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Rousselet and Pernet (2012) demonstrate 
that outliers can skew Pearson correlation. 
They claim that this leads to widespread sta-
tistical errors by selecting and re-analyzing 
a cohort of published studies. However, 
they report neither the study identities nor 
inclusion criteria for this survey, so their 
claim cannot be independently replicated. 
Moreover, because their selection crite-
ria are based on the authors’ belief that a 
study used misleading statistics, their study 
represents an example of “double dipping” 
(Kriegeskorte et al., 2009). The strong 
claims they make about the literature are 
therefore circular and unjustified by their 
data. Their purely statistical approach also 
does not consider the biological context of 
what observations constitute outliers.

In discussion, they propose that the 
skipped correlation (Wilcox, 2005) is an 
appropriate alternative to the Pearson corre-
lation that is robust to outliers. However, this 
test lacks statistical power to detect true rela-
tionships (Figure 1A) and is highly prone 
to false positives (Figure 1B). These factors 
conspire to drastically reduce the sensitivity 
of this test in comparison to other proce-
dures (Appendix 1). Further, it is susceptible 
to the parameters chosen for the minimum 
covariance estimator to identify outliers but 
these parameters are not reported.

Their argument fails to consider a broad 
literature on robust statistics, although an 
extensive review is outside the scope of this 
commentary. We limit ourselves instead to 

presenting a practical alternative to their 
approach: Shepherd’s pi correlation (http://
www.fil.ion.ucl.ac.uk/∼sschwarz/Shepherd.
zip). We identify outliers by bootstrap-
ping the Mahalanobis distance, D

s
, of each 

observation from the bivariate mean and 
excluding all points whose average D

s
 is 6 

or greater. Shepherd’s pi is Spearman’s rho 
but the p-statistic is doubled to account for 
outlier removal (Appendix 2). This com-
pares very well in power (Figure 1A) to 
other tests and is more robust to the pres-
ence of influential outliers (Figure 1B). We 
replot the data Rousselet and Pernet pre-
sented in their Figure 2. The conclusions 
drawn from Shepherd’s pi are comparable 
to skipped correlation but less strict in situ-
ations where a relationship is likely (Figure 
1C, Figures A1 and A2 in Appendix).

Consider for instance the data in Figure 
1C-1. Pearson and Spearman correlation 
applied to these data are comparable. This 
implies that the assumptions of Pearson’s r 
were probably met in this case. The skipped 
correlation (r′) does not reach significance 
but nevertheless shows a similar relation-
ship, consistent with our demonstration 
above that it is too conservative a measure. 
Under Shepherd’s pi, however, the relation-
ship between these variables is significant. 
Indeed, reflecting our intimate knowledge 
of these data (Schwarzkopf et al., 2011), we 
already know that the relationship studied 
here replicates for separate behavioral meas-
ures (see Schwarzkopf et al., 2011 SOM). A 
similar pattern was observed for other data, 
e.g., Figure 1C-2. In some cases skipped cor-
relation even removes the majority of data 
as outliers (e.g., their Figure 2E), which bor-
ders on the absurd.

Rousselet and Pernet also claim that 
none of the studies that they surveyed 
considered the correlation coefficient and 

its confidence intervals. Cohen defined 
that 0.3 < r < 0.5 constitutes correlations 
of medium strength (Cohen, 1988). Even 
“strong” correlations have r > 0.5, that is, at 
least 25% of the variance is explained. A cor-
relation accounting for ∼15% of variance is 
thus not particularly “modest” as they state. 
Naturally, this taxonomy is somewhat arbi-
trary but when relating complex cognitive 
functions to brain measures we are unlikely 
to find very high r, except for trivial relation-
ships (Yarkoni, 2009).

