BETTI NUMBERS OF BUCHSBAUM COMPLEXES

ANDERS BJÖRNER and TAKAYUKI HIBI

Abstract.

Given non-negative integers $\beta_0, \beta_1, \ldots, \beta_d$ we construct a *d*-dimensional Buchsbaum complex Δ over Z such that $\tilde{H}_i(\Delta; Z) \cong Z^{\beta_i}$ for all $0 \le i \le d$. This demonstrates (via [6]) the existence of Stanley-Reisner rings with arbitrarily prescribed Betti numbers for local cohomology.

Let Δ be a finite simplicial complex of dimension d, $\widetilde{H}_i(\Delta; F)$ the *i*th reduced simplicial homology group of Δ over a field F, and β_i the dimension of $\widetilde{H}_i(\Delta; F)$ as a vector space over F. The (reduced) Betti number sequence of Δ over F is $\beta(\Delta; F) := (\beta_0, \beta_1, \ldots, \beta_d)$.

It is not difficult to prove that, for every sequence $\beta_0, \beta_1, \ldots, \beta_d$ of non-negative integers, there exists a d-dimensional simplicial complex Δ such that $\beta(\Delta; F) = (\beta_0, \beta_1, \ldots, \beta_d)$ for all fields F. Here we should remark that if, moreover, Δ is Buchsbaum, then $\widetilde{H}_{i-1}(\Delta; F)$ is isomorphic to the i-th local cohomology module of the Stanley-Reisner ring $F[\Delta]$ of Δ over $F(1 \le i \le d)$, see Schenzel [6, p. 134].

On the other hand, given integers $d \ge 0$ and $\beta_0, \beta_1, \ldots, \beta_d \ge 0$, there exists a Buchsbaum local ring A of dimension d+1 with maximal ideal m such that the dimension of the ith local cohomology module $H_m^i(A)$ as a vector space over A/m is equal to β_i for every $0 \le i \le d$ (cf. Goto [3]). Thus it seems to be reasonable to expect that, for every sequence $\beta_0, \beta_1, \ldots, \beta_d$ of non-negative integers, there exists a d-dimensional Buchsbaum complex Δ such that $\beta(\Delta; F) := (\beta_0, \beta_1, \ldots, \beta_d)$ for all fields F. It is the purpose of this paper to prove that this is indeed the case.

THEOREM. Given non-negative integers $\beta_0, \beta_1, \ldots, \beta_d$ there exists a d-dimensional Buchsbaum complex Δ over Z such that $\tilde{H}_i(\Delta; Z) \cong Z^{\beta_i}$ for all $0 \le i \le d$. (It follows that Δ is Buchsbaum over F and has Betti number sequence $\beta(\Delta; F) = (\beta_0, \beta_1, \ldots, \beta_d)$ for every field F.)

Now, let us recall some fundamental definitions on simplicial complexes. All simplicial complexes Δ considered in this paper are finite. Each element σ of Δ is

called a face. The dimension of Δ , denoted by dim Δ , is max $\{\#(\sigma); \sigma \in \Delta\} - 1$, where $\#(\sigma)$ is the cardinality of σ as a set. We say that Δ is pure if every facet (maximal face) of Δ has the same cardinality. The link of a face $\sigma \in \Delta$ is the subcomplex $\lim_{\Delta} \{\pi(\sigma) : \pi(\tau) \in \Delta\}$.

Let F be a field. A simplicial complex Δ is called Buchsbaum over F if

- (i) Δ is pure (cf. Remark 1 below), and
- (ii) $\tilde{H}_i(\text{link}_{\Delta}(\sigma); F) = 0$ for every non-empty face σ of Δ and for every $i \neq \dim(\text{link}_{\Delta}(\sigma))$.

Moreover, we can define Buchsbaum complex over Z (the set of integers) in the obvious way. Note that Δ is Buchsbaum over Z if and only if Δ is Buchsbaum over every field F. For example, if the geometric realization of Δ is a manifold (with or without boundary), then Δ is Buchsbaum over Z. For the ring-theoretic background to the Buchsbaum property, see [5] or [6].

In what follows the Buchsbaum property and all homology groups will be considered over Z.

LEMMA 1. Suppose that Δ_1 , Δ_2 and $\Delta_1 \cap \Delta_2$ are Buchsbaum complexes of dimension d. Then $\Delta_1 \cup \Delta_2$ is also a Buchsbaum complex of dimension d. Furthermore, if $\Delta_1 \cap \Delta_2$ is acyclic then $\tilde{H}_i(\Delta_1 \cup \Delta_2) \cong \tilde{H}_i(\Delta_1) \oplus \tilde{H}_i(\Delta_2)$ for all $0 \leq i \leq d$.

