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BETTI NUMBERS AND THE INTEGRAL CLOSURE
OF IDEALS

SANGKI CHO1

0. Introduction.

Let (R, n) be acommutative noetherian local ring and M be a finitely generated
R-module. Then the ith Betti number bf(M) is the integer dimg, Tor?(M, R/n). In
1984 L. Avramov asked whether the sequence bf(M) of Betti numbers is event-
ually nondecreasing for any finitely generated module M over the local ring
R [1,5.8]. The answer is known to be true if (R,n) is local with n* =0 [9,
Theorem B, Proposition 3.9] or if (R, n) is a local Golod ring [10, Corollary 6.5].
Here we give a positive answer to the problemif (R, n) is a Cohen-Macaulay local
ring of multiplicity at most 7 except possibly a complete intersection of multiplic-
ity 6 or 7.

In section 1 we study the sequence b¥(M) of Betti numbers of M over the local
rings of the form R = S/I, (S, m) a local ring, I an ideal of S. Rings of the form
R = S/mJ, J anideal of S, have been studied by Ramras [12], Gover and Ramras
[7] and Lescot [9]. In Theorem 1.1 we prove that if R = S/I and the integral
closure I of the ideal I is properly contained in the integral closure J of
J = (I :sm), then the sequence b}(M);;, is nondecreasing for any finitely gener-
ated R-module M. We also show that the sequence b,(M);, , is strictly increasing
for any finitely generated R-module M if (T + p)/p is properly contained in
(J+ pY/p for any prime p with depth S » = 1 (Theorem 1.8).

Rings of the form S/I are not only generalized ones of the form S/mJ but they
have the following merit: To study nondecreasing of Betti numbers we may
assume that R is complete. Since bX(M) = bA(M ®; R) where R is the n-adic
completion of R. Then by the Cohen structure theorem for complete local rings
R can be expressed as a homomorphic image of a complete regular ring (S, m)
with the kernel I. If I % {T:sm), then the sequence bf(M);, of Betti numbers is
nondecreasing for any finitely generated R-module M by Theorem 1.1. In section
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2 we study the invariance of the module {T ;s m)/I under any regular presentations
S — R - 0 of R, which is inspired from Theorem 1.1.

In section 3 we study 2-dimensional regular local rings and their contracted
ideals. We prove that if an ideal I of a 2-dimensional regular. We prove that if an
ideal I of a 2-dimensional regular local ring (S,m) is contracted, then
I % {I:sm) (Theorem 3.3). So if an artinian local ring R of embedding dimesion
2 is a homomorphic image of a 2-dimensional regular local ring S with the kernel
I contracted, then for any finitely generated R-module M the sequence bf(M);» ,
of Betti numbers is nondecreasing by Theorem 1.1.

Finally, in section 4, we provide a positive answer to the problem of Avramov
when (R, n) is a artinian local ring of length at most 7 except possibly a complete
intersection of length 6 or 7. The problem is then true over a Cohen-Macaulay
local ring of multiplicity at most 7 except possibly a complete intersection of
multiplicity 6 or 7 by the change of Tor formula.

In the following sections we assume that every ring is commutative and
noetherian.

ACKNOWLEDGMENT. Iam grateful to my thesis advisor, Graig L. Huneke, for
his guidance and many helpful discussions on this subject. Special thanks are also
due to Luchezar L. Avramov and Jack Lescot for their advice and criticism. I am
also indebted to David Rees for providing a crucial theorem.

1. Betti numbers and the integral closure of ideals.

Let I be an ideal of a commutative noetherian ring R. An element a of R is said
to be integral over I if it satisfies an equation of the form

a"+oaa" 4. +a,=0 aqel

The set of all elements of R which are integral over [ is called the integral closure of
I, and is denoted by I. Note that I'is an ideal of Rand [ =T. If I = I, then I is
called complete.

For an R-module M over a local ring R uz(M) shall denote the minimal
number of generators of M as an R-module.

