
Betti numbers of monomial ideals

and shifted skew shapes

Uwe Nagel∗

Department of Mathematics, University of Kentucky,

715 Patterson Office Tower, Lexington, KY 40506-0027, USA

uwenagel@ms.uky.edu

Victor Reiner†

School of Mathematics, University of Minnesota,

Minneapolis, MN 55455, USA

reiner@math.umn.edu

Submitted: Mar 21, 2008; Accepted: Feb 6, 2009; Published: Feb 11, 2009

Mathematics Subject Classification: 05C65, 05C99, 13D03, 13D25

To Anders Björner on his 60th birthday.

Abstract

We present two new problems on lower bounds for Betti numbers of the minimal
free resolution for monomial ideals generated in a fixed degree. The first concerns
any such ideal and bounds the total Betti numbers, while the second concerns ideals
that are quadratic and bihomogeneous with respect to two variable sets, but gives
a more finely graded lower bound.

These problems are solved for certain classes of ideals that generalize (in two
different directions) the edge ideals of threshold graphs and Ferrers graphs. In the
process, we produce particularly simple cellular linear resolutions for strongly stable
and squarefree strongly stable ideals generated in a fixed degree, and combinatorial
interpretations for the Betti numbers of other classes of ideals, all of which are
independent of the coefficient field.
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1 Introduction and the main problems

The paper concerns minimal free resolutions of an ideal I in a polynomial ring S =
k[x1, . . . , xn] which is generated by monomials of a fixed degree. Many of its results
were motivated by two new problems, Question 1.1 and Conjecture 1.2 below, which we
formulate here.

Given a squarefree monomial ideal I generated in degree d, it has a uniquely defined
minimal generating set of monomials, indexed by a collection K of d-subsets of P :=
{1, 2, . . .} in the sense that

I = (xi1 · · ·xid : {i1, . . . , id} ∈ K).

Define the colexicgraphic order on the d-subsets
(

P

d

)
by saying that

S = {i1 < · · · < id}

S ′ = {i′1 < · · · < i′d}

have S <colex S ′ if ik < i′k for some k ∈ {1, . . . , d} and ij = i′j for j = k + 1, . . . , d. For

example, the colex order on
(

P

3

)
begins

{1, 2, 3} <colex {1, 2, 4} <colex {1, 3, 4} <colex {2, 3, 4} <colex

{1, 2, 5} <colex {1, 3, 5} <colex {2, 3, 5} · · ·

Call K ⊂
(

P

d

)
a colexsegment if it forms an initial segment of the colexicographic

ordering, and call J a colexsegment-generated ideal if J = (xi1 · · ·xid : {i1, . . . , id} ∈ K)
for a colexsegment K. To state our first problem, recall that βi(I) = dimk TorS

i (I, k) is the
ith Betti number for I, that is, the rank over S of the ith term in any minimal resolution
of I by free S-modules. Furthermore, say that a monomial ideal I generated in degree
d obeys the colex lower bound if, for all integers i, βi(I) ≥ βi(J), where J is the unique
colexsegment-generated (squarefree) monomial ideal having the same number of minimal
generators as I, all of degree d. We ask:

Question 1.1 Let I be any monomial ideal generated in degree d. When does it obey
the colex lower bound?

We should remark that the standard technique of polarization [25, §3.2 Method 1] immedi-
ately reduces this question to the case where I is itself generated by squarefree monomials,
generated in a fixed degree d.

The second problem concerns the situation where I is quadratic, and furthermore,
generated by quadratic monomials xiyj which are bihomogeneous with respect to two sets
of variables within the polynomial algebra S = k[x1, . . . , xm, y1, . . . , yn]. In this case, I is
the edge ideal

I = (xiyj : {xi, yj} an edge of G)

for some bipartite graph G on the partitioned vertex set XtY with X = {x1, . . . , xm}, Y =
{y1, . . . , yn}. Rather than considering only the ungraded Betti numbers βi, here we take
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advantage of the Zm-grading available on the x variables, but ignoring the grading on the
y variables. That is, we set

deg(xi) := ei for i = 1, . . . , m, but

deg(yj) := 0 for j = 1, . . . , n.

For each subset X ′ ⊆ X, define the Betti number βi,X′,•(I) to be the Zm-graded Betti
number for this grading, or the following sum of the usual Zm+n-graded Betti numbers
βi,X′tY ′(I) :

βi,X′,•(I) :=
∑

Y ′⊆Y

βi,X′tY ′(I).

If the vertex xi ∈ X has degree (valence) degG(xi) in G, then the relevant ideal J with
which we will compare I is

J := (xiyj : i = 1, . . . , m, and j = 1, 2, . . . , degG(xi)). (1.1)

Note that, unlike the ideals J which appeared in Question 1.1, the ideals J in (1.1) are not
colex. The bipartite graphs corresponding to these ideals J are known as Ferrers graphs;
see [10] and Example 2.5 below.

Conjecture 1.2 Consider the edge ideal

I = (xiyj : {xi, yj} ∈ G) ⊂ S = k[x1, . . . , xm, y1, . . . , yn]

for some bipartite graph G on X t Y as above, and let J be the Ferrers graph edge ideal
associated to I as in (1.1).

Then βi,X′,•(I) ≥ βi,X′,•(J) for all i and all subsets X ′ ⊆ X.

After this paper appeared on the math arXiv (math.AC/0712.2537), but while it was
under journal review, Conjecture 1.2 was proven by M. Goff [16, Theorem 1.1].

We remark that the lower bounds on the Betti numbers in both of the problems can
be made quite explicit. In Question 1.1, if the monomial ideal I has exactly g minimal
generating monomials, express g =

(
µ

d

)
+ ε uniquely for some integers µ, ε with µ ≥ d− 1

and 0 ≤ ε <
(

µ

d−1

)
. Then the lower bound can be rewritten (using Corollary 3.14 below)

as

βi(I) ≥ βi(J) =

µ∑

j=d

(
j − 1

i, d − 1, j − d − i

)
+ ε

(
µ + 1 − d

i

)

where
(

n

i,j,k

)
= n!

i!j!k!
denotes a multinomial coefficient. In Conjecture 1.2, if for any subset

of vertices X ′ ⊂ X, one denotes by mindeg(X ′) the minimum degree of a vertex xi ∈ X ′

in the bipartite graph G, then the lower bound can be rewritten (using Proposition 2.17
below) as

βi,X′,•(I) ≥ βi,X′,•(J) =

{(
mindeg(X′)
i−|X′|+2

)
if |X ′| < i + 2

0 otherwise.
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This is certainly not the first paper about lower bounds on the Betti number. For
example, there are lower bounds shown by Evans and Griffith, Charalambous, Santoni,
Brun, and Römer establishing and strengthening the Buchsbaum-Eisenbud conjecture (of-
ten referred to as Horrocks’s problem) for monomial ideals (see [8], [28] and the references
therein). The Buchsbaum-Eisenbud conjecture states that the i-th total Betti number of
a homogeneous ideal I in a polynomial ring is at least

(
c

i

)
, where c is the codimension of I.

Observe that, for the ideals under consideration in this paper, we ask for much stronger
lower bounds.

Another thread in the literature investigates the Betti numbers of ideals with fixed
Hilbert function. Among these ideals, the lex-segment ideal has the maximal Betti num-
bers according to Bigatti, Hulett, and Pardue ([4] [19], [27]). However, in general there
is no common lower bound for these ideals (see, e.g., [13] and the references therein). In
comparison, the novelty of our approach is that instead of the Hilbert function we fix the
number of minimal generators of the ideals under consideration.

The remainder of the paper is structured as follows.
Part I introduces a new family of graphs and their edge ideals, parametrized by well-

known combinatorial objects called shifted skew shapes; each such shape will give rise
to both bipartite and nonbipartite graphs, generalizing two previously studied classes of
graphs that have been recently examined from the point of view of resolutions of their
edge ideals – the Ferrers graphs [10] and the threshold graphs [11]. It turns out that
these new families of edge ideals are extremely well-behaved from the viewpoint of their
minimal free resolutions – the first main result (Corollary 2.15) gives a combinatorial
interpretation for their Zm-graded Betti numbers which is independent of the coefficient
field k. This interpretation is derived by showing that the relevant simplicial complexes
for these graph ideals, whose homology compute these Betti numbers by a well-known
formula of Hochster (see Proposition 2.7), always have the homotopy type of a wedge of
equidimensional spheres (Theorem 2.14). This is in marked contrast to the situation for
arbitrary edge ideals of graphs, where the relevant simplicial complexes are well-known to
have the homeomorphism type of any simplicial complex (Proposition 6.1), and for arbi-
trary bipartite graph ideals, where we note (Proposition 6.2) that the simplicial complexes
can have the homotopy type of an arbitrary suspension. We also show (Theorem 2.20)
that the resolutions for the nonbipartite edge ideals within this class can be obtained
by specialization from the resolutions of the bipartite ones, as was shown in [11] for
Ferrers and threshold graphs. We further interpret the Castelnuovo-Mumford regularity
(Theorem 2.23) of these ideals, and indicate how to compute their Krull dimension and
projective dimension.

Part II investigates a different generalization of the Ferrers graph’s and threshold
graph’s edge ideals, this time to nonquadratic squarefree monomial ideals including the
special case of the squarefree strongly stable ideals studied by Aramova, Herzog and Hibi
[1] which are generated in a fixed degree. We provide a simple cellular resolution for these
ideals and some related ideals (Theorem 3.13), related by polarization/specialization again
as in [11]. We also describe an analogously simple cellular resolution for strongly stable
ideals generated in a fixed degree, recovering a recent result of Sinefakopoulos [30].
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Part III uses the previous parts to address Question 1.1 and Conjecture 1.2, which are
verified for all of the ideals whose Betti numbers were computed in Parts I and II. How-
ever, we exhibit monomial ideals that do not obey the colex lower bound (Remark 4.6).
Moreover, a more precise version of Conjecture 1.2 is formulated (Conjecture 4.9), incor-
porating both an upper and a lower bound on the Betti numbers for bipartite graph edge
ideals, as well as a characterization of the case of equality in both bounds. Furthermore,
the upper bound, as well as the characterizations for the cases of equality in both the
upper and the lower bound are proven, leaving only the lower bound itself unproven.

The Epilogue contains some questions suggested by the above results. In the Appendix
some needed technical tools from combinatorial topology and commutative algebra are
provided.
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2 PART I. Shifted skew diagrams and graph ideals

2.1 Shifted diagrams and skew diagrams

We begin with some terminology for diagrams in the shifted plane that are perhaps not
so standard in commutative algebra, but fairly standard in the combinatorial theory of
projective representations of the symmetric group and Schur’s P and Q-functions [23,
Exercise I.9].

Definition 2.1 The shifted plane is the set of lattice points

{(i, j) ∈ Z × Z : 1 ≤ i < j}

drawn in the plane so that the first coordinate increases from the top row to the bottom,
and the second coordinate increases from left to right:

· (1, 2) (1, 3) (1, 4) · · ·
· · (2, 3) (2, 4) · · ·
· · · (3, 4) · · ·
...

...
...

...
...

Given a number partition λ = (λ1, λ2, · · · , λ`) into distinct parts, that is, λ1 > λ2 >
· · · > λ` > 0, the shifted Ferrers diagram for λ is the set of cells/boxes in the shifted plane
having λi cells left-justified in row i for each i. For example, λ = (12, 11, 7, 6, 4, 2, 1) has
this diagram:

· × × × × × × × × × × × ×
· · × × × × × × × × × × ×
· · · × × × × × × ×
· · · · × × × × × ×
· · · · · × × × ×
· · · · · · × ×
· · · · · · · ×
· · · · · · · ·

Given another number partition µ with distinct parts having µi ≤ λi for all i, one
can form the shifted skew diagram D = λ/µ by removing the diagram for µ from the
diagram for λ. For example, if µ = (11, 9, 6, 3) and λ = (12, 11, 7, 6, 4, 2, 1) as before, then
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D = λ/µ has the following shifted skew diagram, with row and column indices labelled
to emphasize its location within the shifted plane:

1 2 3 4 5 6 7 8 9 10 11 12 13
1 · ×
2 · · × ×
3 · · · ×
4 · · · · × × ×
5 · · · · · × × × ×
6 · · · · · · × ×
7 · · · · · · · ×
8 · · · · · · · ·

In a shifted skew diagram D, cells in locations of the form (i, i+1) will be called staircase
cells. For example, the diagram above has three staircase cells, namely (5, 6), (6, 7), (7, 8).

Given a shifted skew diagram D, and any pair X, Y of linearly ordered subsets of
positive integers

X = {x1 < x2 < · · · < xm}

Y = {y1 < y2 < · · · < yn},

one can form a diagram Dbip
X,Y with rows indexed by X and columns indexed by Y , by

restricting the diagram D to these rows and columns. For example if D = λ/µ is the
shifted skew diagram shown above, and if

X = {x1, x2, x3, x4} = {2, 4, 5, 7}
Y = {y1, y2, y3, y4, y5, y6, y7, y8} = {4, 6, 7, 8, 9, 10, 11, 12}

then Dbip
X,Y is this diagram:

y1 y2 y3 y4 y5 y6 y7 y8

4 6 7 8 9 10 11 12
x1 = 2 ×
x2 = 4 × × ×
x3 = 5 × × × ×
x4 = 7 ×

(2.1)

Such diagrams Dbip
X,Y should no longer be considered as drawn in the shifted plane, but

rather inside the m × n rectangle with row and column indices given by X and Y .
On the other hand, given a shifted skew diagram D, and a linearly ordered subset X,

one can also form the diagram Dnonbip
X (= Dbip

X,X), which one should think of as drawn in
a shifted plane whose rows and columns are indexed by X. For example, if D = λ/µ as
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above and X = {x1, x2, x3, x4, x5, x6} = {2, 4, 5, 7, 8, 10}, then Dnonbip
X is this diagram:

x1 x2 x3 x4 x5 x6

2 4 5 7 8 10
x1 = 2 ·
x2 = 4 · · × ×
x3 = 5 · · · × ×
x4 = 7 · · · · ×
x5 = 8 · · · · ·
x6 = 10 · · · · · ·

(2.2)

For such diagrams Dnonbip
X , call the cells in locations of the form (xi, xi+1) its staircase

cells. For example, in Dnonbip
X shown above there are two staircase cells, in positions

(x3, x4), (x4, x5).