Their failure to find reported confidence 
intervals in the literature is also puzzling 
because it does not accurately report the 
published work they considered. For exam-
ple, our study, reproduced in their Figure 
2A, reported bootstrapped 95% confidence 
intervals in the figure (Schwarzkopf et al., 
2011). They also do not consider important 
aspects of what confidence intervals reflect. 
Naturally, a confidence interval is an indi-
cator of the certainty with which the effect 
size can be estimated. However, it depends 
on three factors: the strength of the correla-
tion, the sample size, and the data distribu-
tion. Because Pearson correlation assumes 
a Gaussian distribution we can predict the 
confidence interval for any given r. If the 
bootstrapped confidence interval differs 
from this prediction, the data probably 
do not meet the assumptions. Rousselet 
and Pernet’s example for bivariate outli-
ers (their Figure 1D) illustrates this: the 
predicted confidence interval for r = 0.49 
with n = 17 should be (0.01, 0.79). However, 
the bootstrapped confidence interval for 
this example is (−0.19, 0.87), much wider 
and also overlapping zero. This indicates 
that outliers skew the correlation and that 
it should not be considered significant. 
Compare this to Figure 1C-1 (their Figure 
2A): the nominal confidence interval should 
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Figure 1 | Statistical power (A) and false positive rates (B) for four 
statistical tests and four sample sizes based on 10,000 simulations (see 
Appendix 1 for details). Outliers can drastically inflate false positives for Pearson 
correlation (note the difference in scale for this test). Skipped correlation (Wilcox, 
2005) is generally very susceptible to false positives under all conditions. Only 
Shepherd’s pi provides adequate statistical power and protection against false 
positives. The black line in (B) denotes the nominal false positive rate of 0.05. 
(C) Replot of data shown in Rousselet and Pernet’s Figure 2. The contour lines 
indicate the bootstrapped Mahalanobis distance Ds from the bivariate mean in 

steps of six squared units (purple colors denote greater distances). Filled circles 
denote data included in the correlation, open circles denote outliers (see 
Appendix 2 for details). The solid line is a linear regression over the data after 
outlier removal. The correlation statistics shown are Spearman’s rho, skipped 
correlation r ′ (critical t in parentheses), and Shepherd’s pi. Asterisks indicate 
significant results. All p-statistics rounded to third decimal. The freely available 
LIBRA toolbox (Verboven and Hubert, 2005) was used to calculate the skipped 
correlation. While the exact estimates of the t-statistic differ between R and 
MATLAB the conclusions about significance for these tests are very similar.
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Rather, one has to inspect each finding and 
each data point in its own right, evaluating 
the data quality and the potential confounds 
on a case-by-case basis. Outliers should not 
be determined solely by statistical tests but 
must take into account biological interpre-
tation (Bertolino, 2011; Schott and Düzel, 
2011). And finally, there is only one way any 
finding can be considered truly significant; 
when upon repeated replication it passes the 
test of time.
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be (−0.65, −0.02); the actual bootstrapped 
interval is very similar: (−0.67, −0.03). 
Therefore, the use of Pearson/Spearman 
correlation was justified here.

We propose simple guidelines to fol-
low when testing correlations. First, use 
Spearman’s rho because it captures non-
linear relationships. Second, bootstrap 
confidence intervals. Third, if the interval 
differs from the nominal interval, apply 
Shepherd’s pi as a more robust test. Fourth, 
estimate the reliability of individual obser-
vations, especially in cases where outliers 
strongly affect results. Outliers are fre-
quently the result of artifacts or measure-
ment error.

Our last point highlights an important 
general concern we have with Rousselet 
and Pernet’s argument. Statistical tests are 
important tools to be used by researchers 
for interpreting their data. However, the 
goal of neuroscience is to answer biologi-
cally relevant questions, not to produce 
statistically significant results. No statistical 
procedure can determine whether a biologi-
cal question is valid or if a theory is sound. 

Schwarzkopf et al. Outliers in correlation analysis

Frontiers in Human Neuroscience www.frontiersin.org July 2012 | Volume 6 | Article 200 | 3

http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


which means that the skipped correlation 
uses the median absolute deviation to the 
median to detect outliers. The results of 
these tests were comparable to the main 
results reported here.

Appendix 2
shepheRd’s pi coRRelAtion
The Mahalanobis distance (in squared 
units) measures the distance in multivari-
ate space taking into account the covariance 
structure of the data. Because a few extreme 
outliers can skew the covariance estimate, 
D

m
 is not robust. We therefore bootstrap 

the Mahalanobis distance by resampling n 
observations with replacement (i.e., allow-
ing duplicates) and then calculating the 
Mahalanobis distance for each actual obser-
vation from the bivariate mean of the resa-
mpled data. The bootstrapped Mahalanobis 
distance, D

s
, for each observation is the 

mean across the distances from all resam-
ples. Normally we advise using 10,000 resa-
mples; however, in the simulations shown 
here we used 1,000 resamples for the sake 
of expediency. In these analyses we used the 
MATLAB function mahal from the Statistics 
Toolbox to calculate Mahalanobis distances, 
but because this measure is clearly defined 
this can be achieved in other ways. Another 
free alternative is the mahalanobis function 
in the LIBRA toolbox.

Observations with D
s
 equal to or greater 

than six are then removed from the sam-
ple. We calculate Spearman’s rho over the 
remaining data. Shepherd’s pi is equal to 
rho. However, because removing data points 
can inflate false positive rates, the resulting 
p-statistic is then multiplied by two (natu-
rally, with a cut-off of one) to account for 
outlier removal.

