fading are hence nested

hypotheses [49]. Therefore, it is also obvious that among

these alternatives, TWDP always allows the best possi-

ble fit of measurement data. Occam’s razor [52] asks to

select, among competing hypothetical distributions, the

hypothesis that makes the fewest assumptions. Different

distribution functions are often compared via a goodness-

of-fit test [53]. Nevertheless, the authors of [54] argue that

Akaike’s information criterion (AIC) [49, 55–57] is better

suited for the purpose of choosing among fading distri-

butions. Later on, the AIC was also used in [58–62]. The

AIC can be seen as a form of Occam’s razor as it penalises

the number of estimable parameters in the approximating

model [49] and hence aims for parsimony.

2.1 Mathematical description of TWDP fading

An early form of TWDP fading was analysed in [32].

Durgin et al. [31] introduced a random phase superpo-

sition formalism. Later, Rao et al. [35] achieved a major

breakthrough and found a description of TWDP fading as

conditional Rician fading. For the benefit of the reader, we

will briefly repeat some important steps of [35].

The TWDP fading model in the complex-valued base-

band is given as:

rcomplex = V1e
jφ1 + V2e

jφ2 + X + jY , (1)

whereV1 ≥ 0 andV2 ≥ 0 are the deterministic amplitudes

of the non-fluctuating specular components. The phases

φ1 and φ2 are independent and uniformly distributed in

(0, 2π). The diffuse components are modelled via the law

of large numbers as X + jY , where X,Y ∼ N
(
0, σ 2

)
. The

K-factor is the power ratio of the specular components to

the diffuse components:
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K = V 2
1 + V 2

2

2σ 2
. (2)

The parameter � describes the amplitude relationship

among the specular components:

� = 2V1V2

V 2
1 + V 2

2

. (3)

The �-parameter is bounded between 0 and 1 and

equals 1 iff and only if both amplitudes are equal. The

second moment of the envelope r = |rcomplex| of TWDP

fading is given as:

E
[
r2

]
= � = V 2

1 + V 2
2 + 2σ 2 . (4)

Expectation is denoted by E. For bounded amplitudes

V1 and V2, a clever choice of σ 2 normalises �, that is

� ≡ 1. Starting from (4), by using (2) we arrive at:

σ 2 = 1

2(1 + K)
. (5)

Given (K ,�,� ≡ 1), the authors of [63] provide a for-

mula for the amplitudes of both specular components:

V1,2 = 1

2

√
K

K + 1

(√
1 + � ±

√
1 − �

)
. (6)

Real-world measurement data have � �= 1. To work

with the formalism introduced above, we normalise the

measurement data through estimating �̂ by the method

of moments. The second moment � of Rician fading and

TWDP fading is merely a scale factor [64, 65]. Notably, we

are more concerned with a proper fit of K and �. Gen-

erally, estimation errors on � propagate to K and � esti-

mates. However, Lopez-Fernandez et al. [64] achieved an

almost asymptotically efficient estimator with a moment-

based estimation of �.

Our envelope measurements are partitioned into 2 sets.

We take the first set (r1, . . . , rn, . . . rN ) for parameter esti-

mation of the tuple (K ,�) as described in Section 2.2,

and hypothesis testing as described in Section 2.3. The

first set is carefully selected to obtain envelopes sam-

ples that are as independent as possible. The second set

(r1, . . . , rm, . . . rM) is the complement of the first set. We

use the elements of the second set to estimate the second

moment via:

�̂ = 1

M

M∑

m=1

r2m , (7)

where m is the sample index and M is the size of the sec-

ond set. Partitioning is necessary to avoid biases through

noise correlations of �̂ and
(
K̂ , �̂

)
[66].

By considering the estimate (7) as true parameter �, all

distributions are parametrised by the tuple (K ,�), solely.

Example distributions are shown in Fig. 1. The cumulative

distribution function (CDF) of the envelope of (1) is given

in [35] as:

FTWDP(r;K ,�) = (8)

1 − 1

2π

2π∫

0

Q1

(√
2K [1 + � cos(α)],

r

σ

)
dα .

The Marcum Q-function is denoted by Q1(·, ·). For
� → 0, Eq. (8) reduces to the well-known Rice CDF:

FRice(r;K) = 1 − Q1

(√
2K ,

r

σ

)
. (9)

It might sound tempting to have a second strong radio

signal present; in fact, however, two waves can either

superpose constructively or destructively and eventu-

ally lead to fading that is more severe than Rayleigh

[38–42].We observe the highest probability for deep fades

for TWDP fading in Fig. 1.