2.2 Graphs and graph ideals

Definition 2.2 A (simple) graph G on vertex set V is a collection

E(G) ⊂

(
V

2

)
:= {{u, v} : u, v ∈ V and u 6= v}

called its edges. Having fixed a field k to use as coefficients, any graph G gives rise to
a square-free quadratic monomial ideal called its edge ideal I(G) inside the polynomial
ring1 k[V ] := k[v]v∈V , generated by the monomials uv as one runs through all edges {u, v}
in E(G).

Note that since I(G) is a monomial ideal, it is homogeneous with respect to the Z|V |-
grading on k[V ] in which the degree of the variable v is the standard basis vector ev ∈ R|V |.
This is the finest grading which we will consider on I(G). However, there are times when
we will consider the coarser Z-grading in which each variable v has degree 1.

There is a situation in which some different gradings also appear.

Definition 2.3 Say that a simple graph G is bipartite with respect to the partition V =
V1 t V2 of its vertex set V if every edge in E(G) has the form {v1, v2} with vi ∈ Vi for
i = 1, 2.

Equivalently, G is bipartite with respect to V = V1 t V2 if and only if I(G) is homo-
geneous with respect to the Z2-grading in k[V ] in which the variables labelled by vertices
in V1 all have degree (1, 0), while the variables labelled by vertices in V2 all have degree
(0, 1).

Given any shifted skew diagram D, the two kinds of subdiagrams Dbip
X,Y , Dnonbip

X give
rise to two kinds of graphs, and hence to two kinds of edge ideals:

1We hope that using the names of vertices as polynomial variables, a very convenient abuse of notation,
causes no confusion.
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• For a pair of linearly ordered sets X = {x1, . . . , xm}, Y = {y1, . . . , yn}, one has the
bipartite Gbip

X,Y (D) graph on vertex set X t Y , with an edge {xi, yj} for every cell

(xi, yj) in the diagram Dbip
X,Y . Its edge ideal I(Gbip

X,Y (D)) is inside the polynomial
algebra k[x1, . . . , xm, y1, . . . , yn].

• For a single linearly ordered set X = {x1, . . . , xm}, one has the nonbipartite graph2

Gnonbip
X (D) on vertex set X, with an edge {xi, xj} for every cell (xi, xj) in the diagram

Dnonbip
X . Its edge ideal I(Gnonbip

X (D)) is inside the polynomial algebra k[x1, . . . , xm].

We will have occasion, as in Conjecture 1.2, to consider yet a fourth grading3 on
k[x1, . . . , xm, y1, . . . , yn] and the ideals I(Gbip

X,Y (D)). This is the Zm-grading mentioned in
the Introduction, in which the degree of the variable xi is the standard basis vector ei in
Zm but the degree of the variable yj is the zero vector in Zm.

Example 2.4
If Dbip

X,Y and Dnonbip
X are the diagrams shown in (2.1), (2.2), respectively, then

I(Gbip
X,Y (D)) = (x1y8, x2y4, x2y5, x2y6, x3y2, x3y3, x3y4, x3y5, x4y4)

⊂ k[x1, x2, x3, x4, y1, y2, y3, y4, y5, y6, y7, y8]

I(Gnonbip
X (D)) = (x2x5, x2x6, x3x4, x3x5, x4x5)

⊂ k[x1, x2, x3, x4, x5, x6].

We review now some well-studied classes of graphs that were our motivating special
cases.

Example 2.5 (Ferrers bipartite graphs)
Say that Dbip

X,Y is Ferrers if whenever i < i′, the columns occupied by the cells in the row

xi′ form a subset of those occupied by the cells in row xi. The graph Gbip
X,Y (D) is then

completely determined up to isomorphism by the partition λ = (λ1 ≥ · · · ≥ λm) where λi

is the number of cells in the row xi. Call such a Ferrers graph Gλ. An explicit cellular
minimal free resolution of I(Gλ) for the Ferrers graphs Gλ was given in [10], thereby
determining its Betti numbers – see also Example 2.6 below.

Example 2.6 (threshold graphs)
Let D be the shifted Ferrers diagram for a strict partition λ = (λ1 > · · · > λm), so that

the columns are indexed by [n] = {1, 2, . . . , n} with n = λ1+1. Then the graph Gnonbip
[n] (D)

is called a threshold graph. Such graphs have numerous equivalent characterizations – see
[24].

An explicit cellular minimal free resolution of I(Gnonbip
[n] (D)) in this case was derived

in [11] by specialization from the resolution of an associated Ferrers graph from [10].

2It would be more accurate to say “not necessarily bipartite” here than “nonbipartite”, but we find
this terminology more convenient.

3The other three gradings with which one might confuse it are: (i) the finest Zm+n-grading, (ii) the
Z2-grading for which these ideals are bihomogeneous, and (iii) the Z-grading in which all variables xi and
yj all have degree 1.
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2.3 Betti numbers and simplicial complexes

Edge ideals I(G) of graphs are exactly the squarefree quadratic monomial ideals. More
generally, any squarefree monomial ideal I in a polynomial algebra k[V ] has some special
properties with regard to its minimal free resolution(s) as a k[V ]-module. Since I is
a monomial ideal, the resolution can be chosen to be Z|V |-homogeneous. Because it is
generated by squarefree monomials, the free summands in each resolvent will have basis
elements occurring in degrees which are also squarefree, corresponding to subsets V ′ ⊂ V .
The finely graded Betti number βi,V ′(I) is defined to be the number of such basis elements
in the ith syzygy module occurring in the resolution, or equivalently,

βi,V ′(I) = dimk Tor
k[V ]
i (I, k)V ′

where here MV ′ denotes the V ′-graded component of a Z|V |-graded vector space. The
standard graded and ungraded Betti numbers are the coarser data defined by

βi,j(I) = dimk Tor
k[V ]
i (I, k)j =

∑
V ′⊆V :|V ′|=j βi,V ′(I)

βi(I) = dimk Tor
k[V ]
i (I, k) =

∑
V ′⊆V βi,V ′(I) =

∑
j βi,j(I).

A famous formula of Hochster relates these resolution Betti numbers to simplicial
homology. An abstract simplicial complex ∆ on vertex set V is a collection of subsets F of
V (called faces of ∆) which is closed under inclusion: if G ⊂ F and F ∈ ∆ then G ∈ ∆.
Maximal faces of ∆ under inclusion are called facets of ∆.

There is a straightforward bijection (the Stanley-Reisner correspondence) between
simplicial complexes ∆ on vertex set V and squarefree monomial ideals I∆ inside k[V ]:
let I∆ be generated by all squarefree monomials xv1 · · ·xvs

for which {v1, . . . , vs} 6∈ ∆.
Hochster’s formula for βi,V ′(I∆) is expressed in terms of the (reduced) simplicial homology
of the vertex-induced subcomplex

∆V ′ := {F ∈ ∆ : F ⊂ V ′}.

Proposition 2.7 (Hochster’s formula [25, Corollary 5.12]) For a squarefree monomial
ideal I∆ ⊂ k[V ] and any V ′ ⊂ V , one has a k-vector space isomorphism

Tor
k[V ]
i (I, k)V ′

∼= H̃|V ′|−i−2(∆V ′)

and hence
βi,V ′(I∆) = dimk H̃|V ′|−i−2(∆V ′).

If I∆ = I(G) for a graph G on vertex set V , then we will write ∆ = ∆(G); the name
for such simplicial complexes ∆ is that they are flag or clique complexes. Warning: this
does not mean that ∆ is the 1-dimensional simplicial complex generated by the edges of
G. In fact, there is a somewhat more direct relationship between the edges of G and the
Alexander dual of ∆(G).
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Definition 2.8 Given a simplicial complex ∆ on vertex set V , its Alexander dual ∆∨ is
the simplical complex on vertex set V defined by

∆∨ := {V \ G : G 6∈ ∆}.

Note that the operation ∆ 7→ ∆∨ is involutive: (∆∨)∨ = ∆. It is an easy exercise in the
definitions to check that, for a graph G on vertex set V , the facets of the Alexander dual
∆(G)∨ are exactly the complementary sets V \ {u, v} to the edges {u, v} in E(G).

Lastly, note that a shifted skew diagram D will give rise to two simplicial complexes

∆(Gbip
X,Y (D)), ∆(Gnonbip

X (D))

which control the Betti numbers of the edge ideals I(Gbip
X,Y (D)), I(Gnonbip

X (D)). More pre-
cisely, each vertex-induced subcomplex which appears in Proposition 2.7 for calculating
the graded Betti numbers is another simplicial complex of the same form:

∆(Gbip
X,Y (D))X′tY ′ = ∆(Gbip

X′,Y ′(D))

∆(Gnonbip
X (D))X′ = ∆(Gnonbip

X′ (D))

Thus our next goal will be to study the homotopy type of the complexes ∆(Gbip
X,Y (D))

and ∆(Gnonbip
X (D)).

2.4 Rectangular decomposition

The idea in this section is to produce what we call the rectangular decomposition for any
diagram Dbip

X,Y (or Dnonbip
X ). As an informal illustration, here is the rectangular decom-

position of the following diagram Dbip
X,Y into pieces of various types, explained below the

diagram:

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16

x1 ·
x2 ·
x3 r1 r1 r1

x4 e e r1 r1 r1

x5 r2 r2 r2 e e
x6 e r2 r2 r2 e
x7 e e r2 r2 r2 e
x8 r3

x9 e r3

x10 e e r3

x11 p p p p p
x12 e p p p p p
x13 p p p
x14 e e

(2.3)
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There are

• some full rectangles, of which there are three in diagram (2.3), whose cells have been
labelled r1 or r2 or r3, with the northeasternmost top cell of each rectangle indicated
in boldface,

• some empty rectangles, of which there are two in diagram 2.3, one indicated by dots
occupying rows {x1, x2} and column {y16}, the other occupying columns {y8, y9}
but having zero width (lying “between” rows x7 and x8),

• at most one pedestal, whose cells are labelled “p” in diagram 2.3, with the north-
easternmost top cell of the pedestal indicated in boldface, and

• some excess cells, labelled by “e”.

Informally, the idea behind the rectangular decomposition is that in analyzing the homo-
topy type of the associated simplicial complexes in Section 2.5, one finds that

• removing excess cells does not change the homotopy type,

• once the excess cells are removed, the complex decomposes into a simplicial join
of the complexes corresponding to each full/empty rectangle and the pedestal (if
present),

• complexes associated to full rectangles are zero-dimensional spheres,

• complexes associated to empty rectangles are simplices, hence contractible, and

• the complex associated to a pedestal is contractible in the case of Dbip
X,Y , or homotopy

equivalent to an s-fold wedge of zero-spheres in the case of Dnonbip
X where s is the

number of (non-excess) staircase cells.

Consequently, ∆(Gbip
X,Y (D)), ∆(Gnonbip

X (D)) will either be contractible or have the homo-
topy type of a wedge of equidimensional spheres. In addition, the homotopy type can be
easily predicted from the above decomposition.

Here is the formal algorithm that produces the rectangular decomposition.

Definition 2.9 Define the rectangular decomposition of Dbip
X,Y recursively for any shifted

skew diagram D and linearly ordered sets X = {x1 < · · · < xm}, Y = {y1 < · · · < yn}
with X t Y 6= ∅, allowing either X or Y to be empty. The algorithm will in general go
through several iterations, terminating either when X t Y becomes empty, or when one
encounters a pedestal in Subcase 2b below.

Say that Dbip
X,Y has a top cell if it contains a cell in position (x1, yn); in particular this

requires both X, Y to be nonempty.
Initialize the set of excess cells as the empty set; cells will be identified as excess cells

during iterations of the algorithm.
In each iteration, there are several cases.
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Case 1. Dbip
X,Y has no top cell.

Then there exist some

initial segment X ′ = {x1, x2, . . . , xm′} ⊂ X, and

final segment Y ′ = {yn′, yn′+1, . . . , yn} ⊂ Y
(2.4)

such that both Dbip
X,Y ′ and Dbip

X′,Y contain no cells. In this case, pick the segments X ′, Y ′

maximal with this property, and call Dbip
X′,Y ′ the first empty rectangle in the rectangular

decomposition. Note that X ′ ∪ Y ′ 6= ∅, but it is possible that either X ′ or Y ′ might be
empty, in which case one has an empty rectangle with zero length or zero width (!).

Now remove the rows and columns X ′, Y ′, that is, replace Dbip
X,Y by Dbip

X\X′,Y \Y ′, and
continue the rectangular decomposition.

Case 2. Dbip
X,Y has a top cell, namely (x1, yn).

Define indices m′, n′ uniquely by saying m′ (resp. n′) is maximal (resp. minimal) for
which (xm′ , yn) (resp. (x1, yn′)) is a cell of Dbip

X,Y .

If Dbip
X,Y has a cell in position (xm′ , yn′), then this will be called its neck cell.

Again define initial, final segments X ′, Y ′ by

X ′ = {x1, x2, . . . , xm′} ⊂ X, and

Y ′ = {yn′, yn′+1, . . . , yn} ⊂ Y.

Subcase 2a. Dbip
X,Y has both a top cell and a neck cell (possibly the same cell!)

In this case, Dbip
X′,Y ′ is a full rectangle in the sense that every possible position (xi, yj)

with i ∈ X ′, j ∈ Y ′ actually contains a cell of D. In fact, our choice of m′, n′ makes
X ′, Y ′ maximal with respect to this property. Call Dbip

X′,Y ′ the first full rectangle in the
rectangular decomposition.

Then add to the set of excess cells all cells of Dbip
X\X′,Y ′ (i.e., those lying below the full

rectangle in the same columns) and all cells of Dbip
X′,Y \Y ′ (i.e., those lying left of the full

rectangle in the same rows).
Lastly, remove the rows and columns X ′, Y ′ from X, Y , that is, replace Dbip

X,Y by

Dbip
X\X′,Y \Y ′ , and continue the rectangular decomposition.

Subcase 2b. Dbip
X,Y has a top cell but no neck.