THeOREM 1.1. Let (S,m) be a local ring and R = S/I for an ideal I of S. Let
J = (I:sm). IfI & J, then for any finitely generated R-module M

biv (M)~ b(M)20,i2L
ProoF. Consider a part of a minimal resolution of M,
0-K-R L R

where K is the (i + 1)th syzygy of M, and R" (RY) is the ith module (the (i — 1)th
module, respectively) in the minimal resolution of M. Then b, ,(M) = ug(K),
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b{M)=n, KcmR" and f(R")cmR% Since Jmcl, JR"=K. So
JR* « K = mR". Let n: " — R" be the natural projection, and let A = n™ }(K).
Thenn " *(JR") < n~ Y(K) = n~ ! (mR™), that is, JS" « 4 = mS", Since K = A/IS"
and mK = (mA + 1S")/I1S", K/mK ~ A/(mA + 1S"). Sowecanwrite A = B+ C
for S-submodules Band C of 4 such that C = IS", us(C) = dimg,(IS" + mA)/mA
and ps(A) = ps(B) + ps(C). Then b;y (M) = pup(K) = dimg;, A/mA — dimg,,
(IS" + mA)/mA = ps(B).

We now choose an element a of J which is not integral over I, and put
N = §"/B. Since IN = JN = A/B, we have an element (by the determinant trick)

x=a"+aa" ' +... +a, gel
in J, and xN = 0. If x is nilpotent, then for some integer ¢,
=@ +oa" "+ .. +a,)=0,

which is an integral equation for a over I. This is a contraction. Therefore x is
a non-nilpotent element of S which annihilates N. Hence (x)S” < B. Let T be the
localization of S at the multiplicative set {x'|i = 0}, and apply ®;sT to (x)S" =
BcmS". Then T"c B®sT < T". Thus B®s T = T". Since the minimal
number of generators of a module is not less than the minimal number of
generators of a localization of the module,

bi+1(M) = us(B) 2 ur(B®s T) = n = by(M).
This finishes the proof of Theorem 1.1.

COROLLARY 1.2. Let (S, m)be alocal and let I be an ideal of S such that R = S/I
is of depth 0. If I is complete, then for any finitely generated R-module M the
sequence bj(M);» , of Betti is nondecreasing.

PrROOF. Let J = (I:sm). Then I 4 J since R is of depth 0. Therefore I =
IE

The order o(I) of an ideal I in alocal ring S is the largest integer such that I = m°™".

COROLLARY 1.3. Let (S, m)be aregular localring,and R = S/ foranideal I of S.
Let J =(I:gm). If o(J) < o(l), then for any finitely generated R-module M the
sequence bf (M), ; of Betti numbers is nondecreasing.

ProOF. Since any power m' of the maximal ideal is integrally closed in
a regular local ring, I < m°?® but J is not contained in m*®. Therefore [ % J.

LEMMA 1.4. Let (S, m) be a local ring and J be an ideal of S. Then the following
are equivalent:

(a) J is nilpotent

(b) J=70).

© J=Tm.
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ProoF. Obviously, (a) if and only if (b), and (b) implies (c). So assume J = Jm,
and we will show that J is nilpotent. Let a be a generator of J and m be an integer
such that

a"+ o a" .+, =0, q;e(m).
Hence a™ = —(0,a™ ! + ... + a,,)emJ™. Now we can choose a sufficiently
large integer t such that J* = mJ*. Therefore J* = 0 by Nakayama’s Lemma.
We now reprove Proposition 2.1 [7].

COROLLARY 1.5. Let (S, m) be a local ring and J be a nonnilpotent ideal of S. Let
R = S/mJ. Then for any finitely generated R-module M

b+ (M) —b(M) 20, i 2 1.

Proor. If we let I = Jm and J; = (I:gm), then I = Jm = Jym. J, is nonnil-
potent since J < J,. So by Lemma 1.4, I = J;m % J,. The proof of the Corollary
is complete by Theorem 1.1.

REMARK 1.6. Let I be an irreducible m-primary ideal of a local ring (S, m),
equivalently, R = §/I is a O0-dimensional Gorenstein ring. If u(m/I) = 2, then
I =T:gm. This is due to the example [5, section 3]: If (R, n) is a 0-dimensional
Gorenstein local ring with embedding dimension at least 2, then the Betti
numbers bR(M,) of M, = Homg(syz*(R/n),R) are strictly decreasing for
i=0,...,k-1

Let R be alocal ring and let M be a finitely generated R-module. We say that
M has f-rank r if M, is a free R,-module of constant rank r for all associated
primes p of R. The f-rank of M is denoted by frk(M). For a closed subset A of Spec
R we put

codim A:=min {htp|pe A},
and let
Nf(M):= {peSpec R| M, is not a free R,-module}.