2.2 Parameter estimation andmodel selection

Note that our model of TWDP fading (1) does not contain

noise. Over our wide frequency range (in MC1, we have

7GHz bandwidth), the receive noise power spectral den-

sity is not equal. A statistical noise description that is valid

over our wide frequency range is frequency-dependent.

To avoid the burden of frequency-dependent noise mod-

elling, we only take measurement samples which lie at

least 10 dB above the noise power and ignore noise in our

estimation.

Having the envelope measurement data set

(r1, . . . , rn, . . . rN ) at hand, we are seeking a distribution

of which the observed realisations rn appear most likely.

To do so, we estimate the parameter tuple (K ,�) via the

maximum likelihood procedure:

(
K̂ , �̂

)
= argmaxK ,�

N∑

n=1

ln
∂FTWDP(rn;K ,�)

∂r

= argmaxK ,�

N∑

n=1

ln fTWDP(rn;K ,�)

= argmaxK ,�

N∑

n=1

lnL(K ,�|rn) . (10)

We denote the probability density function (PDF) by

f (·), n denotes the sample index, and N the size of the

set. To solve (10), we first discretise K and � in steps of

0.05. Next, we calculate ∂FTWDP(r;K ,�)
∂r for all parameters

via numerical differentiation. Within this family of distri-

butions, we search for the parameter vector maximising

the log-likelihood function (10). For the optimal Rice

fit, the maximum is searched within the parameter slice

(K ,� ≡ 0). An exemplary fit of Rician and TWDP fad-

ing is shown in Fig. 2. As a reference, Rayleigh fading

(K ≡ 0, � ≡ 0) is shown as well.
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Fig. 1 Comparison of Rayleigh, Rician, and TWDP fading. The TWDP distribution with � = 1 deviates from the Rice distribution. TWDP fading’s

probability for deep fades is higher than for a Rayleigh distribution

Fig. 2 CDFs: Distribution fitting for exemplary frequency domain measurement data. Illustration of the maximum likelihood fitted Rice distribution

and the maximum likelihood fitted TWDP fading distribution. The Rician K-factor and the TWDP K-factor deviate significantly. Rayleigh fading is

plotted as reference
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To select between Rician fading and TWDP fading, we

employ Akaike’s information criterion (AIC). The AIC is

a rigourous way to estimate the Kullback-Leibler diver-

gence, that is, the relative entropy based on themaximum-

likelihood estimate [49]. Given the maximum-likelihood

fitted parameter tuple (K̂ , �̂) of TWDP fading and Rician

fading, we calculate the sample size-corrected AIC [49, p.

66] for Rician fading (AICR) or TWDP fading (AICT):

AICR/T = −2

N∑

n=1

lnLR/T

(
K̂ , �̂|r

)
+ 2UR/T

+ 2UR/T(UR/T + 1)

N − UR/T − 1
,

(11)

where U is the model order. For Rician fading, the model

order is UR = 1, since we estimate the K-factor, only. For

TWDP fading UT = 2, as � is estimated additionally. The

second moment� (estimated already with a different data

set before the parameter estimation) is not part of the ML

estimation (10) and therefore not accounted in the model

order U. We choose between Rician fading and TWDP

fading based on the lower AIC.

2.3 Validation of the chosenmodel

Based on (11), one of the two distributions, Rice or TWDP,

will always yield a better fit. To validate whether the cho-

sen distributions really explains the data, we state the

following statistical hypothesis testing problem:

H0 :

⎧
⎨
⎩
FRice

(
r; K̂

)
, if AICR ≤ AICT

FTWDP

(
r; K̂ , �̂

)
, else

H1 :

⎧
⎨
⎩

¬FRice

(
r; K̂

)
, if AICR ≤ AICT

¬FTWDP

(
r; K̂ , �̂

)
, else

(12)

The Boolean negation is denoted by ¬. Our statistical tool

is the g-test [67, 68]1. At a significance level α, a null

hypothesis is rejected if:

G = 2

m∑

i=1

Oi ln

(
Oi

Ei

)
?
> χ2

(1−α,m−e) , (13)

where Oi is the observed bin count in cell i and Ei is

the expected bin count in cell i under the null hypothe-

sis H0. The cell edges are illustrated with vertical lines in

Fig. 2. The cell edges are chosen, such that 10 observed

bin counts fall into one cell. The estimated parameters of

the model are denoted by e. For Rician fading, we estimate

e = 2 (�,K) parameters, and for TWDP fading, we esti-

mate e = 3 (�,K ,�) parameters in total. The (1 − α)

quantile of the chi-square distribution withm− e degrees

of freedom is denoted by χ2
(1−α,m−e). The prescribed con-

fidence level is 1 − α = 0.01 .