Now call Dbip
X′,Y ′ the pedestal in the rectangular decomposition. Note that not every

diagram will have such a pedestal.
As in Subase 2a, add all cells of Dbip

X\X′,Y ′ and Dbip
X′,Y \Y ′ to the set of excess cells. But

now the algorithm also terminates.

Example 2.10 The diagram Dbip
X,Y in (2.3) whose nonempty cells are labelled e, r1, r2, r3, p

passes through six iterations of the algorithm:

1st Case 1– add the empty rectangle Dbip
{x1,x2},{y16}

to the decomposition.
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2nd Subcase 2a– add the full rectangle Dbip
{x3,x4},{y13,y14,y15}

(with cells labelled r1, top

cell (x3, y15) in boldface, neck cell (x4, y13)) to the decomposition, and identify two
excess cells to its left as well as four excess cells below it.

3rd Subcase 2a– add the full rectangle Dbip
{x5,x6,x7},{y10,y11,y12}

(with cells labelled with r2,

top cell (x5, y12) in boldface, neck cell (x7, y10)) to the decomposition, and identify
three excess cells to its left.

4th Case 1– add the empty rectangle Dbip
∅,{y8,y9}

to the decomposition. Note that this

empty rectangle has zero width, i.e. it occupies the empty set X ′ = ∅ of rows
(“between” rows and x7 and x8).

5th Subcase 2a– add the full rectangle Dbip
{x8,x9,x10},{y7}

(with cells labelled with r3, top

cell (x8, y7) in boldface, neck cell (x10, y7)) to the decomposition, and identify three
excess cells to its left.

6th Subcase 2b– add the pedestal Dbip
{x11,x12,x13},{y2,y3,y4,y5,y6}

(with cells labelled with p,

top cell (x11, y6, ) in boldface, no neck cell) to the decomposition, and identify one
excess cell to its left, two excess cells below it.

The algorithm in Definition 2.9 also produces the rectangular decomposition of Dnonbip
X ,

viewing it as Dbip
X,Y with Y = X. There is however, one minor modification: if a pedestal

occurs in the rectangular decomposition (Subcase 2b) for Dnonbip
X , one can view the

pedestal itself as a diagram in the shifted plane, and hence certain of its cells are dis-
tinguished as staircase cells. The number of these staircase cells becomes important in
the next section when one analyzes the homotopy type of ∆(Gnonbip

X (D)).
Before closing this section, we note a simple criterion for when Dbip

X,Y has a pedestal,

used later as an aid to show that certain diagrams Dbip
X,Y have ∆(Gbip

X,Y (D)) contractible.

Proposition 2.11 For any shifted skew diagram D and linearly ordered subsets X, Y ,
the diagram Dbip

X,Y has a pedestal if and only if it contains two cells c = (i, j), c′ = (i′, j ′)
with i < i′ and j < j ′ but does not contain the cell (i′, j) in the southwest corner of the
rectangle that they define.

Proof. Assume Dbip
X,Y has pedestal Dbip

X′,Y ′, with top cell (x1, yn) and m′ := max X ′ and
n′ := min Y ′. Then c = (x1, yn′), c′ = (xm′ , yn) satisfy the conditions of the proposition,
because (i′, j) = (xm′ , yn′) is the location of the missing neck cell that would have made
the pedestal into a full rectangle.

On the other hand, it is easily seen that when Dbip
X,Y has no pedestal it looks like a

usual skew Ferrers diagram [23, §I.1]. Such diagrams have the property that when they
contain two cells c, c′ forming the northwest and southeast corners of a rectangle, the
entire rectangle is in the diagram, including its southwest corner cell. �
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2.5 Homotopy type and Betti numbers

The goal of this section is Theorem 2.14, describing the homotopy type of ∆(Gbip
X,Y (D))

(resp. ∆(Gnonbip
X (D))) in terms of the rectangular decomposition of Dbip

X,Y (resp. Dnonbip
X ).

The key point is that one can remove excess cells from the diagrams without changing
the homotopy type of the associated simplicial complexes.

Lemma 2.12 Let D1 ⊂ D2 be a nested pair of shifted skew diagrams, with D1 obtained
from D2 by removing one excess cell of D2. Then the nested pair of simplicial complexes

∆1 := ∆(Gbip
X,Y (D1)) ⊇ ∆2 := ∆(Gbip

X,Y (D2))

will be homotopy equivalent.
The same assertion holds replacing ∆(Gbip

X,Y (Di)) with ∆(Gnonbip
X (Di)) for i = 1, 2.

Proof. By Lemma 6.8 in the Appendix, it suffices to show that the Alexander dual ∆∨
2

is obtained from ∆∨
1 by adding a new facet F with the property that the subcomplex

2F ∩ ∆∨
1 has a cone vertex.

We give the argument for Gbip
X,Y (D); the only change necessary for Gnonbip

X (D) is to
replace each occurrence of a vertex yj with the corresponding vertex xj having the same
subscript j.

Let e = (xi, yj) be the unique cell in D2 \ D1. Since e is an excess cell, it must have
been identified as excess during an iteration of the rectangular decomposition algorithm
that fell into Subcase 2a or 2b. Then e is located either below or to the left of a full
rectangle or pedestal created during that iteration; call this rectangle or pedestal R in
either case. Let (xm′ , yn′) be the top cell for the rectangle or pedestal R. This implies
i > m′ and j < n′.

Note that the extra facet F of ∆∨
2 not in ∆∨

1 corresponding to e has vertices X t
Y \ {xi, yj}. If e is located below (resp. to the left of) R, we will show that the vertex
v := yn′ (resp. v := xm′) forms a cone vertex for the intersection subcomplex 2F ∩ ∆∨

1 .
This means showing for all facets F ′ of ∆∨

1 there exists a facet F ′′ of ∆∨
1 containing v with

the further property that F ∩ F ′ ⊂ F ′′. If F ′ corresponds to the cell (xi′ , yj′) of D1, then
this means one must find a cell (xi′′ , yj′′) of D1 with yj′′ 6= yn′ (resp. xi′′ 6= xm′) and the
further property that

{xi, yj} ∪ {xi′ , yj′} ⊃ {xi′′ , yj′′}.

If yj′ 6= yn′ (resp. xi′ 6= xm′) then this is easy; let (xi′′ , yj′′) := (xi′ , yj′). In other words,
if v 6∈ F ′ then one can simply take F ′′ := F ′.

If yj′ = yn′ (resp. xi′ = xm′) then let (xi′′ , yj′′) := (xi′ , yj) (resp. let (xi′′ , yj′′) :=
(xi, yj′)). There always exists a a cell located at (xi′′ , yj′′) in D1 because this position
is different from e and D2 has a cell located in positions e and (xi′ , yj′). Hence F ′′ =
X t Y \ {xi′′ , yj′′} is a facet of ∆∨

1 . �

Definition 2.13 Call a diagram of the form Dbip
X,Y spherical if in its rectangular decom-

position it has only full rectangles and possibly some excess cells, but no empty rectangles
nor pedestal.
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Given a diagram of the form E = Dbip
X,Y or E = Dnonbip

X , define its rectangularity
rect(E) to be the number of full rectangles and/or pedestals (if present) in its rectangular
decomposition.

For example, Diagram (2.3) has three full rectangles and one pedestal, thus its rect-
angularity is four. It is not spherical.

The following result justifies the name spherical in Definition 2.13.

Theorem 2.14 Let D be any shifted skew diagram D.
For any linearly ordered subsets X, Y , the homotopy type of ∆(Gbip

X,Y (D)) is

• an (rect(Dbip
X,Y ) − 1)-dimensional sphere if Dbip

X,Y is spherical, and

• contractible otherwise.

For any linearly ordered subset X, the homotopy type of ∆(Gnonbip
X (D)) is

• contractible if there are any empty rectangles in the rectangular decomposition, and

• an s-fold wedge of (rect(Dnonbip
X ) − 1)-dimensional spheres if s denotes the number

of non-excess staircase cells otherwise.

Proof. Lemma 2.12 reduces the proof to the case where the diagrams have no excess cells.
When there are no excess cells, the diagrams are disjoint unions of their various empty

or full rectangles and pedestal, where here the disjoint union of diagrams means diagrams
that share no row or column indices. In this case, it is easily seen that the relevant
graphs Gbip

X,Y (D) and Gnonbip
X (D) are also disjoint unions of the graphs corresponding to

these pieces (full/empty rectangle or pedestal). Consequently the complexes ∆(Gbip
X,Y (D))

and ∆(Gnonbip
X (D)) are simplicial joins [26, §62] of the complexes corresponding to these

pieces.
Thus it remains to analyze the homotopy types of the two kinds of complexes when

there is only one piece (empty rectangle, full rectangle, or pedestal) in the rectangular
decomposition.

For an empty rectangle, either complex is contractible because it is the full simplex
2V on its vertex set V = X t Y or V = X.

For a full rectangle, either complex is homotopy equivalent to a zero sphere because it
is the disjoint union of two full simplices, one on the vertices indexing its rows, the other
on the vertices indexing its columns.

For a pedestal, one analyzes Dbip
X,Y and Dnonbip

X separately.

In the case of a pedestal in the shifted plane of the form Dnonbip
X , say with s (non-excess)

staircase cells in positions

(xi, xi+1), (xi+1, xi+2), . . . , (xi+s−2, xi+s−1), (xi+s−1, xi+s),

one can check directly that ∆(Gnonbip
X (D)) is the disjoint union of the s + 1 full simplices

on the vertex sets

{x1, x2, . . . , xi}, {xi+1}, {xi+2}, . . . , {xi+s−1}, {xi+s, xi+s+1, . . . , xn},
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where (1, n) is the position of the top cell of the pedestal. Note that such a disjoint union
of s+1 simplices is homotopy equivalent to s+1 isolated vertices, that is, an s-fold wedge
of 0-spheres.

In the case of a pedestal of the form Dbip
X,Y , one notes that Gbip

X,Y (D) is not changed up
to isomorphism if one relabels the linearly ordered set Y = {y1 < · · · < yn} of column
indices in backwards order, i.e. replace yj with yn+1−j. This has no effect on Gbip

X,Y (D) up

to graph isomorphism, nor on ∆(Gbip
X,Y (D)) up to simplicial isomorphism. However, now

the diagram Dbip
X,Y is no longer a pedestal, but rather has a rectangular decomposition in

two iterations: the first creates a full rectangle and labels all the remaining cells as excess
cells, while the second iteration creates an empty rectangle of zero width. An example is
shown here

y1 y2 y3 y4 y5 y6

x1 p p p p p p
x2 p p p p p p
x3 p p p p
x4 p p p

 

y1 y2 y3 y4 y5 y6

x1 r1 r1 r1 r1 r1 r1

x2 r1 r1 r1 r1 r1 r1

x3 e e e e
x4 e e e

in which the rectangular decomposition for the diagram on the right creates the full
rectangle Dbip

{x1,x2},Y
and removes 5 excess cells in the first iteration, then creates the

empty rectangle Dbip
{x3,x4},∅

in the second iteration. Thus pedestals of the form Dbip
X,Y have

∆(Gbip
X,Y (D)) contractible.

The homotopy type analysis of these base cases then completes the proof, bearing in
mind the following homotopy-theoretic properties4 of the join operation:

• A join with a contractible complex yields a contractible complex.

• The join of a space homotopy equivalent to a d1-dimensional sphere and a space
homotopy equivalent to a d2-dimensional sphere is homotopy equivalent to a (d1 +
d2 + 1)-dimensional sphere.

• Forming joins commutes (up to homotopy equivalence) with taking wedges.

�

Hochster’s formula (Proposition 2.7) combined with Theorem 2.14 immediately yields
the following.

Corollary 2.15 For any shifted skew diagram D and any linearly ordered subsets X, Y ,
the ideals I(Gbip

X,Y (D)) and I(Gnonbip
X (D)) have multigraded Betti numbers independent of

4These properties are reasonably well-known. They may be deduced, for example, from the analogous
but perhaps better-known properties [35, §III.2] of the associative smash product (or reduced join) oper-
ation X ∧ Y , using the fact that the join X ∗ Y of X and Y is homotopy equivalent to the suspension of
X ∧ Y , or equivalently, S1 ∧ X ∧ Y [35, §X.8.III].
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the coefficient field k:

βi,X′tY ′(I(Gbip
X,Y (D))) =





1 if Dbip
X′,Y ′ is spherical with rect(Dbip

X′,Y ′) =

|X ′ ∪ Y ′| − i − 1

0 otherwise.

βi,X′(I(Gnonbip
X (D))) =





s if Dnonbip
X′ has no empty rectangles, has rect(Dnonbip

X′ ) =

|X ′| − i − 1 and has s non-excess staircase cells

0 otherwise.

2.6 Case study: Ferrers diagrams and rook theory

We analyze here in detail the example of Ferrers diagrams, recovering results from [10],
and noting a curious connection to rook theory.

Recall from Example 2.5 that for a partition λ = (λ1 ≥ · · · ≥ λm), the Ferrers graph
Gλ corresponds to a diagram Dbip

X,Y having λi cells in row i, namely {(xi, yj) : 1 ≤ i ≤
m, 1 ≤ j ≤ λi}.

Definition 2.16
Say that the cell (xi, yj) in the Ferrers diagram for λ lies on the kth antidiagonal if k = i+j,
and let αk(λ) for k = 2, 3, . . . denote the number of cells on the kth antidiagonal.

For example, if λ = (4, 4, 2) then (α2(λ), α3(λ), α4(λ), α5(λ), α6(λ)) = (1, 2, 3, 3, 1)
with the diagram corresponding to Gλ shown below, having cells labelled according to
the antidiagonal on which they lie

y1 y2 y3 y4

x1 2 3 4 5
x2 3 4 5 6
x3 4 5

Given X ′ ⊆ X, Y ′ ⊆ Y say that X ′ × Y ′ ⊆ λ if X ′ and Y ′ are non-empty and the full
rectangle X ′ × Y ′ is covered by cells in the diagram Dbip

X,Y corresponding to Gλ.