Bruns proved [4, Corollary 3] that if M is a torsion free R-module with an f-rank,
then

codim Nf(M) £ u(M) + u(M*) — 2(frk M) + 1
where M* = Homg (M, R).
DEeFINITION 1.7. Let(S, m)be alocal ring, I anideal of Sand let J = (I:5m). We
say that I satisfies (Ho) if I + J and that I satisfies (H,) for k = 1 if for any prime

p of height < k and for any prime p with depth S, < 1,(I + p)/p ¥+ (J +p)/p.
Note that (H,) implies (H;) for j = 0,1,... k.
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THEOREM 1.8. Let (S, m) be a local ring and let I be an ideal of S. Let J = (I ;s m).
If I satisfies (Hy), then for any finitely generated non-free R-module M

b (M) —b(M) 2k, izl
Proor. If k = 0, then the case is done in Theorem 1.1. So assume that k = 1.
As in the proof of Theorem 1.1, let A =B+ C and N = S§"/B such that
by 1(M) = u(B), b(M) = nand IN = JN = A/B. Thus to prove that b; , (M) —
b{M) Z k, it is enough to show that u(B) — n = k.
If we write J = (a,,...,qa,, I), then associated with each a; we have

X; = a?‘ + fx,-la;”—l + o0+ Oy oz,-jEIj,
and (xy,...,x,)N = 0. Hence
(1) (x45--.,%)8" € B mS™

Suppose that ht(xy,...,x;) £ k. Then (x,,...,x,) < p for some prime p of
height < k. Hence x; = 0 modulo p for all i and this implies that a; + pe(T + p)/p.
So (I + p)/p = (J + p)/p, which contradicts (H,). Therefore ht(xy,...,x,) = k + 1,
and also grade(x,...,x;} 2 2 by the same argument. Since grade (x,,...,x,) 2 2,
(1) implies that B is a torsion free S-module with f-rank n and B* ~ §". So if we
apply the result of Bruns, then

(2 u(B) = codimNf(B) — n + 2n — 1.

Let p be a prime of S not containing (x,,. .., x;) and localize the inclusion (1) at p.
Then S, < B, < §}. So B, = S} and p ¢ Nf(B). Hence codim Nf(B) 2 ht(x,. . .,x,).
Substituting this in (2) yields

(3) M(B)ght(xb-'-axt)+n_1gn+ka
and the deseired conclusion of the Theorem follows from this.

Note that if the ideal I satisfies (H,), in other words, if (T + p)/p is properly
contained in {J + p)/p for any prime p with depthsS, = 1, then the sequence
bf‘(M),-g | is strictly increasing for any finitely generated non-free R-module M.

COROLLARY 1.9. Let (S,m) be a local ring, I be an ideal of S of grade 2 2. Put
J = (:sm). If I = Jm, then for any finitely generated non-free R-module M

by (M) —bM)zht]l—-1iz1l

PrOOF. Obviously, (J + p)/p is nonnilpotent for any prime p of height < ht I
and for any prime p of grade < 1. So by Lemma 1.4,

Um+p)lp=T+p)/p+{U +p)p

that is, I satisfies (H,) for k = htI — 1. Now the conclusion of the Corollary is
immediate from 1.8.




178 SANGKI CHOI

Now we extend a Theorem of Ramras [ 12, Theorem 3.2A] to the non-domain
case and give a better lower bound for b; (M) — b(M).

COROLLARY 1.10. Let (S, m) be a local ring, J be an ideal of grade 2 2 and let
R = S/mJ. Then for any finitely generated non-free R-module M

by (M)~ bM)zhtJ—1,iz21

Proor. fwelet I = Jmand J, = (I ;gm), then I = Jm = Jym. Hence I = Tym.
The proof of the Corollary is completely by Corollary 1.9.

ExampLes 1.11. Let S = k[[x,y,z]] and R = §/I for an ideal I of S. If
I =(x%y3, 2% xy, yz, zx), then J = (I ;5 x, y,2) = (x, y?, 2%, orif I = (x2, y3, 2%, xy,
y?z,zx), thenJ = (x, y%, z, yz*). In both of these examples x and y?, simultaneous-
ly, cannot be integral over I modulo any prime of height 1. That is, such ideals
I satisfies (H,). Therefore the sequence b}(M);5 , is strictly increasing for any
finitely generated non-free R-modulo M.