3 Floor plan and set-ups for MC1 andMC2
Our measured environment is a mixed office and labo-

ratory room. There are office desks in the middle of the

room, and at the window side, there are laboratory desks

Fig. 3 Floor plan of the measured environment. The floorplan indicates the multipath components that are visible in the measurement results. TX

and RX switch roles for MC2. TX/RX in the right upper corner of the room is always static. RX/TX in the middle of the room is steerable, indicated by

the spider’s web
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(see Fig 3.). The main interacting objects in our channel

are office desks, a metallic fridge, a wall, and the surface of

the laboratory desk. These objects are all marked in Fig. 3.

Our directional measurements are carried out by using

the traditional approach of mechanically steered direc-

tional antennas [69, 70]. As directional antennas, 20 dBi

conical horn antennas with an 18◦ 3 dB opening angle are

used. Our polarisation is determined by the LOS polarisa-

tion. When TX and RX are facing each other at LOS, the

polarisation is co-polarised and the E-field is orthogonal

to the floor. In MC1, the essential mechanical adaptation

to the state-of-the-art directional channel sounding set-

up [71, 72] is that the elevation-over-azimuth positioner

is mounted on an xy-positioning stage. Thereby, we com-

pensate for all linear translations caused by rotations and

keep the phase centre of the horn antenna always at the

same (x, y) coordinate, see Fig. 4. The z coordinate is

roughly 70 cm above ground but varies 13 cm for different

elevation angles.

Fig. 4 Photograph of the mechanical set-up for MC1 from the

receiver point of view. The receive antenna, a conical 20 dBi horn, is

mounted on a multi-axis positioning and rotating system. The

azimuthal and elevation angle are controlled to scan the whole upper

hemisphere. The multi-axis system moves and rotates the horn

antenna such that its phase centre stays at the same (x, y) coordinate

during the directional scan

ForMC2, we add another linear guide along the z-axis to

compensate for all introduced offsets. The horn antenna’s

phase centre is thereby lifted upwards by 1 m. Now, we are

able to fix the phase centre of the horn antenna at a spe-

cific (x, y, z) coordinate in space. The whole mechanical

set-up and the fixed phase centre is illustrated in Fig. 5.

4 MC1: Scalar-valued widebandmeasurements
A wireless channel is said to be small-scale fading, if the

receiver (RX) cannot distinguish between different mul-

tipath components (MPCs). Depending on the position

of the transmitter (TX), the position of the RX and the

position of the interacting components, the MPCs inter-

fere constructively or destructively [73, pp. 27]. The fading

concept only asks for a single carrier frequency, whose

MPCs arrive with different phases at the RX. By spatial

sampling, a statistical description of the fading process is

found.

In MC1, the spatial (x, y) coordinate (of TX and RX) is

kept constant. Different phases of the impinging MPCs

are realised by changing the TX frequency over a band-

width of 7GHz. Thereby, we implicitly rely on frequency

translations to estimate the parameters of the spatial fad-

ing process.

4.1 Measurement set-up

We measure the forward transfer function with an

Rohde and Schwarz R&S ZVA24 vector network analyser

(VNA). The VNA can measure directly up to 24 GHz.

For mmWave up-conversion and down-conversion, we

employ modules from Pasternack [74]. They are based on

radio frequency integrated circuits described in [75]. The

up-converter module and the down-converter module are

operating built-in synthesiser phase-locked loops (PLLs),

where the local oscillator (LO) frequency is calculated as:

fLO = 7/4 · sPLL · 285.714MHz ≈ sPLL · 500MHz . (14)

The scaling factor of the synthesiser PLL counters is

denoted by sPLL. For fLO ≈ 60GHz, the scaling fac-

tor is sPLL = 120. To avoid crosstalk, we measure the

transfer function via the conversion gain (mixer) measure-

ment option of our VNA and operate the transmitter and

receiver at different baseband frequencies: 601 to 1100

MHz and 101 to 600 MHz. The set-up is shown in Fig. 6.