Proposition 2.17 For any partition λ = (λ1 ≥ · · · ≥ λm > 0), consider the Ferrers
(bipartite) graph Gλ on vertex set X t Y where X = {x1, . . . , xm} and Y = {y1, . . . , yλ1}.
Then for all i ≥ 0 one has

βi,X′tY ′(I(Gλ)) =

{
1 if |X ′| + |Y ′| = i + 2 and X ′ × Y ′ ⊆ λ

0 otherwise

for all X ′ ⊆ X, Y ′ ⊆ Y.

(2.5)

βi,X′,•(I(Gλ)) :=
∑

Y ′⊆Y

βi,X′tY ′(I(Gλ))

=

{(
λm

i−|X′|+2

)
if |X ′| < i + 2

0 otherwise.

(2.6)
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βi(I(Gλ)) = |{(X ′, Y ′) : |X ′| + |Y ′| = i + 2 and X ′ × Y ′ ⊆ λ}|

=
m∑

m′=1

λm′∑

n′=1

(
m′ + n′ − 2

i

)

=
∑

k≥2

αk(λ)

(
k − 2

i

)

=

(
λ1

i + 1

)
+

(
λ2 + 1

i + 1

)
+ · · · +

(
λm + m − 1

i + 1

)
−

(
m

i + 2

)
.

(2.7)

Proof. A Ferrers diagram Dbip
X,Y is easily seen to be spherical if and only if it is a full

rectangle X×Y , which will always have rect(Dbip
X,Y ) = 1. Thus Corollary 2.15 immediately

gives (2.5), which then immediately implies (2.6), as well as the first formula in (2.7).
The second formula in (2.7) follows from the first formula by classifying the spherical

subdiagrams X ′×Y ′ inside λ having |X ′|+|Y ′| = i+2 according to their southeasternmost
cell (xm′ , yn′) so that

m′ = max X ′

n′ = max Y ′.

One can check that there are exactly
(

m′+n′−2
i

)
such rectangular subdiagrams. The third

formula in (2.7) then comes from grouping the second formula according to the value
k = m′ + n′.

The last formula in (2.7) (which is equivalent to one stated in [10, Theorem 2.1]) comes
from summing the inner summation in the second formula of (2.7). One has

λm′∑

n′=1

(
m′ + n′ − 2

i

)
=

(
λm′ + m′ − 1

i + 1

)
−

(
m′ − 1

i + 1

)

and then one uses the fact that
∑m

m′=1

(
m′−1
i+1

)
=
(

m

i+2

)
. �

We remark that the formulae in Proposition 2.17 will also apply to row-nested graphs
which appear later (Section 4.2) as these are exactly the bipartite graphs isomorphic to
Ferrers graphs.

These formulae also allow one to compare the Betti numbers of different Ferrers graphs,
and lead to a curious corollary relating to the combinatorial theory of rook placements.
Given a diagram D ⊂ Z×Z, call an r-element subset of D a (non-attacking) rook placement
on D if no two of the r squares share any row or column. Say that two diagrams D, D ′

in the plane Z × Z are rook-equivalent if they have the same number of r-element rook
placements for all r. In particular, taking r = 1, this means D, D′ must have the same
number of cells, but in general, it is a somewhat subtle equivalence relation. However,
when one restricts the equivalence relation to Ferrers diagrams, rook-equivalence has a
nice characterization, due originally to Foata and Schützenberger, elegantly reformulated
by Goldman, Joichi, and White, and reformulated further in the following fashion by Ding
[12].
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Proposition 2.18 Given two partitions λ, µ, their associated Ferrers diagrams are rook
equivalent if and only if αk(λ) = αk(µ) for all k.

Corollary 2.19 For two partitions λ, µ, the Ferrers graph ideals I(Gλ), I(Gµ) have the
same (ungraded) Betti numbers βi for all i if and only if αk(λ) = αk(µ) for all k, that is,
if and only if λ, µ are rook equivalent.

Proof. The formula βi(I(Gλ) =
∑

k≥2 αk(λ)
(

k−2
i

)
in Proposition 2.17 gives a linear relation

between the vectors (βi(I(Gλ)))i≥2 and (αk(λ))k≥2, governed by an invertible matrix of
coefficients. This yields the first equivalence. The second follows from Proposition 2.18.
�

2.7 Specialization from bipartite to nonbipartite graphs

The goal of this section is Theorem 2.20. It shows that I(Gbip
X,X(D)) is a well-behaved

polarization of I(Gnonbip
X (D)), generalizing results from [11]. This turns out to be very

useful later when proving results about various invariants of these ideals (e.g., Castel-
nuovo-Mumford regularity, Krull dimension, projective dimension, conjectural resolution
bounds); it is generally much easier to prove things directly for I(Gbip

X,Y (D)) and then

apply Theorem 2.20 to deduce the corresponding result for I(Gnonbip
X (D)).

Given a shifted skew diagram D with rows and columns indexed by [n] := {1, 2, . . . , n},
we have seen how to associate with it two ideals in two different polynomial rings over a
field k:

I(Gbip
[n],[n](D)) ⊂ k[x1, . . . , xn, y1, . . . , yn] := k[x,y]

I(Gnonbip
[n] (D)) ⊂ k[x1, . . . , xn] := k[x]

For both ideals we have seen how to compute multigraded Betti numbers, which we now
wish to compare via a certain specialization of the Z2n-grading on k[x1, . . . , xn, y1, . . . , yn]
to a Zn-grading. Consider the map

{x1, . . . , xn, y1, . . . , yn}
sp
→ {x1, . . . , xn}

xi 7→ xi

yj 7→ xj

and the associated map of the gradings Z2n sp
→ Zn that sends the standard basis vec-

tors ei, en+i 7→ ei for i = 1, 2, . . . , n. Using this to define a Zn-grading on the ring
k[x1, . . . , xn, y1, . . . , yn], one has for any multidegree α ∈ Zn a specialized Betti number
βsp

i,α(I(Gbip
[n],[n](D)).

Theorem 2.20 For D a shifted skew diagram with rows and columns indexed by [n], one
has

βi,α(I(Gnonbip
[n] (D))) = βsp

i,α(I(Gbip
[n],[n](D))) (2.8)

for all α ∈ Zn.
Equivalently,
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(i) for all X, Y ⊆ [n] one has βi,XtY (I(Gbip
[n],[n](D))) = 0 unless X ∩ sp(Y ) = ∅, and

(ii) for all Z ⊆ [n], one has

βi,Z(I(Gnonbip
[n] (D))) =

∑

X,Y ⊆[n]:
Xtsp(Y )=Z

βi,XtY (I(Gbip
[n],[n](D))).

Proof. We leave the discussion of the equivalence of the stated conditions to the reader,
except for pointing out that (i) is a consequence of (2.8) because the squarefree monomial
ideal I(Gbip

[n],[n](D)) can have non-trivial Betti numbers only in the squarefree multidegrees

δ ∈ {0, 1}2n.
To prove (i), if X ∩ sp(Y ) 6= ∅, say if an index j lies in both X and in Y , we will show

that ∆(Gbip
X,Y (D)) is contractible and hence βi,XtY (I(Gbip

[n],[n](D))) = 0. Contractibility

comes from the fact that either Dbip
X,Y has

• no cells in row j, so ∆(Gbip
X,Y (D)) has a cone vertex, or

• no cells in column j, so ∆(Gbip
X,Y (D)) has a cone vertex, or

• some cell c in row j, and some cell c′ in column j. But there is no cell of Dbip
X,Y in

position (j, j), which is the southwest corner of the rectangle defined by c and c′

(since D itself has no such cell, as (j, j) is not even a cell in the shifted plane). Hence
Dbip

X,Y contains a pedestal by Proposition 2.11, and ∆(Gbip
X,Y (D)) is contractible by

Theorem 2.14.

To prove (ii), note that one may assume Z = [n] without loss of generality. Also note
that the only non-zero summands on the right side of the equation in (ii) are X, Y ⊂ [n]
with X t sp(Y ) = [n] for which ∆(Gbip

X,Y (D)) is not contractible. Thus we wish to show

βi,[n](I(Gnonbip
[n] (D))) =

∑

X,Y ⊆[n]:
Xtsp(Y )=[n]

∆(Gbip
X,Y

(D)) not contractible

βi,XtY (I(Gbip
[n],[n](D))). (2.9)

Given each pair X, Y appearing in the right side of (2.9), the proof is completed in
three steps.

Step 1. Show that D has a top cell if and only if Dbip
X,Y does.

Step 2. Show that if they both have a top cell, then the rectangular decomposition for D
begins with a full rectangle (not a pedestal) if and only if the same is true for Dbip

X,Y ,
and furthermore these two full rectangles are exactly the same.

Step 3. One is reduced to the case where D starts its rectangular decomposition with a
pedestal, which must be analyzed.
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Step 1. Note that column 1 and row n are both empty in D. Hence non-contractibility
of ∆(Gbip

X,Y (D)) implies 1 6∈ Y and n 6∈ X. But X t Y = [n], so this forces 1 ∈ X, n ∈ Y .

Thus D contains a top cell, namely (1, n) if and only if Dbip
X,Y does.

Step 2. Assume without loss of generality that both D and Dbip
X,Y contain the top cell (1, n).

Assume that the first step in the rectangular decomposition for D finds a full rectangle
Dbip

X′,Y ′, say with neck cell (m′, n′). The first step in the rectangular decomposition for

Dbip
X,Y finds either a full rectangle or pedestal Dbip

X′′,Y ′′ . We wish to carefully argue that
these are the same, i.e. that X ′′ = X ′ and Y ′′ = Y ′.

Start by noting that 1 ∈ X ′′, n ∈ Y ′′. One can characterize X ′ as the largest initial
segment of [n] with the property that X ′ × {n} ⊂ D. Similarly one has that X ′′ is the
largest initial segment of X with X ′′ × {n} ⊂ Dbip

X,Y . But this implies that X ′′ = X ′ ∩ X.
Similarly one can argue that Y ′′ = Y ′ ∩ Y . Thus it remains to show that X ′ ⊂ X and
Y ′ ⊂ Y .

To argue this, we must first “prepare” Dbip
X,Y by possibly removing some of its excess

cells. Given any cell c = (i, j) in Dbip
X,Y that has both i, j ∈ X ′, we claim that c is an

excess cell to the left of the first rectangle Dbip
X′′,Y ′′ . To see this claim, we need to check

that its row index i lies in X ′′ and that its column index j is less than any element of Y ′′.
The first fact is true since i ∈ X ′ ∩ X = X ′′. The second follows because j ∈ X ′ implies

j ≤ max X ′ = m′ < n′ = min Y ′ ≤ min Y ′′;

the relation m′ < n′ comes from the fact that (m′, n′) is a cell of D (so it lies in the shifted
plane), while the last inequality is a consequence of the fact that Y ′′ = Y ′ ∩ Y ⊆ Y ′.

Thus without loss of generality, Dbip
X,Y has no cells in (i, j) with both i, j ∈ X ′; they

are all excess cells which can be removed without affecting ∆(Gbip
X,Y (D)) up to homotopy.

This means Dbip
X,Y has all of the columns indexed by X ′ empty. Non-contractibility of

∆(Gbip
X,Y (D)) then forces X ′ ∩ Y = ∅. Together with X t Y = [n], this implies, X ′ ⊆ X,

and hence X ′′ = X ′ ∩ X = X ′, as desired. A symmetric argument shows Y ′′ = Y ′,
completing Step 2.

Step 3. By Steps 1 and 2, one may assume without loss of generality that D produces
a pedestal in the first (and only) step of its rectangular decomposition. One must show
why equation (2.9) holds in this case.

We claim non-contractibility of ∆(Gbip
X,Y (D)) has strong consequences for the form of

X and Y . It forces any row i in X to contain at least one cell of Dbip
X,Y ; call this cell c.

Similarly, any column j in Y contains at least one cell of Dbip
X,Y ; call this cell c′. Non-

contractiblity also forces i < j for any such i in X and j in Y : if i ≥ j, then the cell (i, j)
that would be the southwest corner of the rectangle defined by c, c′ is not in Dbip

X,Y (since

it is not in the shifted plane), and hence Dbip
X,Y has a pedestal by Proposition 2.11 and

∆(Gbip
X,Y (D)) is contractible by Theorem 2.14. In other words, max X < min Y , which
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combined with X t Y = [n] forces

X = {1, 2, . . . , j}

Y = {j + 1, j + 2, . . . , n}

for some j = 1, 2, . . . , n − 1. One can also check that Dbip
{1,2,...,j},{j+1,j+2,...,n} is a full

rectangle if (j, j + 1) is a non-excess staircase cell in the pedestal of D, and otherwise
∆(Gbip

{1,2,...,j},{j+1,j+2,...,n}) is contractible. Thus (2.9) holds because both sides

• vanish for i 6= n − 2, and

• are equal to the number of (non-excess) staircase cells in the pedestal of D for
i = n − 2.

�

The following corollary says that the ideal I(Gbip
X,Y (D)) in k[x,y] is a well-behaved

polarization (see the Appendix, Lemma 6.9) of the ideal I(Gnonbip
X (D)) in k[x], and lists

the usual consequences for Castelnuovo-Mumford regularity and projective dimension; see
Subsection 2.8 for definitions.

Corollary 2.21 In the setting of Theorem 2.20, if X = Y , then one has

(i) βi,j(I(Gbip
X,Y (D))) = βi,j(I(Gnonbip

X (D))) for all i, j. In particular, the two ideals share
the same projective dimension and Castelnuovo-Mumford regularity.

(ii) The linear forms θ1, . . . , θn where θi := xi − yi have images in the quotient ring
k[x,y]/I(Gbip

X,Y (D)) forming a regular sequence.

(iii) A minimal free resolution for I(Gnonbip
X (D)) as a k[x]-module can be obtained from

a minimal free resolution for I(Gbip
X,Y (D)) as a k[x,y]-module, simply by modding

out (θ) := (θ1, . . . , θn), that is, by tensoring over k[x,y] with k[x,y]/(θ).