PROOF. The simple argument is based on the (reduced) Mayer-Vietoris exact sequence:

(*)
$$\ldots \to \tilde{H}_i(\Delta_1 \cap \Delta_2) \to \tilde{H}_i(\Delta_1) \oplus \tilde{H}_i(\Delta_2) \to \tilde{H}_i(\Delta_1 \cup \Delta_2) \to \tilde{H}_{i-1}(\Delta_1 \cap \Delta_2) \to \ldots$$

Consider $\operatorname{link}_{A_1}(\sigma)$ and $\operatorname{link}_{A_2}(\sigma)$ instead of Δ_1 and Δ_2 in (*), and the vanishing of lower-dimensional homology on $\operatorname{link}_{A_1\cup A_2}(\sigma)$ follows immediately, since

$$\lim_{\Delta_1 \cup \Delta_2} (\sigma) = \lim_{\Delta_1} (\sigma), \text{ if } \sigma \in \Delta_i - \Delta_{3-i} (i = 1, 2), \\
\lim_{\Delta_1 \cup \Delta_2} (\sigma) = \lim_{\Delta_1} (\sigma) \cup \lim_{\Delta_2} (\sigma), \text{ if } \sigma \in \Delta_1 \cap \Delta_2, \\
\lim_{\Delta_1 \cup \Delta_2} (\sigma) = \lim_{\Delta_1} (\sigma) \cap \lim_{\Delta_2} (\sigma), \text{ if } \sigma \in \Delta_1 \cap \Delta_2.$$

If $\tilde{H}_i(\Delta_1 \cap \Delta_2) = 0$ for every i, then (*) gives $\tilde{H}_i(\Delta_1 \cup \Delta_2) \cong \tilde{H}_i(\Delta_1) \oplus \tilde{H}_i(\Delta_2)$ for all $0 \leq i \leq d$ as required.

LEMMA 2. For every $0 \le k \le d$, there exists a d-dimensional Buchsbaum complex Γ_k such that

$$\widetilde{H}_i(\Gamma_k) \cong \begin{cases} \mathsf{Z} & \text{if } i = k \\ 0 & \text{if } i \neq k. \end{cases}$$

PROOF. Let Γ_k be any triangulation of the space $S^k \times I^{d-k}$, the product of the k-sphere with d-k copies of the unit interval. Since $S^k \times I^{d-k}$ is a manifold (with boundary if $k \neq d$), the simplicial complex Γ_k is a Buchsbaum complex. Further-

more, Γ_k has the same homology as S^k . (In fact, S^k is a strong deformation retract of Γ_k .)

We are now in the position to prove the theorem. First note that a d-simplex Δ is Buchsbaum over Z with $\widetilde{H}_i(\Delta; \mathbf{Z}) = 0$ for all $0 \le i \le d$. Thus, it suffices to show that if there exists a d-dimensional Buchsbaum complex Δ with $\widetilde{H}_i(\Delta; \mathbf{Z}) \cong \mathbf{Z}^{\beta_i}$ $(0 \le i \le d)$, and if $0 \le k \le d$, then there exists a d-dimensional Buchsbaum complex Δ' with $\widetilde{H}_i(\Delta'; \mathbf{Z}) \cong \mathbf{Z}^{\beta_i}$ $(0 \le i \le d, i \ne k)$ and $\widetilde{H}_k(\Delta'; \mathbf{Z}) \cong \mathbf{Z}^{\beta_{k+1}}$. For this, choose any facet σ of Δ and any facet τ of the simplicial complex Γ_k of Lemma 2. Identifying σ with τ yields a new complex Δ' which is Buchsbaum over \mathbf{Z} with $\widetilde{H}_i(\Delta'; \mathbf{Z}) \cong \mathbf{Z}^{\beta_i}$ $(0 \le i \le d, i \ne k)$ and $\widetilde{H}_k(\Delta'; \mathbf{Z}) \cong \mathbf{Z}^{\beta_{k+1}}$ by Lemma 1, as desired.

REMARK 1. (On the definition of Buchsbaum complexes). Let us call a finite simplicial complex Δ locally Cohen-Macaulay if $\lim_{\Delta} (v)$ is Cohen-Macaulay for every vertex (0-dimensional face) v of Δ , cf. [1]. The definition given before Lemma 1 can then be restated as follows: Δ is Buchsbaum (over F) if and only if Δ is pure and locally Cohen-Macaulay (over F). The purity condition has been overlooked by several authors on Buchsbaum complexes, and its necessity was pointed out by Miyazaki [5, Remark, p. 251]. We want to remark that for connected complexes the purity condition is not needed.