The MATLAB code for calculating 
Shepherd’s pi and for displaying scat-
ter plots incorporating the bootstrapped 
Mahalanobis distance and denoting 
removed outliers as shown in Figure 1C 
and Figures A1 and A2 in Appendix can 
be downloaded from the author’s website 
(http://www.fil.ion.ucl.ac.uk/~sschwarz/
Shepherd.zip).

tion 1, and adding one observation drawn 
from a normal distribution with mean 0 
and standard deviation 3. For data con-
taining bivariate outliers we drew n − m 
samples from a normal distribution with 
mean 0 and standard deviation 1, and add-
ing m observations drawn from a bivariate 
normal distribution with mean (0,0) and 
covariance matrix (3, 4.5; 4.5, 9). We defined 
m = n/20 rounded up (so m = 1 for n = 10, 
m = 2 for n = 30, m = 3 for n = 60, and 
m = 5 for n = 100). We then calculated the 
correlation between x and y for Pearson’s r, 
Spearman’s rho, skipped correlation r′, and 
Shepherd’s pi (see Appendix 2), and deter-
mined if it passed the threshold for statis-
tical significance. Four sample sizes were 
tested: n = 10, 30, 60, and 100. The resulting 
proportions of significant tests reflect the 
false positive rate over 10,000 independent 
simulations. As can be seen in Figure 1B, 
bivariate outliers can drastically skew the 
outcome of Pearson’s r and Spearman’s rho; 
however, please note that in this case a small 
number of observations are in fact corre-
lated because the outliers were drawn from 
a population of correlated data. We regard 
this as a test of spurious results because it 
simulates the situation where a correlation 
in some observations is due to artifactual 
reasons. This distinction would be harder 
to make in real observed data.

AdditionAl tests
In additional tests we also explored Kendall’s 
tau and the percentage bend correlation 
(Wilcox, 2005). The results for these tests 
are very comparable to Spearman’s rho and 
were therefore not included. Because the 
procedure for the minimum covariance 
estimator implemented in LIBRA is not 
identical to the procedure implemented 
by Wilcoxon R, we also ran additional tests 
of statistical power and false positive rates 
using the skipped correlation test (scor) 
in Wilcox’s R toolbox (both versions 14 
and 16). Using the methods described 
by Rousselet and Pernet we edited the 
scor function to add the input argument 
MM = T where the outpro  function is called, 

Appendix 1
We ran a series of simulations to estimate 
statistical power and false alarm rates for a 
range of statistical tests and different con-
ditions. All these analyses were performed 
in MATLAB 2010b (MathWorks, Inc.). The 
skipped correlation employs a minimum 
covariance estimator implemented in the 
LIBRA toolbox (Verboven and Hubert, 
2005) for MATLAB (http://wis.kuleuven.
be/stat/robust/LIBRA.html).

poweR simulAtions
To estimate the statistical power with which 
different tests can detect true correlations 
we examined a range of statistical tests on 
simulated data for which the ground truth 
is known. We simulated data for three 
effect sizes, i.e., containing weak, medium, 
and strong correlations. These were gener-
ated by defining y = x + e, where x are n 
samples drawn from a normal distribution 
with mean 0 and standard deviation 1, and 
e are data drawn from a normal distribu-
tion with mean 0 and standard deviation 1 
(strong), 2 (medium), or 3 (weak). We then 
calculated the correlation between x and y 
for Pearson’s r, Spearman’s rho, skipped cor-
relation r′, and Shepherd’s pi (see Appendix 
2), and determined if it passed the threshold 
for statistical significance. Four sample sizes 
were tested: n = 10, 30, 60, and 100. The 
resulting proportions of significant tests 
reflect statistical power over 10,000 inde-
pendent simulations.

fAlse positive simulAtions
To estimate the false positive rates for dif-
ferent tests we examined a range of statis-
tical tests on simulated uncorrelated data. 
We simulated separate vectors x and y for 
three different data distributions: normal 
distribution, data containing a single out-
lier, and data containing bivariate outliers. 
Normal Gaussian data were generated by 
drawing n samples from a normal distribu-
tion with mean 0 and standard deviation 
1. For data containing a single outlier we 
drew n − 1 samples from a normal distri-
bution with mean 0 and standard devia-
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Figure A1 | Data shown in Figure 1 of rousselet and Pernet’s article. All conventions are as in Figure 1C.
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Figure A2 | Data shown in Figure A1 in Appendix of rousselet and Pernet’s article. All conventions are as in Figure 1C.
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