4.2 Receive power and fading distributions

In Fig. 7, we show the estimated received mean power of 7

GHz bandwidth, normalised to the maximum RX power,

that is

PRX,norm.(ϕ, θ) = �̂(ϕ, θ)

maxϕ′,θ ′
(
�̂(ϕ′, θ ′)

) . (15)
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Fig. 5 Photograph of the improved mechanical set-up for MC2 from the receiver point of view. Our mechanical set-up consists now of five

independent axes to fully compensate all offsets introduced by rotation. A schematic sketch is superimposed. All five axes are necessary to rotate

the horn antenna around the phase centre at a fixed (x, y, z) coordinate. Notice that TX and RX switch roles as compared to Fig. 4

Fig. 6 RF set-up for MC1. The combination of different PLL scaling factors allows for a measurement bandwidth of 7 GHz. The reference clock for the

up-converter and the down-converter is shared. The power splitter has an isolation of 30 dB. To avoid possible leakage on the clock distribution

network, attenuators additionally decouple both converters. The transfer function is measured applying the conversion gain (mixer) measurement

option of the R&S VNA
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Fig. 7 Estimated directional receive power of MC1. There are four main interacting objects leading to stronger receive power (marked in the figure).

TWDP fading occurs whenever the LOS-link is not perfectly aligned or the reflecting structure is not perfectly plain. Red diamonds mark TWDP

fading, and white circles mark Rician fading. Black markers show points where both distributions are rejected by the hypothesis test. Directions less

than 10 dB above the noise level are not evaluated

As already mentioned in Section 2, we partition the

frequency measurements into two sets. The normalised

receive power is calculated according to (7), with fre-

quency samples spaced by 2.5MHz. Every tenth sam-

ple is left out as these samples are used for fitting of

(K ,�) and hypothesis testing. We display the results

via a stereographic projection from the south pole and

use tan(θ/2) as azimuthal projection. All sampling points,

lying at least 10 dB above the noise level, are subject

of our study. They are displayed with red, white, or

black markers. Sampling points where we decided for

TWDP fading, following the procedure described in

Section 2, are marked with red diamonds. White circles

mark points for which AIC favours Rician fading. Four

points are marked black. These points failed the null

hypothesis test, and we neither argue for Rician fading

nor for TWDP fading. TWDP fading occurs whenever

the line-of-sight (LOS)-link is not perfectly aligned or

if the interacting object cannot be described by a pure

reflection.

In Fig. 8, the K-parameter of the selected hypothe-

sis is illustrated. Figure 8 shows either the Rician K-

factor or the TWDP K-factor, depending on the selected

hypothesis. Note that their definitions are fully equiva-

lent. For Rician fading, the amplitude V2 in (1) is zero

by definition. Whenever the RX power is high, the K-

factor is high. Below the K-estimate, the estimate of �

is shown. Here again, by definition, � ≡ 0 whenever

we decide for Rician fading. For interacting objects, the

parameter � tends to be close to one. Note, that deci-

sions based on AIC select TWDP fading mostly when

� is above 0.3. Smaller � values do not change the dis-

tribution function sufficiently to justify a higher model

order.

5 MC2: Vector-valued spatial measurements
In contrast to MC1, we no longer rely on frequency trans-

lations and are indeed sampling the channel in space. The

fading results we present in Section 5.3 are evaluated at

a single frequency. Fading is hence determined by the

obtained spatial samples, exclusively.

5.1 Measurement set-up

At the transmitter side, a 2-GHz wide waveform is

produced by an arbitrary waveform generator (AWG).

A multi-tone waveform (OFDM) with Newman phases

[76–78] is applied as sounding signal. The signal has 401

tones (sub-carriers) with a spacing of 5MHz. This large

spacing assures that our system is not limited by phase

noise [79]. The TX sequence is repeated 2 000 times to

obtain a coherent processing gain of 33 dB for i.i.d. noise.

The Pasternack up-converter (the same as in MC1) shifts

the baseband sequence to 60GHz. The 20 dBi conical

horn antenna, together with the up-converter is mounted
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Fig. 8 Estimated K-factor (a) and Delta-parameter (b) of MC1. We plot

the K-factor estimate of the selected hypothesis. The K-factor

behaves analogously to the RX power. At LOS, the K-factor is far

above 20 dB. The desk reflection has a surprisingly high K-factor of

about 15 dB. Other reflections have K-factors of approximately 10 dB.