LEMMA 3. A simplicial complex Δ is Buchsbaum if and only if Δ is locally Cohen-Macaulay and all connected components have the same dimension.

PROOF. Assume that Δ is locally Cohen-Macaulay and that all connected components of Δ are d-dimensional. We must show that they are pure. This comes down to showing that a connected locally Cohen-Macaulay complex is pure, which can be done with the standard argument for showing that a Cohen-Macaulay complex is pure: Let σ , τ be facets of Δ , and pick $x \in \sigma$, $y \in \tau$. Since Δ is connected there exists an edge path $x = x_0 - x_1 - x_2 - \ldots - x_{n-1} - x_n = y$. Let $\sigma_0 = \sigma$, $\sigma_{n+1} = \tau$, and for $1 \le i \le n$ let σ_i be a facet containing $\{x_{i-1}, x_i\}$. Since $\lim_{\Delta} (x_i)$ is pure, $\dim (\sigma_i) = \dim (\sigma_{i+1})$ for every $0 \le i \le n$.

The argument just given can also be adapted to prove that every pair of facets in a connected Buchsbaum complex can be connected by a sequence of facets with successive intersections of codimension one (a "dual path").

REMARK 2. (On f-vectors of Buchsbaum complexes). The sequences (3, 1) and (4, 4, 1) are f-vectors of unique simplicial complexes. The first of these complexes is locally Cohen-Macaulay but not pure, the second is not even locally Cohen-Macaulay. This shows that not all possible f-vectors and (f, β) -pairs [2] can be realised by Buchsbaum (or locally Cohen-Macaulay) complexes. It would, of course, be of great interest to find a characterization of f-vectors and (f, β) -pairs for Buchsbaum complexes (and for the more general classes of pure comlexes (cf.

[4]) and of locally Cohen-Macaulay complexes). Stanley [7] has characterized the f-vectors (and hence also the (f, β) -pairs) for Cohen-Macaulay complexes.

REMARK 3. (A strengthening of the main result). For good choices of the triangulations Γ_k , the complex Δ constructed to prove the Theorem can be made "homotopy Buchsbaum" in the following sense: $\operatorname{link}_{\Delta}(\sigma)$ is topologically $(d-1-\sharp(\sigma))$ -connected for every non-empty face $\sigma \in \Delta$, and Δ is homotopy equivalent to a $(\beta_0, \beta_1, \ldots, \beta_d)$ -wedge of spheres.

REMARK 4. It seems difficult to strengthen the main result in other directions than as in Remark 3. For instance, it cannot for any $d \ge 1$ be asserted that Δ is a manifold. One obvious constraint for this is Poincaré duality, which for a connected manifold with $\beta_d = 1$ forces a symmetry condition $\beta_i = \beta_{d-i}$, 0 < i < d. If d is odd then Poincaré symmetry is both necessary and sufficient for nonnegative integers $\beta_0, \beta_1, \ldots, \beta_d$ to be the Betti number sequence of some connected closed orientable manifold. However, if d is even special constraints on the middle Betti number $\beta_{d/2}$ may exist, depending on d.

REFERENCES

- 1. K. Baclawski, Cohen-Macaulay ordered sets, J. Algebra 63 (1980), 226-258.
- 2. A. Björner and G. Kalai, An extended Euler-Poincaré theorem, Acta Math. 161 (1988), 279-303.
- 3. S. Goto, On Buchsbaum rings, J. Algebra 67 (1980), 272-279.
- 4. T. Hibi, What can be said about pure 0-sequences?, J. Combin. Theory Ser. A 50 (1989), 319-322.
- 5. M. Miyazaki, Characterizations of Buchsbaum complexes, Manuscripta Math. 63 (1989), 245-254.
- P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z. 178 (1981), 125–142.
- R. Stanley, Cohen-Macaulay complexes, in Higher Combinatorics (M. Aigner, ed.), Reidel, Boston, 1977, pp. 51-62.

DEPARTMENT OF MATHEMATICS ROYAL INSTITUTE OF TECHNOLOGY S-100 44 STOCKHOLM SWEDEN

DEPARTMENT OF MATHEMATICS SCHOOL OF SCIENCÉ NAGOYA UNIVERSITY CHIKUSA-KU, NAGOYA 464-01 JAPAN