Proof. Assertion (i) follows from Theorem 2.20 and Hochster’s formula. The remaining
assertions are seen to be equivalent to it by iterating Lemma 6.9 from the Appendix. �

Example 2.22 Such polarizations and specializations do not work so well for an arbitrary
bipartite graph G and its edge ideal I(G) ⊂ k[x,y]. In other words, it is not in general
true that the specialized ideal Inonbip ⊂ k[x] for which k[x,y]/(I(G) + (θ)) = k[x]/Inonbip

has βi,j(I
nonbip) = βi,j(I(G)).

For example, let G be the bipartite graph on vertex set XtY = {x1, . . . , x5, y1, . . . , y5}
for which

I(G) = (x1y3, x1y4, x2y3, x2y5, x3y4, x3y5), and

Inonbip = (x1x3, x1x4, x2x3, x2x5, x3x4, x3x5).
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This bipartite graph G is a 6-cycle, which one can check is not of the form Gbip
X,Y (D) for

any shifted skew-shape D. However, one can still think of the edges of G as corresponding
to the cells of a diagram in the shifted plane, which would look like this:

1 2 3 4 5
1 · × ×
2 · · × ×
3 · · · × ×
4 · · · ·
5 · · · · ·

Here is the result of a Macaulay 2 calculation of their graded Betti numbers, with
k = Q:

i1 : S=QQ[x1,x2,x3,x4,x5,y1,y2,y3,y4,y5];

i2 : IG=ideal(x1*y3,x1*y4,x2*y3,x2*y5,x3*y4,x3*y5);

o2 : Ideal of S

i3 : betti(resolution(IG))

0 1 2 3 4

o3 = total: 1 6 9 6 2

0: 1 . . . .

1: . 6 6 . .

2: . . 3 6 2

i4 : Snonbip=QQ[x1,x2,x3,x4,x5];

i5 : Inonbip=ideal(x1*x3,x1*x4,x2*x3,x2*x5,x3*x4,x3*x5);

o5 : Ideal of Snonbip

i6 : betti(resolution(Inonbip))

0 1 2 3 4

o6 = total: 1 6 9 5 1

0: 1 . . . .

1: . 6 8 4 1

2: . . 1 1 .
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2.8 Castelnuovo-Mumford regularity

The next three subsections discuss three natural invariants for the ideals I(Dbip
X,Y ) and

I(Dnonbip
X ), namely their

• Castelnuovo-Mumford regularity,

• projective (or homological) dimension, and

• Krull dimension of the quotient rings k[x,y]/I(Gbip
X,Y (D)) and k[x]/I(Gnonbip

X (D)).

Recall the definition of the Castelnuovo-Mumford regularity regS(M) for a Z-graded
module M over a regular Z-graded k-algebra S:

regS(M) = max{j − i : βS
i,j(M)(= dimk TorS

i (M, k)j) 6= 0}.

The goal of this section is Theorem 2.23, which interprets combinatorially the regularity
for both classes of ideals I(Gbip

X,Y (D)), I(Gnonbip
X (D)), in terms of the quantity rectangularity

defined in Definition 2.13 above.

Theorem 2.23 For any shifted skew diagram and linearly ordered subsets X, Y , one has

regk[x,y](I(Gbip
X,Y (D))) = rect(Dbip

X,Y ) + 1

regk[x](I(Gnonbip
X (D))) = rect(Dnonbip

X ) + 1

Proof. Note that the assertion for Dnonbip
X will follow after proving it for Dbip

X,Y , since

rect(Dnonbip
X ) = rect(Dbip

X,X)

by definition of the rectangular decomposition, and

regk[x](I(Gnonbip
X (D))) = regk[x,y](I(Gbip

X,X(D)))

by Theorem 2.20.
To prove the assertion for Dbip

X,Y , first note that

regk[x,y](I(Dbip
X,Y ))

:= max{j − i : β
k[x,y]
i,j (I(Dbip

X,Y )) 6= 0}

= max{|X ′ t Y ′| − i : X ′ ⊆ X, Y ′ ⊆ Y and β
k[x,y]
i,X′tY ′(I(Dbip

X,Y )) 6= 0}

= max{rect(Dbip
X′,Y ′) + 1 : X ′ ⊆ X, Y ′ ⊆ Y, and Dbip

X′,Y ′ is spherical }

where the last equality comes from Corollary 2.15.
To show the inequality regk[x,y](I(Dbip

X,Y )) ≥ rect(Dbip
X,Y ) + 1, note that if one chooses

X ′, Y ′ to be the rows and columns occupied by the union of all the full rectangles along
with the first few equal-sized (i.e. longest) rows in the pedestal (if present), then the
subdiagram Dbip

X′,Y ′ is spherical with rect(Dbip
X′,Y ′) = rect(Dbip

X,Y ).
The reverse inequality follows from Lemma 2.24 below. �
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Lemma 2.24 For any non-empty diagram of the form Dbip
X,Y and any subsets X ′ ⊆

X, Y ′ ⊆ Y , one has
rect(Dbip

X′,Y ′) ≤ rect(Dbip
X,Y )

Proof. Prove this by induction on |X| + |Y |. The base case where |X| + |Y | = 1 is
trivial. For the inductive step, it suffices to prove that when one removes a row or column
from Dbip

X,Y , the rectangularity cannot go up. Without loss of generality one is removing

a non-empty column C from E := Dbip
X,Y , and we wish to show that

rect(E \ C) ≤ rect(E). (2.10)

By induction, one may assume that E has a top cell, else one can remove an empty row
or column from E, leaving both rect(E), rect(E \ C) unchanged. Hence the first step in
the rectangular decomposition for E identifies either a full rectangle or pedestal. If it is a
pedestal, then rect(E) = rect(E\C) = 1. Thus without loss of generality one may assume
that the first step identifies a full rectangle R; let E− denote the remaining diagram after
one removes from E the rows and columns occupied by this full rectangle R.

For most choices of the column C, one has that E \ C shares the same top cell as E,
and begins its rectangular decomposition with the full rectangle R\C or R. In the second
case, one has (E \ C)− = E− \ C− for some column C−. Using

rect(E) = rect(E−) + 1

rect(E \ C) = rect((E \ C)−) + 1
(2.11)

along with the inductive hypothesis applied to E−, one obtains the desired inequality
(2.10).

In the first case, we have E− = (E \ C)− and we argue by induction, unless C is the
rightmost column Cn, and the column Cn−1 second from the right occupies a different set
of rows from those occupied by Cn.

Case 1. The column Cn−1 starts in the same (top) row as the column Cn, but is longer and
hence extends to lower rows than Cn. Here one finds that E \ Cn begins its rectangular
decomposition with a full rectangle that occupies more rows than R. Hence when this
larger rectangle is removed from E \Cn, one finds that (E \C)− is obtained from E− by
removing some rows, and so the inductive hypothesis applies to show rect((E \ C)−) ≤
rect(E−). Then (2.11) gives the desired inequality (2.10).

Case 2. The column Cn−1 does not start in the top row, unlike column Cn. In this case
R = Cn is the entire first full rectangle in the decomposition for E. Since column Cn−1

does not start in the top row, it must extend down to at least as many rows as column Cn

does, or further. This means that (E\C)− is obtained from E− by removing some columns
(at least the column Cn−1) and possibly also some rows. Thus, the inductive hypothesis
again shows rect((E \ C)−) ≤ rect(E−), and one again applies (2.11) to conclude the
desired inequality (2.10). �

the electronic journal of combinatorics 16(2) (2009), #R3 26



2.9 Krull dimension

To find an interpretion of the Krull dimension of the quotient rings k[x,y]/I(Gbip
X,Y (D))

and k[x]/I(Gnonbip
X (D)), Corollary 2.21 again says that one only needs to do this for

k[x,y]/I(Gbip
X,Y (D)).

For any bipartite graph G on vertex set X tY with edges E(G) (not necessarily of the
form Gbip

X,Y (D)), the Krull dimension for k[x,y]/I(G) is the quantity α(G) equal to the
maximum size of a coclique (stable set, independent set) of vertices. This quantity α(G) is
one of four graph invariants for a graph G = (V, E) closely related by classical theorems
of graph theory (see e.g. [34, Chapter 3]), which we review here:

α(G) := max{|C| : C ⊂ V is a coclique, i.e. C contains no vertices that share an edge}

τ(G) := min{|F | : F ⊂ E is an edge cover, i.e. F is incident to all of V }

ν(G) := max{|M | : M ⊂ E is a matching, i.e. M contains no edges that share

a vertex}

ρ(G) := min{|W | : W ⊂ V is a vertex cover, i.e. W is incident to all of E}.

Gallai’s Theorem asserts that for any graph G one has

α(G) + τ(G) = |V | = ν(G) + ρ(G)

while König’s Theorems assert that for a bipartite graph G one has

α(G) = ρ(G) = |V | − τ(G) = |V | − ν(G).

There are very efficient algorithms (e.g. the augmenting path algorithm) for computing
α(G) by finding a maximum-cardinality matching in a bipartite graph G. Hence the Krull
dimension ρ(G) = α(G) is easy to compute for k[x,y]/I(G) of any bipartite graph G. We
do not know of a faster algorithm tailored to the specific class of bipartite graphs Gbip

X,Y (D)
when D is a shifted skew diagram.

2.10 Projective dimension

Recall that the projective (or homological) dimension pdS(M) for a finitely-generated
module M over a polynomial algebra S is the length of any minimal free S-resolution of
M , that is, the largest i for which βS

i (M) 6= 0. Also recall that for any ideal I, since
βi(I) = βi+1(S/I), one has pdS(I) = pdS(S/I) − 1.

In studying the projective (or homological) dimension of the ideals I(Gbip
X,Y (D)) and

I(Gnonbip
X (D)), one is again reduced to studying the former, as Theorem 2.20 implies

pdk[x] I(Gnonbip
X (D)) = pdk[x,y] I(Gbip

X,X).

For the latter, one at least has the following combinatorial interpretation.
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Proposition 2.25 Given any shifted skew diagram D and linearly ordered subsets X, Y ,
one has

pdk[x,y] I(Gbip
X,Y (D)) = max

X′,Y ′

{|X ′| + |Y ′| − rect(Dbip
X′,Y ′) − 1}

where the maximum runs over all subsets X ′ ⊆ X, Y ′ ⊆ Y for which Dbip
X′,Y ′ is spherical.

Proof. This is immediate from Corollary 2.15, since the X ′, Y ′ with Dbip
X′,Y ′ spherical are

the ones which contribute to nonzero βi, namely with i = |X ′|+ |Y ′| − rect(Dbip
X′,Y ′)− 1.

�

One might hope that this maximum can be computed quickly from the rectangular
decomposition, but this is not even true in the case where Dbip

X,Y looks like a single Fer-
rers diagram. Here the rectangular decomposition is very simple, in that it has one full
rectangle, followed possibly by one empty rectangle. However, the spherical subdiagrams
Dbip

X′,Y ′ one must consider to compute the above maximum correspond to the corner cells
of the Ferrers diagram; cf. [10, Corollary 2.2].

Remark 2.26
Herzog and Hibi [17, Corollary 3.5] have shown that, for each bipartite graph G, the ring
k[x,y]/I(G) is Cohen-Macaulay if and only if the projective variety defined by the edge
ideal I(G) is equidimensional and connected in codimension one. We suspect that the
analogous conclusion is also true for a nonbipartite graph Gnonbip

X (D).

3 PART II: Skew hypergraph ideals

3.1 Non-quadratic monomial ideals and hypergraphs

Consider ideals I in k[x] := k[x1, . . . , xn] generated by squarefree monomial generators
xi1 · · ·xid of a fixed degree d ≥ 2. When the number of variables n is allowed to vary,
such ideals are parametrized by the collection

K := {{i1, . . . , id} : xi1 · · ·xid ∈ I} ⊆

(
P

d

)

called a d-uniform hypergraph, where here P := {1, 2, . . .} denotes the positive integers.
Our goal here is to introduce hypergraph generalizations of the ideals I(Gnonbip

X (D)) and
I(Gbip

X,Y (D)) coming from shifted skew diagrams, as well as the Ferrers graph ideals I(Gλ),
in order to ask and answer questions about their resolutions. For this it helps to consider
certain orderings and pre-orderings on the d-subsets

(
P

d

)
.

Definition 3.1
Given two d-subsets

S = {i1 < · · · < id}

S ′ = {i′1 < · · · < i′d}
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say that S ≤Gale S ′ in the Gale (or componentwise, or Bruhat) partial ordering on
(

P

d

)
if

ij ≤ i′j for all j.

Say that S ≤max S ′ in the preordering by maxima on
(

P

d

)
if id ≤ i′d.

Say that S ≤colex S ′ in the colexicographic (or squashed) linear ordering on
(

P

d

)
if

S = S ′ or the maximum element of the symmetric difference S∆S ′ := (S \ S ′) t (S ′ \ S)
lies in S ′.

Note that
S ≤Gale S ′ implies S ≤colex S ′ implies S ≤max S ′.

For the sake of considering monomial ideals which are not necessarily squarefree, define
a d-element multiset of P to be a sequence (i1, i2, . . . , id) with ij ∈ P and i1 ≤ i2 ≤ · · · ≤ id.
Denote by

(
P+d−1

d

)
the collection of all such d-element multisets; clearly monomial ideals

I generated in degree d are parametrized by the collection5

M := {(i1 ≤ . . . ≤ id) : xi1 · · ·xid ∈ I} ⊆

(
P + d − 1

d

)
.

Define the Gale partial ordering on
(

P+d−1
d

)
by saying

(i1 ≤ · · · ≤ id) ≤Gale (i′1 ≤ · · · ≤ i′d) if ij ≤ i′j for j = 1, 2, . . . , d.

Note that there is a simple depolarization bijection

depol :
(

P

d

)
−→

(
P+d−1

d

)

{i1 < · · · < id} 7−→ (i1, i2 − 1, i3 − 2, . . . , id − (d − 1))

which is also an order-isomorphism between the Gale orders on these two sets.

We omit the straightforward proof of the following easy properties of the Gale order-
ings, which will be used in the proof of Theorem 3.13 below.

Proposition 3.2 The Gale orderings on
(

P

d

)
and

(
P+d−1

d

)
share the following properties.

(i) They are lattices with meet and join operations corresponding to componentwise
minimum and maximum, that is, if

v = (i1, . . . , id)

v′ = (i′1, . . . , i
′
d)

then
v ∧ v′ = (min{i1, i

′
1}, . . . , min{id, i

′
d})

v ∨ v′ = (max{i1, i
′
1}, . . . , max{id, i

′
d}).