The �-parameter for reflections tends to be close to 1. Markers have

the same meaning as in Fig. 7

on a five axis positioner to directionally steer them. As

receiver, a signal analyser (SA) (R&S FSW67) with a 2-

GHz analysis bandwidth is used. The received in-phase

and quadrature (IQ) baseband samples are obtained from

the SA. The whole system is sketched in Fig. 9.

InMC2, for feasibility reasons, TX and RX switch places

compared to MC1. The RX in form of the SA is put onto

the laboratory table. The RX 20 dBi conical horn antenna

is directly mounted at the RF input of the SA. The SA is

located on a table close to a corner of the room; the RX

antenna is not steered.

Fig. 9 RF set-up for MC2. The VNA from Fig. 6 is replaced with an

AWG and an SA. This leads to a set-up where we obtain phase

information as well. An option of the SA gives us direct access to the

baseband IQ samples

Similar to the set-ups of [80–83], proper trigger-

ing between the arbitrary waveform generator and

the SA ensures a stable phase between subsequent

measurements.

5.2 Receive power

For the calculation of the RX power, averaged over 2GHz

bandwidth, we perform a sweep through azimuth and ele-

vation at a single coordinate. The LOS and wall reflection

from MC1 are still visible in Fig. 10. Fading is evaluated

at a single frequency in the subsection below. Neverthe-

less, we already indicate fading distributions bymarkers in

Fig. 10 in order to better orient ourselves later on.

As the steerable horn antenna is above the office desks

and the fridge level, these interacting objects do not

become apparent. In case the steerable TX does not hit

the RX at LOS accurately, the table surface acts as reflector

and a TWDP model explains the data. For wall reflec-

tions, with non-ideal alignment, TWDP also explains the

data best.

5.3 Fading distributions

To obtain different spatial realisations, with the horn

antenna pointing into the same direction, the coordinate

of the apparent phase centre is moved to (x, y, z) positions

uniformly distributed within a cube of side length 2.8λ

(see Fig. 11). We realise a set of 9 × 9 × 9 = 729 direc-

tional measurements. This results in a spacing between
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Fig. 10 Estimated directional receive power of MC2. Due to the elevated position of the steerable horn antenna, two interacting objects from Fig. 7,

namely the desk and the fridge, are no longer visible. LOS and the wall reflection are still present. These regions are the only ones which are spatially

sampled. Markers have the same meaning as in Fig. 7

Fig. 11 Spatial sampling grid. For one specific direction, we draw

9 × 9 × 9 = 729 samples uniformly from a cube of side length 2.8λ.

The distance between samples is 0.35λ with a repeat accuracy of

±0.004λ. The orientation of the horn antenna is indicated via the

cone shape at the sampling points

spatial samples of 0.35λ in each direction. Although λ/2

sampling is quite common [25, 27], we choose the sam-

pling frequency to be co-prime with the wavelength, to

circumvent periodic effects [84]. We restrict our spa-

tial extend to avoid changes in large-scale fading. Only

at directions with strong reception levels spatial sam-

pling is performed2. Similar as in the previous section,

we partition the measurements into 2 sets. The parti-

tioning is made according to a 3D chequerboard pattern.

The first set is used for the estimation of the second

moment �̂, and the second set is used for the parameter

tuple (K ,�).

The best fitting K-factors, in both regions with strong

reception, are illustrated in Fig. 12, top part. Below the �-

parameters are provided. Remember, the RX in form of an

SA is put on the laboratory table. In case the TX is not per-

fectly aligned, a reflection from the table surface yields a

fading statistic captured by the TWDP model. The inter-

action with the wall, similar to Fig. 8, has again regions

best modelled via TWDP fading.