2. The invariance of the module J/I.

Let (R, n) be a local ring and M be a finitely generated R-module. To study
nondecreasing of Betti numbers we may assume that R is complete, since
bR(M) =b,-R(M ®g R) where the completion R of R is flat over R. By the Cohen
Structure theorem for complete local rings we then have a complete regular local
ring (S, m) and an epimorphism f: § — R. Considering Theorem 1.1 we may ask
about the invariance of the module J/T for any regular presentation § - R — 0,
where I = ker(f) and J = (I:sm).

From now on let’s denote Cg(S,f) for J/J when (S, m) and (R, n) are local rings
with an epimorphism f: § — R, I = ker(f) and J = (I ;s m). In this section, we
study the following problems, when R is complete.

(1) Arethe Cg(S, f)isomorphic for all complete regular local rings S and for all
epimorphisms f: § — R?

(2) If Cx(S,f) #+ 0 for some complete local ring § with an epimorphism
f: S — R, does it follow that Cx(T,g) + 0 for any complete regular local ring
T and for any epimorphism g: T — R?

LEMMA 2.1. Let (S;, my), i = 1,2 and (R,n) be local rings with epimorphisms
f: S;=+Sy;and g: S; = R IfCg(S,,9) £ 0, then Cx(S3,90f) ¥ 0.

ProoF. Let I; = ker(g), I, = ker(go f) and J, = (I;:sm,;), for i = 1,2. Con-
sider the homomorphism f,

Fo b+ L/L—-J,+ L1
which is induced by f. fis well-defined and onto since f(I,) < I, and f(J,) = J,.
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Therefore J, + I;/I; 4 0 implies J, + L,/I, £ 0. Hence Cg(S,,gof)+0 if
Cr(S1,9) + 0.

The proof of the following theorem is in a letter from D. Rees. I wish to express
my gratitude to D. Rees for showing me this crucial result.

THEOREM 2.2. (D. Rees) Let (S, m) be a regular local ring and I be a complete
ideal which contains an element xem — m*. Then I/(x)R is complete.

LEMMA 2.3. Let (S;,m;), i = 1,2 be regular local rings and (R, n) be a local ring.
Suppose we have epimorphisms f: S, — S, and g. S; — R. Then Cx(S,,9) ~
Cr(S2,90f).

PrROOF. It is enough to prove the lemma when dim S, = dimS,; + 1. Let
Iy =ker(g), I, =ker(gof), J;=(; :si_rr_:i) for i =1,2, and ker(f) = (x) for
xem — m? Then xeI,. Consider the map f,

f: jz =J 1/ I 1
which is induced by f. f is well-defined since f(J,) < J;. Note that

Ji=f() = f(jz) < jx-

By Theorem 2.2 f(J,) is complete, so f(J,) =J, and f is onto. Similarly
f(I,) = I,. Hence ker (f) = I, + (x) = I,. Therefore Cx(S;,9) =~ Cx(S2,90 f).

LEMMA 2.4. Let (R,n) be a complete local ring containing a field k ~ R/n.
Suppose we have k-epimorphisms f;. S; - R where(S;, m;) are complete regular local
rings containing k with dim S; = edim(R), i = 1,2. Then there exists a k-isomor-
phism g: S, — S, such that f, = f,0g4.

ProoF. Let m, =(X,,...,X;), d=edim(R) and x; = f1(X;), then n=
(x1,...,x4). Let Y;be alifting of x; under f,. We claim thatm, = (Y;,.. ., Y;). Since
edim (R) = dim S,, ker (f>) = m3. Hence

(Yh' sy Xi) + ker(fZ) = IQ2,

which implies that (Y;,..., ¥;) = m, by Nakayama’s Lemma. Now the Cohen
structure theorem for complete regular local rings gives the identification §; =
k[[X,,...,X,;]]and S, = k[[Y,,..., ¥;]]. Define a k-homomorphism g: S; — S,
by g(X;) = Y. Then g is a k-isomorphism such that f; = f,o0g.

THEOREM 2.5. Let (R,n) be a complete local ring containing a field k ~ R/n.
Then

(1) The Cg(S, f) are isomorphic for all complete regular local rings (S, m)
containing k and for all k-epimorphisms f: S — R.

(2) If Cg(S, f) * O for some complete local ring S containing k with a k-epimor-
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phism f- S — R, then Cg(T, g) % 0 for any complete regular local ring T containing
k and for any k-epimorphism g: T — R.

Proor. (1) Immediate from Lemma 2.3 and 2.4.

(2) By the Cohen structure theorem for complete local rings, there is a com-
plete regular local ring T containing k with a k-epimorphism g: T — § [11,
Theorem (31.1)]. Then Cx(T,go f) + 0 by Lemma 2.1. Now (2) is complete by
D).