(ii) They have the property that if xv,xv′

divide some monomial α, then xv∧v′

also divides
α.

5One might call this collection M a hypermultigraph, but we will rather try to avoid choosing some
terminology for such an object!

the electronic journal of combinatorics 16(2) (2009), #R3 29



Definition 3.3
Say that a d-uniform hypergraph K ⊆

(
P

d

)
is squarefree strongly stable if it forms an order

ideal in the Gale ordering on
(

P

d

)
. When d = 2, these are exactly the threshold graphs

from Example 2.6. Similarly, say that collection M ⊆
(

P+d−1
d

)
is strongly stable if it forms

an order ideal in the Gale ordering on
(

P+d−1
d

)
. The reason for the terminology6 is that

the associated squarefree monomial ideal I(K) (resp. monomial ideal I(M)) generated
by

{xi1 · · ·xik : (i1, . . . , id) ∈ K (resp. M)}

is usually called a squarefree strongly stable (resp. strongly stable) ideal generated in degree
d.

Eliahou and Kervaire [15] gave an explicit minimal free resolution for the more gen-
eral class of stable monomial ideals [15], including those generated in different degrees;
Aramova, Herzog and Hibi [1] gave an analogous resolution for squarefree stable ideals,
again including those generated in different degrees. In Theorem 3.13 below, we will
recover an extremely simple cellular version of these minimal free resolutions for both
kinds of ideals, when the ideals are generated in a single degree d. In fact, we will show
that when M = depol(K), the two resolutions for I(K) and I(M) are in a precise sense,
the same. The resolution for strongly stable ideals also reproves a recent result of Sine-
fakopoulos [30], who produced such a cellular resolution by a somewhat more complicated
inductive process. We have not checked whether his cellular resolution is exactly the same
as ours.

Definition 3.4
Define a skew squarefree strongly stable d-uniform hypergraph to be one of the form K \K ′

where K ′, K are both squarefree strongly stable and K ′ ⊆ K.
Such hypergraphs have been studied recently from the viewpoint of combinatorial

Laplacians by Duval [14].
Say that a d-uniform hypergraph is d-partite on a partitioned vertex set X (1)t· · ·tX (d)

if each of its d-sets i1 < · · · < id has ij ∈ X(j) for all j.
Given either a d-uniform hypergraph K ⊂

(
P

d

)
, or a finite collection M ⊂

(
P+d−1

d

)
, we

will associate to it a d-partite d-uniform hypergraph F (K) or F (M) on X (1) t · · · t X (d)

where X (j) := {1(j), 2(j), . . .}, namely

F (K) := {{i
(1)
1 , i

(2)
2 , . . . , i

(d)
d } : {i1 < · · · < id} ∈ K}

F (M) := {{i
(1)
1 , i

(2)
2 , . . . , i

(d)
d } : (i1 ≤ · · · ≤ id) ∈ M}.

One also derives from these hypergraphs F (K), F (M) certain ideals I(F (K)), I(F (M))
in a polynomial algebra having d different variable sets.

6In an unfortunate clash of notation, the squarefree strongly stable d-uniform hypergraphs K are
sometimes called shifted, although they have nothing to do with the shifted plane occurring earlier in this
paper! In yet another unfortunate clash of notation, the word threshold has been used for a property of
hypergraphs that is somewhat stronger than being squarefree strongly stable; see [21].
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Example 3.5
We illustrate this here for d = 3, relabelling the partitioned vertex set X (1) t X(2) t X(3)

as
{a1, a2, . . .} t {b1, b2, . . .} t {c1, c2, . . .}

to avoid superscripts:

K = {123, 124, 134, 234, 125, 135}
I(K) = (x1x2x3, x1x2x4, x1x3x4, x2x3x4, x1x2x5, x1x3x5)

I(F (K)) = (a1b2c3, a1b2c4, a1b3c4, a2b3c4, a1b2c5, a1b3c5)

and letting M := depol(K), one has

M = {111, 112, 122, 222, 113, 123}
I(M) = (x3

1, x2
1x2, x1x

2
2, x3

2, x2
1x3, x1x2x3)

I(F (M)) = (a1b1c1, a1b1c2, a1b2c2, a2b2c2, a1b1c3, a1b2c3)

In the next subsection, we will focus on the non-skew special case where K ′ is empty,
generalizing threshold and Ferrers graph ideals, by giving a simple cellular linear resolution
for the ideals I(K), I(M), I(F (K)), I(F (M)) generalizing those from [10, 11], and which
are in a precise sense, all the same if M = depol(K). In fact, the same methods will also
apply to the following ideals, which are a slightly different generalization of Ferrers graph
ideals to hypergraphs.

Definition 3.6 Say that a d-partite d-uniform hypergraph F on vertex set X (1)t· · ·tX (d)

is a Ferrers hypergraph if there is a linear ordering on each X (j) such that whenever
(i1, . . . , id) ∈ F and (i′1, . . . , i

′
d) satisfies i′j ≤ ij in X(j) for all j, one also has (i′1, . . . , i

′
d) ∈

F . In other words, F is an order ideal in the componentwise partial ordering on X (1) ×
· · · × X (d).

The next proposition generalizes the fact that Ferrers graphs Gλ are isomorphic to a
subclass of graphs of the form Gbip

X,Y (D) for shifted skew diagrams D.

Proposition 3.7 Every Ferrers d-uniform hypergraph F is isomorphic to a d-partite d-
uniform hypergraph of the form F (K \ K ′) with K, K ′ squarefree strongly stable.

Proof. Let F have partitioned vertex set X (1) t · · · t X (d), and let N := maxj{|X
(j)|}.

One can then regard the componentwise ordering on X (1) × · · · × X (d) as a subposet of
the componentwise order [N ]d for [N ] := {1, 2, . . . , N}, and F ⊆ [N ]d as an order ideal.

Then the interval [SF , TF ]Gale in the Gale ordering on
(

P

d

)
between the sets

SF := {1 < N + 1 < 2N + 1 < · · · < (d − 1)N + 1}

TF := {N < 2N < 3N < · · · < dN}

has an obvious order-isomorphism

φ : [SF , TF ] −→ [N ]d

{i1 < · · · < id} 7−→ (i1, i2 − N, i3 − 2N, . . . , id − (d − 1)N).
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The inverse image φ−1(F ) is an order ideal inside the interval [SF , TF ]Gale which is order-
isomorhpic to F . Define the squarefree strongly stable hypergraphs

K := {S ∈

(
P

d

)
: there exist S ′ ∈ φ−1(F ) with S ′ ≥ S}

K ′ := {S ∈ K : S 6≥ SF}.

Then it is easily seen that F (K \K ′) and F are isomorphic as d-partite d-uniform hyper-
graphs. �

3.2 Cellular resolutions

We give a quick review here of the theory of cellular resolutions [25, Chapter 4]. Then
we use this to produce an extremely simple, linear7, minimal free resolution for the
square-free strongly stable ideals I(K) generated in fixed degree, as well as their rela-
tives I(F (K)), I(M), I(F (M)), and for all ideals I(F ) with F a Ferrers hypergraph.

Definition 3.8 Let C be a polyhedral cell complex, that is, a finite collection C = {Pi} of
convex polytopes Pi (called cells or faces of C) in some Euclidean space, with each face of
Pi also lying in C, and the intersection Pi ∩ Pj forming a face of both Pi and Pj.

Given a labelling of the vertices (= 0-dimensional cells) of C by monomials in a poly-
nomial ring S = k[x1, . . . , xN ], one obtains a labelling of each face P by the least com-
mon multiple mP of the monomials that label the vertices lying in P . Letting I be the
monomial ideal generated by all the monomial labels of all of the vertices, one obtains a
ZN -graded complex of S-modules F(C) in which the ith term Fi(C) for i ≥ −1 is the free
S-module with basis elements eP indexed by the i-dimensional faces P of C, decreed to
have multidegree mP . The differential is defined S-linearly by

d(eP ) :=
∑

Q

sgn(P, Q)
mP

mQ

eQ

in which Q runs through all the codimension 1 faces of P , and sgn(P, Q) ∈ {+1,−1}
denotes the incidence function produced from an orientation of the cells of C used in the
usual cellular chain complex that computes the homology of C.

Note that C, if nonempty, always has exactly one face of dimension −1, namely the
empty face ∅, so that F−1(C) ∼= S is a free S-module of rank 1 with basis element e∅ of
multidegree 0. Furthermore, note that the complex F(C) has been arranged so that S/I is

the cokernel of the map F0(C)
d
→ F−1(C). In some cases, F(C) is a resolution of S/I and

lets us compute its Betti numbers – the basic proposition in the theory of cellular resolu-
tions tells us that this is controlled by the reduced homology with coefficients in k of the
subcomplexes defined for each monomial multidegree α by C≤α := {P ∈ C : mP divides α}

7We are slightly abusing notation here. Strictly speaking, what we get should be called a d-linear

resolution: all the minimal generators of the ideal have degree d, while all higher syzygy maps are given
by linear forms.
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Proposition 3.9 [25, Proposition 4.5] F(C) is a resolution of S/I if and only if, for
every multidegree α ∈ ZN , the subcomplex C≤α is k-acyclic.

Example 3.10 (The Taylor resolution [32]) Let I be any monomial ideal in the polyno-
mial ring S, and choose an ordered generating set of monomials (m1, . . . , mp) for I. Then
the Taylor resolution T (S/I) of S/I with respect to this ordered generating set has as

its ith term Ti(S/I) ∼= S(p

i), the free S-module with basis {eA : A ⊂ [p], |A| = i}. One
decrees the ZN -graded multidegree of eA to be mA = lcm{ma : a ∈ A}. The differential
in T (S/I) is defined S-linearly by

d(eA) :=
∑

a∈A

sgn(A, a)
mA

mA\{a}

eA\{a},

where sgn(A, a) = (−1)r if a is the rth smallest element of A. It is well-known and
straightforward to check that the Taylor resolution T (S/I) is the cellular resolution F(C)
associated to the cell complex C which is a (p− 1)-dimenensional simplex having vertices
labelled by the generators m1, . . . , mp for I.

3.3 The complex-of-boxes resolution

We next describe the particular polyhedral complexes that will support our cellular reso-
lutions.

Definition 3.11 Let F be a d-partite d-uniform hypergraph on the partitioned vertex
set X (1) t · · · t X (d). By a box inside K we will mean a subset of F which is a Cartesian
product X1 × · · · × Xd for some subsets Xj ⊆ X (j).

Define the complex of boxes inside F to be the polyhedral subcomplex of the product of
simplices 2X(1)

×· · ·×2X(d)
having faces indexed by the boxes inside K. Alternatively, the

complex of boxes inside F is defined to be the vertex-induced subcomplex of the Cartesian
product of simplices 2X(1)

× · · · × 2X(d)
on the set of vertices indexed by the sets in F .

That is, it consists of all polytopal cells in the Cartesian product whose vertices all lie in
F .

Example 3.12 Let K, M = depol(K), F (K), F (M) be as in Example 3.5. Then the
complex of boxes C inside F (K) or F (M) are both isomorphic to a quadrangle and
triangle glued along an edge, with a pendant edge hanging from a nonadjacent vertex of
the quadrangle. The following diagrams illustrate these complexes of boxes, with vertices
labelled in boldface by the generators of the ideals I(F (K)), I(K), I(F (M)), I(M), and
with higher-dimensional faces P labelled in small script by the least common multiple
mP . The complexes for I(K) and I(M) are obtained from the ones for I(F (K)) and
I(F (M)), respectively, by specializing the labels as described in Theorem 3.13 below.
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For I(F (K)):

• • •

• •

•

a1b3c5 a1b3c4 a2b3c4

a1b2c5 a1b2c4

a1b2c3

a1b2b3c5 a1b2b3c4

a1b3c4c5

a1b2c4c5

a1a2b3c4

a1b2c3c5 a1b2c3c4

a1b2b3c4c5

a1b2c3c4c5

For I(K):

• • •

• •

•

x1x3x5 x1x3x4 x2x3x4

x1x2x5 x1x2x4

x1x2x3

x1x2x3x5 x1x2x3x4

x1x3x4x5

x1x2x4x5

x1x2x3x4

x1x2x3x5 x1x2x3x4

x1x2x3x4x5

x1x2x3x4x5

For I(F (M)):

• • •

• •

•

a1b2c3 a1b2c2 a2b2c2

a1b1c3 a1b1c2

a1b1c1

a1b1b2c3 a1b1b2c2

a1b2c2c3

a1b1c2c3

a1a2b2c2

a1b1c1c3 a1b1c1c2

a1b1b2c2c3

a1b1c1c2c3
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For I(M):

• • •

• •

•

x1x2x3 x1x
2
2 x3

2

x2
1x3 x2

1x2

x3
1

x2
1x2x3 x2

1x
2
2

x1x
2
2x3

x2
1x2x3

x1x
3
2

x3
1x3 x3

1x2

x2
1x

2
2x3

x3
1x2x3

Theorem 3.13 Let K ⊂
(

P

d

)
be squarefree strongly stable, and let M ⊂

(
P+d−1

d

)
be

strongly stable, with F (K), F (M) their associated d-partite d-uniform hypergraphs. Let F
be any d-partite d-uniform Ferrers hypergraph.

(i) For any of the ideals I = I(F (K)), I(F (M)), I(F ) inside S := k[x(1), . . . ,x(d)],

labelling a vertex (i1, . . . , id) of the complex of boxes by the monomial x
(1)
i1

· · ·x
(d)
id

gives a minimal linear cellular S-resolution of S/I.

Hence
βP

j |Xj |−d,X1t···tXd
(I) = 1

for every box X1 × · · · ×Xd inside F or F (K), and all other Betti numbers vanish.

(ii) Furthermore, the specialization map

sp : k[x(1), . . . ,x(d)] −→ k[x]

x
(j)
i 7−→ xi

sends the resolution8 for I(F (K)) or I(F (M)) to a (minimal, linear, cellular) res-
olution for I(K) or I(M). In other words, re-labelling a vertex (i1, . . . , id) of the
complex of boxes for F (K) or F (M) by xi1 · · ·xid yields a k[x]-resolution of I(K)
or I(M).