6 MC2: Efficient computation of the spatial
correlation

The wall reflection from the previous section is now sub-

ject to a more detailed study. Our spatial samples are used

to show spatial correlations among the drawn samples.
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Fig. 12 Estimated K-factor (a) and Delta-parameter (b) of MC2. Due

to the elevated position, the wall reflection has a 6 dB increased

K-factor as compared to MC1; see top part of Fig. 8. If the beam is not

perfectly aligned, Rician fading turns again into TWDP fading. Wall

reflections described by TWDP fading have a �-parameter of close to

one. The table surface reflection leads to a significantly smaller

reflected component (� ≪ 1). The encircled sampling points are

subject of further study in Sections 6 and 7. Markers have the same

meaning as in Fig. 7

Our three-dimensional sampling problem, see again

Fig. 11, is treated via two-dimensional slicing. For the

calculation of the spatial (2D) autocorrelation function,

we apply the Wiener–Khintchine–Einstein theorem that

relates the autocorrelation function of a wide-sense-

stationary random process to its power spectrum [85]. In

two dimensions, this theorem reads [86, 87]:

F2D

{
C(x, y)

}
= S

(
x′, y′) , (16)

where C is the 2D-autocorrelation and S is the power

spectral density of a 2D signal. The operator F2D denotes

the 2D Fourier transform. We calculate all 2D autocorre-

lation functions C(z,f ) of one x − y slice at height z at a

single frequency f through

F2D

{
C

(z,f )(x, y)
}

= F2D

{
ℜ

{
H

(z,f )
(
x′, y′)}}

⊙ conj
{
F2D

{
ℜ

{
H

(z,f )
(
x′, y′)}}}

. (17)

Fig. 13 Spatial correlation plot at ϕ = 160◦ , 340◦ and θ = 110◦ . For
the (a) wall reflection at ϕ = 160◦ , the pattern shows an interference

of two plane waves, supporting the TWDP fading assumption. For (b)

LOS at ϕ = 340◦ , we observe a spatial correlation pattern dominated

by one wave. The white dashed lines illustrate plane wave phase

fronts
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The symbols ⊙ denotes the Hadamard multiplication.

The operator conj{·} denotes complex conjugation. To

ensure a real-valued autocorrelation matrix (instead of a

generally complex representation [87]), from the complex-

valued channel samples, only the real parts ℜ{·} are taken.
The spatial autocorrelation of the imaginary parts are

identical. One could also analyse the magnitude and phase

individually. While the correlation of the magnitude stays

almost at 1, the phase correlation patterns are similar to

those of the real part.

The 2D Fourier transform F2D is realised via a 2D dis-

crete Fourier transform (DFT). The 2D DFT is calculated

via a multiplication with the DFT matrix D from the left

and the right. Tomimic a linear convolution with the DFT,

zero padding is necessary. We hence take the matrix H̃
(z,f )

H̃
(z,f ) =

(
ℜ

{
H

(z,f )
}
0

0 0

)
. (18)

Furthermore, the finite spatial extend of our samples

acts as rectangular window. The rectangular window leads

to a triangular envelope of the the autocorrelation func-

tion. This windowed spatial correlation is denoted by:

C
(z,f )
windowed = D

H
((

DH̃
(z,f )

D

)
(19)

⊙ conj
{
DH̃

(z,f )
D

})
D

H .

To compensate the windowing effect, we calculate the

spatial correlation of the rectangular window, constructed

in accordance to (18):

S = D
H

((
D

(
1 0

0 0

)
D

)

⊙ conj

{
D

(
1 0

0 0

)
D

})
D
H .

The matrix 1 denotes the all-ones matrix. Matrix S

compensates the truncation effect of the autocorrelation

Fig. 14 Scatter-plot of the CIRs. We plot the CIRs as a function of spatial distance, where �s = 0 corresponds to the LOS distance. Our spatial

resolution (a channel tap) is 15 cm. The spatial extend of our sampled cube (729 samples) is 2.8λ = 1.4 cm, a magnitude smaller than the spatial

resolution. The scatter-plot is evaluated at a (a) wall reflection (ϕ = 160◦) and at (b) LOS (ϕ = 340◦). The mean power is plotted with a continous

red line. We observe that the arrival cluster centred at 2.5m fades very deeply. The gray highlighted region around 2.5m is further analysed in Fig. 15
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Fig. 15 Violin-plot of the CIR time-gated for the wall reflection. This figure shows a zoom-in of the gray-highlighted region in Fig. 14. In contrast to

Fig. 14, the y-axis is in linear scale. Thereby, the violin plot indicates the distribution at each tap. The marker shows the mean value. The marker style

codes best fitting distributions

Fig. 16 CDF: Distribution fitting for spatial measurement data, time gated by the channel tap at 2.5m, ϕ = 160◦ , and θ = 110◦ . Note that, similar to

the fitting result in Fig. 2, the estimated Rician K-factor is again much smaller than the TWDP K-factor
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through element-wise (Hadamard) division, denoted by