We conclude this section with a question whose positive answer suffices the
invariance of Cg(S, f) for any complete regular local ring S and for any epimor-
phism f: § — R.

QUESTION 2.6. Let (R, n) be a complete local ring and let S; = S, be a formal
power series ring over R/n or over a v-ring of R/p with dim S, = edim(R) or
edim (R) + 1. Suppose there exist epimorphisms f;: S; = R, fori = 1,2. Is there
an isomorphism g: S; — S, such that f; = f,0¢g?

3. Contracted ideals of 2-dimensional regular local rings.

Let (S, m) be a 2-dimensional regular local ring and xem — m?. An ideal I of
S is called contracted from S[m/x] if I = IS[m/x] ~ S. An ideal I is contracted
from S[m/x] if and only if (I:sx) = (I:sm) [8, Proposition 2.1]. For any
m-primary ideal I of § u(I) < o(I) + 1 by Hilbert-Burch Theorem, and an
m-primary ideal I of S is contracted if and only if u(I) = o(I) + 1 [8, Proposi-
tion 2.3].

LeMMA 3.1. Let I be an m-primary ideal of a 2-dimensional regular local ring
(S,m) and let J = (I .gm). Then

(1) pJ) — p) + 1 = dim I/mJ.

@) If y(J) — u(l) = —1 or 0, that is, if dim I/mJ = O or 1, then I satisfies (H,).
Thatis, I % J.

PrOOF. (1) From the resolution of S/m it follows that Tor3(S/I, S/m) is isomor-
phic to J/I and by applying the Hilbert-Burch theorem for the resolution of S/I
we can see that Tor3(S/1, S/m) ~ J/1,is a S/m-vector space of dimension u(I) — 1.
Hence

dim I/mJ = dim J/mJ — dim J/I = p(J) — (u(I) — 1).

(2) If u(J) — u(I) = —1, then I = mJ. So I + J. Otherwise J is nilpotent by
Lemma 1.4. This is a contradiction since S is 2-dimensional. If u(J) — u(I) = 0,
thendim I/mJ = 1. So I = (f, mJ)forsome f € I — mJ. Suppose J is integral over
I, then J/(f) is integral over mJ + (f)/(f) in S/(f). This is a contradiction since
dim S/(f) = 1. Therefore J cannot be integral over I.
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We remark a useful fact implied in the proof of Lemma 3.1(2).

REMARK 3.2. Let (S, m) be a noetherian local ring, I an m-primary ideal of
SandletJ = (I:sm). If I = (mJ,1,)and dim S/I, = 1 for some ideal I, of S, then
T+7.

THEOREM 3.3. Let I be an m-primary ideal of a 2-dimensional regular local ring
(S,m) and let J = (I:sm). If I is contracted, then I + J.

Proor. If I is contracted, then so is J. Since for some xem — m?
Im:x=I'mx=U:x)ym=(.m):m,

we have u(I) = o(I) + 1 and u(J) = o(J) + 1. However o(J) = o(l) or o(J) =
o) — 1 since mJ = I < J. Therefore

u(lJ) — p) = o(J) — o(l) = —1,0.
Now the Theorem is complete by Lemma 2.1,

REMARK 3.4. Suppose (R, n)is an artinian local ring of embedding dimension
2,thenitis a homomorphic image of a 2-dimensional regular local ring (S, m) with
the kernel I = m?, since artinian local rings are complete. So if I is contracted,
equivalently o(I) + 1 = u(l), then [ satisfies (H,) and the sequence bR(M);5, of
Betti numbers of any finitely generated R-module M is nondecreasing by The-
orem 1.1,

4. Lower multiplicity Cohen-Macaulay local rings and Betti nambers.

In this section we study the nondecreasing of the sequence of Betti numbers
over lower multiplicity Cohen-Macaulay local rings. First we discuss the non-
decreasing of the sequence of Betti numbers over hypersurfaces.

REMARK 4.1. Let (R,n) be an artinian local ring of embedding dimension 1.
Then it is a homomorphic image of a DVR(S, x). So R ~ §/(x**!) for some
integer h and J = (x**!:5x) = (x") is not integral over the defining ideal
I =(x"*1), Therefore for any finitely generated R-module M the sequence
b{M);5 , of Betti numbers is nondecreasing. Hence over a d-dimensional hyper-
surface R the sequence bf(M); 54+, of Betti numbers is nondecreasing for any
finitely generated R-module M by the change of Tor formula (see Theorem 4.3).