In particular, I(F (K)), I(K) have the same Z-graded Betti numbers, and the ideals
I(F (M)), I(M) have the same Z-graded Betti numbers.

(iii) If M = depol(K), then the bijection
(

P

d

) depol
−→

(
P+d−1

d

)
induces a cellular isomorphism

of the complex of boxes for I(F (K)) and I(F (M)), preserving the degree of the
monomials mP labelling faces.

Consequently, I = I(K), I(M), I(F (K)), I(F (M)) all have the same Z-graded Betti
numbers βi,j(I) in this siutation.

8Strictly speaking, it is a resolution for the quotient of the polynomial ring by the ideal, not for the
ideal itself. However, deleting the term in homological degree 0 gives a resolution for the ideal itself.
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Proof. To simplify notation, assume d = 3, and let ai, bj, ck be the three sets of variables;
it will be clear that the argument given works for general d.

We deal with the part of (i) asserting that the cellular complexes give cellular resolu-
tions last. Assuming this, for the rest of assertion (i), note that for each box

P = {ai1, . . . , air} × {bj1, . . . , bjs
} × {ck1, . . . , ckt

} (3.1)

in one of the appropriate complexes of boxes inside F, F (K), F (M), the least common
multiple monomial mP will have the appropriate degree for a cellular resolution which is
d-linear (and hence also minimal), namely deg mP = dim P + d. This is because one can
easily check that for the labelling with generators of I(F ), I(F (K)), I(F (M)), one has

mP = (ai1 · · ·air)(bj1 · · · bjs
)(ck1 · · · ckt

),

and for the labelling with generators of I(K), I(M), one has

mP = (xi1 · · ·xir)(xj1 · · ·xjs
)(xk1 · · ·xkt

).

In any case,
deg mP = r + s + t, while

dim P = (r − 1) + (s − 1) + (t − 1),

so deg mP = dim P + 3(= dim P + d).
The above descriptions of mP also show assertion (ii) of the theorem. Assertion (iii)

follows when M = depol(K) because the depolarization bijection on vertices extends to
a bijection sending the typical box P inside F (K) shown in (3.1) to the following box
inside F (M):

depol(P ) := {ai1 , . . . , air} × {bj1−1, . . . , bjs−1} × {ck1−2, . . . , ckt−2}.

Lastly we deal with the first part of assertion (i), asserting that one has various
cellular resolutions. By Proposition 3.9, it suffices to show that for any of the ideals
I(F ), I(K), I(F (K)), I(M), I(F (M)), if C is the appropriate complex of boxes labelled
with the generators of this ideal, then for any multidegree α in the appropriate polynomial
ring, the subcomplex C≤α is contractible. In fact, we will do this by induction on the
number of vertices of C≤α; in the base case when C≤α has only one vertex, this is trivial.
In the inductive step, pick any vertex v of C≤α whose corresponding set or multiset is
Gale-maximal among all the vertices of C≤α. We claim that

(a) there is a unique facet (maximal face) Pv,α of C≤α containing v, and

(b) if v is not the only vertex of C≤α, then this facet Pv,α has strictly positive dimension.

Assuming claims (a) and (b) for the moment, the argument is completed as follows.
Lemma 6.4 below implies that C≤α is homotopy equivalent to the subcomplex C≤α \ {v}
obtained by deleting all faces containing v. Because C and C≤α are defined as vertex-
induced subcomplexes, the deletion C≤α \ {v} is isomorphic to one of the subcomplexes
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C ′
≤α′ which arises for an ideal Î in the same family as I, where one has removed the

generator of I corresponding to v. Since C ′
≤α′ has at least one fewer vertex than C≤α, it is

contractible by induction. Hence C≤α is also contractible.

Proof of Claim (a): We exhibit explicitly the unique facet Pv,α of C≤α that contains
a vertex v corresponding to a Gale-maximal triple (i1, i2, i3), for each kind of ideal
I = I(F ), I(K), I(M), I(F (K)), I(F (M)). In each case it is not hard to use the Gale-
maximality of v to argue that if v lies in some face P of C≤α, then P ⊆ Pv,α. We give this
argument explicitly below for only one of the five kinds of ideals, namely those of the form
I(F (K)), as it is representative of how one argues any of the cases. We also introduce
here a notational convenience: given a linearly ordered set such as x1, x2, . . ., denote the
closed interval {xi, xi+1, . . . , xj−1, xj} by [xi, xj].

When I = I(F ) for a Ferrers hypergraph F , then α is a monomial in the variables ai, bj, ck,
and one has

Pv,α = ([a1, ai1 ] ∩ supp α) × ([b1, bi2 ] ∩ supp α) × ([c1, ci3] ∩ supp α) .

For example, if v = (2, 4, 2) and α = a5
1a2a

4
3b

2
1b2b4b

9
5c

3
2c

2
4c5, then Pv,α = {a1, a2} ×

{b1, b2, b4} × {c2}.

When I = I(F (K)) for K ⊂
(

P

d

)
squarefree strongly stable, then α is a monomial in the

variables ai, bj, ck, and one has

Pv,α = ([a1, ai1 ] ∩ supp α) × ([bi1+1, bi2 ] ∩ supp α) × ([ci2+1, ci3] ∩ supp α) .

For example, if v = (3, 4, 6) and α = a1a
3
3b

2
1b

4
3b

5
4b7c

7
2c4c

3
5c

2
6c7, then Pv,α = {a1, a3}× {b4}×

{c5, c6}.
For this case we provide the argument that every face P of C≤α that contains v must

have P ⊆ Pv,α. Express such a face P containing v in the form

{aimin
, . . . , aimax

} × {bjmin
, . . . , bjmax

} × {ckmin
, . . . , ckmax

}.

Because v = (i1, i2, i3) lies in P , one has the inequalities

imin ≤ i1 ≤ imax < jmin ≤ i2 ≤ jmax < kmin ≤ i3 ≤ kmax. (3.2)

Then Gale-maximality of v forces the equalities

i1 = imax

i2 = jmax

i3 = kmax.

(3.3)

The fact that P lies inside C≤α, together with (3.2) and (3.3), implies

{aimin
, . . . , aimax

} ⊆ [a1, ai1] ∩ supp α

{bjmin
, . . . , bjmax

} ⊆ [bi1+1, bi2 ] ∩ supp α

{ckmin
, . . . , ckmax

} ⊆ [ci2+1, ci3] ∩ supp α.
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This means that P is a subface of Pv,α.

When I = I(F (M)) for M ⊂
(

P+d−1
d

)
strongly stable, then α is a monomial in the variables

ai, bj, ck, and one has

Pv,α = ([a1, ai1] ∩ supp α) × ([bi1 , bi2 ] ∩ supp α) × ([ci2 , ci3] ∩ supp α) .

For example, if v = (3, 4, 6) and α = a1a
3
3b

2
1b

4
3b

5
4b7c

7
2c4c

3
5c

2
6c7, then Pv,α = {a1, a3} ×

{b3, b4} × {c4, c5, c6}.

When I = I(K) for K ⊂
(

P

d

)
squarefree strongly stable, then α is a monomial in the vari-

ables xi, Pv,α is the specialization of the corresponding box P̃v,α in the complex resolving
I(F (K)), and one has

P̃v,α = ([a1, ai1 ] ∩ {aj : xj ∈ supp α})

× ([bi1+1, bi2 ] ∩ {bj : xj ∈ supp α})

× ([ci2+1, ci3 ] ∩ {cj : xj ∈ supp α}) .

For example, if v = (3, 4, 6) and α = x1x
4
3x

5
4x

3
5x

2
6x7, then P̃v,α = {a1, a3}× {b4}× {c5, c6}.

When I = I(M) for M ⊂
(

P+d−1
d

)
strongly stable, then α is a monomial in the variables

xi, but here one must be slightly more careful because I is not a squarefree monomial
ideal. This means that the multiplicities of the variables xi in α become relevant, not just
which variables xi occur in its support. Define mj

k(v) to be the multiplicity of the entry
j among the first k coordinates of (i1, i2, i3); this means that mj

0(v) = 0 for any value j.
Then define subsets

S1(v, α) = {aj : x
m

j
0(v)+1

j divides α}

S2(v, α) = {bj : x
m

j
1(v)+1

j divides α}

S3(v, α) = {cj : x
m

j
2(v)+1

j divides α}

One can then check that Pv,α is the specialization of the corresponding box P̃v,α in the
complex resolving I(F (M)), where

P̃v,α = ([a1, ai1 ] ∩ S1(v, α)) × ([bi1 , bi2 ] ∩ S2(v, α)) × ([ci2 , ci3] ∩ S3(v, α)) .

For example, if v = (3, 3, 4) then m3
2(v) = 2. This implies that

if α = x2
1x

3
3x

7
4x

2
5 then P̃v,α = {a1, a3} × {b3} × {c3, c4},

if α = x2
1x

2
3x

7
4x

2
5 then P̃v,α = {a1, a3} × {b3} × {c4}.

Proof of Claim (b): If v is not the only vertex of C≤α, then because v is Gale-maximal,
without loss of generality we may assume that there is another vertex v ′ of C≤α which
lies strictly below v in the Gale ordering: take any other vertex w 6= v of C≤α and
Proposition 3.2(ii) implies that v′ := v ∧ w has the desired property.
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Now suppose for the sake of contradiction that the unique facet Pv,α of C≤α containing
v which was exhibited above is zero-dimensional. This means that the box Pv,α = X1 ×
· · ·×Xd has each “side” Xm of the box of cardinality |Xm| = 1. Looking at the descriptions
of Pv,α above for each of the ideals I(F ), I(K), I(F (K)), I(M), I(F (M), one can argue by
induction on m that

v = (i1, . . . , id)

v′ = (i′1, . . . , i
′
d)

must be equal in their first m coordinates for m = 1, 2, . . . , d, using the facts that v ′ ≤Gale

v, that xv′

divides α, and that |Xm| = 1. Hence v′ = v, a contradiction. �

We deduce from this the explicit graded Betti numbers of the ideals I(F ), I(K),
I(F (K)), I(M), I(F (M)) in the above setting. The answers for I(M), I(K) agree with
the results of Eliahou and Kervaire [15] and Aramova, Herzog, and Hibi [1]. The answers
for I(F ) generalize Corollary 2.17.

Corollary 3.14 If K is a squarefree strongly stable d-uniform hypergraph, and M =
depol(K), then all four ideals I = I(K), I(F (K)), I(M), I(F (M)) have βi,j(I) = 0 unless
j = i + d and

βi(I) = βi,i+d(I) =
∑

S∈K

(
max S − d

i

)

=
∑

k≥d

µk(K)

(
k − d

i

)

where µk(K) := |{S ∈ K : max(S) = k}|.
If F is a d-partite Ferrers d-uniform hypergraph then βi,j(I(F )) = 0 unless j = i + d

and

βi(I(F )) = βi,i+d(I(F )) =
∑

(i1,...,id)∈F

(∑
j ij − d

i

)

=
∑

k≥d

αk(K)

(
k − d

i

)

where αk(K) := |{(i1, . . . , id) ∈ F :
∑

j ij = k}.

Proof. Theorem 3.13 tells us that all four I = I(K), I(F (K)), I(M), I(F (M)) have
the same graded Betti numbers βi,j(I), which vanish unless j = i + d. Furthermore,
given a subset of positive integers X, it tells us that the multigraded Betti number
βP

j |Xj |−d,X(I(K)) is the number of boxes X1 × · · · × Xd inside F (K) giving a decompo-
sition X = X1 t · · · t Xd.

Classify these boxes according to their set of maxima

S := { max X1 < · · · < max Xd }
= { i1 < · · · < id } ∈ K.
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Given any set S = {i1 < · · · < id} ∈ K, such a box and decomposition X = X1 t · · ·tXd

exists if and only if
S ⊆ X ⊆ [max X] := {1, 2, . . . , max X},

namely one has the unique decomposition in which

Xj := {ij−1 + 1, ij−1 + 2, . . . , ij − 1, ij} ∩ X

with the convention that i0 := 0. Thus for each set S ∈ K there are
(
|[maxS]\S|

i

)
=(

max(S)−d

i

)
sets X with S ⊂ X, |X| = i + d, and max(X) = max(S). For each such set X,

the finely graded Betti number βi,X(I) contributes 1 to βi,i+d(I)(= βi(I)). This gives the
first formula for βi(I(K)); the second follows immediately from the first.

Similarly, the first formula for βi(I(F )) when F is a Ferrers hypergraph comes from
classifying the boxes X1 × · · · × Xd inside F according to their maxima

(max X1, . . . , max Xd) = (i1, . . . , id) ∈ F.

The second formula then follows from the first. �

Remark 3.15
It would be desirable to extend Theorem 3.13 to deal with the stable ideals considered
by Eliahou and Kervaire [15] and squarefree stable ideals considered by Aramova, Herzog,
and Hibi [1], which are somewhat less restrictive than their strongly stable counterparts.

However, in both cases the issue of how one should construct the polarization I(F (K))
from I(K) becomes trickier. The following example shows that the construction used in
Theorem 3.13 does not directly generalize – new ideas are needed.

Example 3.16 Consider the ideal I = (x1x2, x1x3, x2x3, x2x4). It is squarefree stable,
but not squarefree strongly stable. If blindly applied, the method of Theorem 3.13 would
associate to I a 1-dimensional cell complex (its complex of boxes). However, this complex
cannot support a cellular resolution for I (minimal or otherwise), since I has projective
dimension 2.

4 PART III: Instances of Question 1.1 and Conjec-

ture 1.2

4.1 Affirmative answers for Question 1.1

The next three propositions are offered as evidence that many monomial ideals obey the
colex lower bound. Given a d-uniform hypergraph K ⊂

(
P

d

)
, let CK denote the unique

colexsegment d-uniform hypergraph having the same cardinality.