⊘. Finally, the efficient computation of the spatial correla-

tion (17) reads:

C
(z,f ) = C

(z,f )
windowed ⊘ S . (20)

At a distance of 0.35λ, the measurement data is still

correlated; therefore, we are able to view our correlation

results on the finer, interpolated grid. The interpolation

factor is 20. That means that our spatial correlations are

shown on a grid of 0.35λ/20 = 0.0175λ distance. The very

efficient implementation of (20) is applied to all (parallel)

2D slices and to all frequencies. All realisations in z and f

are averaged:

C̄ = 1

9

1

401

9∑

z=1

401∑

f=1

C
(z,f ) . (21)

Furthermore, we plot one-dimensional autocorrelation

functions, evaluated along x and y, together with their

two-dimensional representations. We provide two spa-

tial correlation plots evaluated at an azimuth angle of

ϕ = 340◦ and ϕ = 160◦ in Fig. 13, both at an eleva-

tion angle of θ = 110◦. The bottom part of Fig. 13 shows

a correlation pattern dominated by a single wave. The

spatial correlation above shows an interference pattern,

which is intuitively explained by a superposition of two

plane waves. The one dimensional correlations, evaluated

either at the x-axis or at the y-axis, show this oscillatory

behaviour as well.

7 MC2: Time-gated fading results
To confirm that our observations are not artefacts of our

measurement set-up, for example back-lobes of the horn

antenna, we now study the wireless channel in the time

domain. Our 2-GHz wide measurements fromMC2 allow

for a time resolution of approximately 0.5 ns. This corre-

sponds to a spatial resolution of 15 cm. We plot the chan-

nel impulse responses (CIRs) as a function of distance,

namely the LOS excess length �s, that is:

h(�s) = h((τ − τLOS)c0) . (22)

The scatter-plot of the CIRs for ϕ = 160◦ is shown

in Fig. 14. The LOS CIR at ϕ = 340◦ is displayed as

reference as well. The steerable TX is positioned more

than a metre apart from the wall. This amounts in an

excess distance of approximately two to three metres. At

this excess distance, a cluster of multipath components is

present. Note, if the horn antenna points towards the wall,

the wave emitted by the back-lobe of the horn antenna is

received at zero excess distance. Still, the receive power of

the back-lobe is far below the components arriving from

the wall reflection. Fading is hence determined by the wall

scattering behaviour.

The gray-highlighted region of Fig. 14 (top part) shows

a reflection cluster that corresponds to the excess dis-

tance of the wall reflection. The distributions of each

channel tap are represented by a violin plot in Fig. 15. A

violin plot illustrates the distribution estimated via Gaus-

sian kernels [88]. Figure 15 clearly demonstrates that the

TWDP-decided distributions have multiple modes. The

AIC decisions are plotted as markers at the mean power

levels.

We evaluated the fading statistic in space for ϕ = 160◦

at the channel tap corresponding to approximately 2.5 m

excess distance. This channel tap is mid in the cluster

belonging to the wall reflection. Fig. 16 clearly shows a

TWDP fading behaviour, confirmed by AIC.

8 Conclusion
We demonstrate, by means of model selection and

hypothesis testing, that TWDP fading explains observed

indoor millimetre wave channels. Rician fits of reported

studies must be considered with caution. As two exem-

plary fits, in Figs. 2 and 16, show Rician K-factors tend

to be much smaller than their TWDP companions. There

is more power in the specular components than is pre-

dicted by the Rician fit. The TWDP fading fit accounts

for a possible cancellation of two specular waves. Our

results are verified through two independent measure-

ment campaigns. For MC1 and MC2 we even used dif-

ferent RF hardware. While MC1 was limited to results in

the frequency domain, MC2 allowed a careful study in the

spatial-domain and the time-domain.

Having this strong evidence at hand, we claim that

the TWDP fading model is more accurate to describe

mmWave indoor channels. The flexibility of this model

allows furthermore to obtain Rician fading (� ≡ 0) and

Rayleigh fading (K ≡ 0) results with the same channel

model.

Endnotes
1The well-known chi-squared test approximates the g-

test via a local linearisation [89].
2Spatial sampling for all directions takes more than

3 days.
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