For an artinian local ring (R, n) and a finitely generated R-module M, let (M)
denote the length of M and h(R) be the largest integer such that n*® % 0. The
Hilbert function Hg(t) of R is the polynomial, 1 + e, + ... + eymt"™, where
e = dimx/a ni/ni*t,

Itis a result of Lescot that if n* = 0, then for any finitely generated R-module
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M the sequence b¥(M) is eventually nondecreasing [9, Theorem B, Proposition
3.9].
We now quote a result of Gasharov and Peeva.

LeMMA 4.2. Let (R, n) be an artinian local ring. If
01(R):=2edim(R) + h(R)— (R) — 1= 1,

then for any finitely generated R-module M the sequence bRX(M) is eventually
nondecreasing.

Proor. [6, Proposition 2.2]

THEOREM 4.3. Let (R, n) be an artinian local ring of length at most 7 and let M be
a finitely generated R-module. Then the sequence bX(M) of Betti numbers is
eventually nondecreasing except possibly R is a complete intersection of length 6 or
7.

Proor. By Remark 4.1 we may assume that ¢; = 2 and also by a result of
Lescot we may assume that A(R) = 3. Ife; = 3,thend(R) 26 +3 -7 -1 =1
So the assertion is true by Lemma 4.2. Hence it is enough to prove the Theorem
fore;=2and h23. Thenl(R)=21+2+ 1+ 1=5IfI(R) =S5, then Hg(t) =
1+ 2t + t? + ¢* and §,(R) = 1. Hence the Theorem is true. So we may assume
that R is not a complete intersection of length 6 or 7.

Now express R as a homomorphic image of a 2-dimensional regular local ring
(S,m) with the kernel I « m? and let J = (I:sm). If o(I) = 4, then Hg(t) =
1 4 2t + 3t + 4¢3 + ... . Hence I(R) 2 10 and this is not a case of the Theorem.
If o(I) = 3, then Hg(t) = 1 + 2t + 3t + ¢ (note, e5 # 0 since H(R) = 3). In this
case R cannot be Gorenstein, otherwise R is self-injective, so we have

I0:xn?) = UR/M*) =T — 4 2 I(n*) = 4,

a contradiction. Since R is not Gorenstein, J ¢ m* but I < m?, so o(J) = 2 and
o(I) = 3. Thus the Theorem is true by Corollary 1.3. If o(I) = 2, then u(I) £ 3 by
the Hilbert-Burch Theorem. Since we have assumed R is not complete intersec-
tion, u(I) = 3. Therefore I is contracted and the Theorem is now complete by
Theorem 3.3

COROLLARY 4.4. Let (S,m) be a Cohen-Macaulay local ring of multiplicity at
most 7 and let M be a finitely generated S-module. Then the sequence b¥(M) of Betti
numbers is eventually nondecreasing unless S is a complete intersection of multiplic-
ity6or.

Proor. There exists S-regular sequence x,..., x4 (d = dim S), such that the
multiplicity of § is equal to the length of R(= S/(x,,...,x,)). Since the S-regular
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sequence X, ..., x, is also regular on syz*(M), we can apply the change of Tor
formula,

Tor}, (M, S/m) ~ Tor(syz' (M), S/m) = TorX(syz*(M) ®s R, S/m)
This implies that
b7 o(M) = bi(syz! (M) = bfi(syz* (M) ®s R), i 2 1.
The proof is now complete by applying Theorem 4.3 for R.

REMARK 4.5. It is a result of Avramov that over a complete intersection R the
sequence bR(M) of Betti numbers of any finitely generated R-module M has
strong polynomial growth [2, Proposition 4.3]. That is, there exist polynomials
p(i) and q(i) of the same degree and with the same leading term such that

p(i) £ bBRM) < q(), i > 0.

Over a complete intersection the degree of the polynomials is one less than the
complexity of the module M. If the degree of the polynomial is 0, then the
sequence of Betti numbers is eventually constant and any minimal resolution of
M is periodic with period 2. Otherwise, both even and odd Betti numbers are
strictly increasing. Therefore, over a Cohen-Macaulay local ring R of multiplicity
at most 7, we have provided a positive answer to a problem of Ramras [13]:
There are only two possibilities, either the sequence bR(M) is eventually constant,
or lim; b} (M) = 0.
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