Proposition 4.1 For any squarefree strongly stable d-uniform hypergraph K ⊂
(

P

d

)
or

any strong stable collection M ⊂
(

P+d−1
d

)
, all of the ideals I(K), I(F (K)), I(M), I(F (M))

obey the colex lower bound.
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Proof. By the depolarization bijection, one may assume that M = depol(K). Then
Corollary 3.14 implies that all of these ideals have the same Betti numbers βi(I), namely
βi(I) =

∑
S∈K µk(K)

(
k−d

i

)
. Since CK also has I(CK) squarefree strongly stable, its Betti

numbers obey a similar formula. However, µk(K) ≥ µk(CK) for all k by definition of
µk and due to the fact that the colexicographic ordering on

(
P

d

)
is an extension of the

preordering by maxima. �

Proposition 4.2 Any Ferrers d-partite d-uniform hypergraph F obeys the colex lower
bound.

Proof. By Corollary 3.14, it suffices to show that αk(F ) ≥ µk(CF ) for all k. Note that the
map sending vectors (i1, . . . , id) ∈ Pd to their partial sums (i1, i1 + i2, i1 + i2 + i3, · · · , i1 +
i2 + · · ·+ id) is a bijection Pd →

(
P

d

)
with the property that it sends the distinct elements

of F which are counted by αk(F ) to distinct subsets S in
(

P

d

)
having max(S) = k. Since

CF is an initial segment in a linear ordering on
(

P

d

)
that extends the partial ordering by

max(S), this forces αk(F ) ≥ µk(CF ). �

The proof of the following proposition uses an independent result (Corollary 4.19)
about Conjecture 1.2.

Proposition 4.3 For any shifted skew diagram D and any linearly ordered subsets X, Y ,
both the bipartite graph Gbip

X,Y (D) and the nonbipartite graph Gnonbip
X (D) obey the colex

lower bound.

Proof. There are several reductions. By Theorem 2.20, one can replace Gnonbip
X (D)

by Gbip
X,X(D), and hence it suffices to prove the assertion only for the bipartite graphs

Gbip
X,Y (D). But then Corollary 4.19 implies it suffices to prove it only for row-nested bi-

partite graphs. However row-nested bipartite graphs are exactly the bipartite graphs
isomorphic to Ferrers graphs so it suffices to prove it for Ferrers graphs. But these are
Ferrers hypergraphs with d = 2, and hence the result follows from Proposition 4.2. �

Remark 4.4
The proofs of Propositions 4.1 and 4.2 reveal the important properties of the colexico-
graphic ordering used to define the colexsegment hypergraph CK: colex is a linear order
with a minimum element, and all intervals finite, that extends the Gale ordering, and
which is weaker than the (total) preordering by maxima on

(
P

d

)
. If one replaces the colex

ordering with any ordering on
(

P

d

)
having these properties in defining CK , the proofs of

the previous three propositions are still valid.

Remark 4.5
As with Conjecture 4.9 below, there is an easy upper bound that comes from the Taylor
resolution of I(K) namely βi(I(K)) ≤

(
|K|
i+1

)
. For d = 2 (the graph case) equality is

achieved in this upper bound if and only if the graph has every connected component of
G a star, by Proposition 4.13 below.
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Remark 4.6
It is not true that every monomial ideal generated in a single degree obeys the colex
lower bound. For example, consider the edge ideal I of a 5-cycle. It is a Gorenstein ideal
with total Betti numbers (β0, β1, β2) = (5, 5, 1). These are smaller than the total Betti
numbers (β0, β1, β2) = (5, 6, 2) of the corresponding colexsegment-generated ideal J . In
fact, it is not too difficult to show that I has the smallest total Betti numbers among
all homogeneous (not necessarily monomial) ideals that are minimally generated by 5
quadrics.

Remark 4.7
Question 1.1 invites comparison with Conjecture 4.3 of Aramova, Herzog, and Hibi [1],
in which the Betti numbers of a squarefree monomial ideal are conjectured to be bounded
above by the unique lexsegment ideal having the same Hilbert function (rather then
bounded below by the unique colexsegment ideal having the same number of minimal
generators). Note that this conjecture is true if the ground field has characteristic zero
by [2, Theorem 2.9].

4.2 Evidence for Conjecture 1.2 and its refinement

Here we present a more precise version of Conjecture 1.2, incorporating an upper bound
to go with the lower bound, and characterizing when equality occurs for each. In the
sections following, we are able to prove

• the upper bound, which is not hard via the Taylor resolution (Section 4.3).

• the characterization for the case of equality both in the lower and in the upper
bounds (Sections 4.3, 4.4, 4.5).

• the whole conjecture is valid for graphs of the form Gbip
X,Y (D) (Section 4.6).

We begin by defining the four classes of graphs that appear as the extreme cases in the
conjecture: row-nested (the lower bound), nearly-row-nested (the case of equality in the
lower bound), horizontal (the upper bound), and horizontal-vertical (the case of equality
in the upper bound).

Definition 4.8 Given a bipartite graph G on bipartite vertex set X t Y with edge set
E(G), we will often refer to its associated diagram

D := {(x, y) : {x, y} ∈ E(G)} ⊂ X × Y

This motivates the following terminology. Define for each vertex x ∈ X its row Rx of G
or D as follows:

Rx := {y ∈ Y : {x, y} ∈ E(G)}.

In other words, these are the neighboring vertices to x in G. Similarly define for vertices
y ∈ Y the column Cy in G or D.

the electronic journal of combinatorics 16(2) (2009), #R3 42



Say that G is row-nested if the collection of rows {Rx}x∈X is linearly ordered by
inclusion, that is, if |Rx| ≤ |Rx′| then Rx ⊆ Rx′ . In particular, if |Rx| = |Rx′| then
Rx = Rx′ .

Say G is nearly-row-nested if |Rx| < |Rx′| implies Rx ⊂ Rx′ and for each cardinality
c ≥ 0, one has ∣∣∣∣∣∣

⋂

x:|Rx|=c

Rx

∣∣∣∣∣∣
∈ {c − 1, c}.

In other words, rows of different cardinalities are nested, while all the rows of a given
cardinality c are either all the same or have a common intersection of cocardinality 1.

Say G is horizontal if every square in its associated diagram D is the unique square
within its column.

Say G is horizontal-vertical if every square in its associated diagram D is either the
unique square within its column or the unique square within its row, or both.

Lastly, define

βi,X,•(I(G)) :=
∑

Y ′⊆Y

βi,XtY (I(G)).

In other words, these are the finely graded Betti numbers of I(G) with respect to the
specialized multigrading in which all the Y variables have degree 0.

It is not hard to see that if G is any bipartite graph on vertices X t Y , there is up to
isomorphism, a unique row-nested bipartite graph RG on XtY ′ for some Y ′ with the same
row sizes Rx = (RG)x(= degG(x)) for all x ∈ X. Similarly, there is up to isomorphism a
unique horizontal graph HG with the same row sizes as G.

Here is the more precise version of Conjecture 1.2.

Conjecture 4.9 For any bipartite graph G on vertex set X tY , let RG be the unique (up
to isomorphism) row-nested graph with the same row sizes/X-degrees, and HG the unique
(up to isomorphism) horizontal graph with with the same row sizes/X-degrees.

Then for all i and all X ′ ⊂ X one has

βi,X′,•(I(RG)) ≤ βi,X′,•(I(G)) ≤ βi,X′,•(I(HG))
‖ ‖{(

mindeg(X′)
i−|X′|+2

)
if |X ′| < i + 2

0 otherwise.

}
(
|deg(X′)|

i+1

) (4.1)

where
mindeg(X ′) := min{degG(x) : x ∈ X ′}, and

| deg(X ′)| :=
∑

x∈X′

degG(x).

Furthermore, equality occurs for all i and all X ′ in the lower (resp. upper) bound, that
is, in the first (resp. second) inequality of (4.1), if and only if G is nearly-row-nested
(resp. horizontal-vertical).
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The binomial coefficient expressions for βi,X′,•(I(RG)) and βi,X′,•(I(HG)), the Betti
numbers that appear in (4.1) as lower and upper bounds, are easily explained. For the
upper bound, it will be shown in Proposition 4.13 below that a bipartite graph H is
horizontal-vertical if and only if the Taylor resolution for I(H) is minimal, and from this
the given formula for βi,X′,•(I(HG)) follows immediately. For the lower bound, it is easy
to see that a graph R is row-nested if and only if it is isomorphic to the Ferrers bipartite
graphs considered in Section 2.6, and then Proposition 2.17 gives the formula about the
Betti numbers of RG.

Remark 4.10
We wish to compare Conjecture 4.9 to the Gale-Ryser Theorem from graph theory:

Theorem 4.11 (Gale-Ryser) A pair of weakly decreasing nonnegative integer sequences
(dX , dY ) having the same sum are the X-degrees and Y -degrees of some bipartite graph G
on vertex set X t Y if and only if the conjugate partition (dY )T majorizes dX , that is,

dX
1 + · · ·+ dX

` ≤ (dY )T
1 + · · ·+ (dY )T

`

for all `. The equality (dY )T = dX holds if and only if the associated graph G is row-nested,
that is, a Ferrers graph.

The two results share some similarities. Both state an inequality valid for all bipartite
graphs, with the case of equality achieved by row-nested/Ferrers graphs. For each fixed
X-degree sequence dX , one can regard the Gale-Ryser Theorem as characterizing which
Y -degree sequences dY are compatible with dX , while Conjecture 4.9 says something about
which Zm-graded Betti numbers βi,X′,• are compatible with dX .

Before proving various parts of this conjecture, we pause to give some useful charac-
terization of the various classes of bipartite graphs G just defined, in terms of avoidance of
certain vertex-induced subgraphs GX′tY ′ of G, up to isomorphism. We equivalently phrase
them also in terms of the diagram D for G avoiding certain subdiagrams Dbip

X,Y , up to
relabelling the elements of X and of Y .

Proposition 4.12 Let G be a bipartite graph on vertex set XtY , with associated diagram
D ⊆ X × Y .

(i) G is row-nested if and only if G avoids GX′tY ′ isomorphic to two disjoint edges.
Equivalently, D avoids subdiagrams Dbip

X′,Y ′ of the form

×
×

(ii) G is nearly row-nested if and only if G avoids GX′tY ′ isomorphic to a 6-cycle or
isomorphic to the disjoint union of an edge with a path having two edges and both
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endpoints in Y . Equivalently, D avoids subdiagrams Dbip
X′,Y ′ of the form

× ×
× ×

× ×
or

×
× ×

(iii) G is horizontal if and only if G avoids GX′tY ′ isomorphic to a path with two edges
and both endpoints in X. Equivalently, D avoids subdiagrams Dbip

X′,Y ′ of the form

×
×

(iv) G is horizontal-vertical if and only if G avoids GX′tY ′ isomorphic to a path with
three edges or a 4-cycle. Equivalently, D avoids subdiagrams Dbip

X′,Y ′ of the form

× ×
×

or
× ×
× ×

Proof. For each of the four assertions, the forward implication is easy. It is the backward
implications that require proof, which we give here.
(iii): Obvious.
(i): Assume G is not row-nested. Then there exist two rows Rx1 , Rx2 which are not
nested, that is, there exist y1 ∈ Rx1 \ Rx2 and y2 ∈ Rx2 \ Rx1. But then G{x1,x2},{y1,y2} is
the disjoint union of the two edges {x1, y1}, {x2, y2}.
(iv): Assume G is not horizontal-vertical. Then there exists a cell (x1, y1) in its diagram
that is neither the unique square within its row nor within its column. Hence there exist
cells of the form (x1, y2), (x2, y2) in the diagram, and G{x1,x2},{y1,y2} will be a path with
two edges or a 4-cycle, depending upon whether the cell (x2, y2) is absent or present in
the diagram.
(ii): Assume G is not nearly row-nested.
Case 1. There exist two non-nested rows Rx1, Rx2 of unequal sizes, say |Rx1| > |Rx2 |.

Then there exist y1, y2 ∈ Rx1 \ Rx2 and y3 ∈ Rx2 \ Rx1 . Hence G{x1,x2},{y1,y2,y3} is the
disjoint union of the edge {x2, y3} and the path {x1, y1}, {x1, y2} having two endpoints in
Y .

Case 2. There do not exist two non-nested rows Rx1, Rx2 of unequal size.

Then there must exist a cardinality c for which
∣∣∣
⋂

x:|Rx|=c Rx

∣∣∣ ≤ c − 2.

Subcase 2a. There is a pair of rows Rx1, Rx2 both of cardinality c with |Rx1 ∩Rx2 | ≤ c−2.
Then there exist y1, y2, y3 having the same properties as in Case 1 above.

Subcase 2b. Every pair of unequal rows Rx1 6= Rx2 both of cardinality c has |Rx1 ∩Rx2 | =
c − 1.

Start with two unequal rows Rx1 6= Rx2 both of cardinality c. Since they are unequal
and of the same cardinality, one can find y1 ∈ R2 \R1, y2 ∈ R1 \R2. Now pick a third row
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Rx3 of the same cardinality with the property that there exists y3 ∈ Rx1∩Rx2 but y3 6∈ Rx3 ;

this must exist since
∣∣∣
⋂

x:|Rx|=c Rx

∣∣∣ ≤ c − 2. We claim that this forces x1 ∈ Rx3 , since

|Rx1 ∩Rx3| = c− 1, and it similarly forces x2 ∈ Rx3 . But this means G{x1,x2,x3},{y1,y2,y3} is
a 6-cycle. �

4.3 Proof of the upper bound and the case of equality

The upper bound in Conjecture 4.9 follows from the Taylor resolution for a monomial
ideal I that was recalled in Example 3.10. Since T (S/I) is a (not necessarily minimal)
free S-resolution for S/I, the number of basis elements in Ti(S/I) of multidegree m always
gives an upper bound on the Betti number βi,m(S/I) = 0, and this bound is tight for all
m if and only if T (S/I) is a minimal free resolution.

For a graph G one can easily characterize when the Taylor resolution for I(G) is
minimal. Say that a graph is a star if it is a tree with at most one vertex of degree larger
than 1.

Proposition 4.13 A graph G has the Taylor resolution T (S/I(G)) minimal if and only
if every connected component of G is a star. Hence a bipartite graph G has the Taylor
resolution T (S/I(G)) minimal if and only if G is horizontal-vertical.

Proof. If every connected component of G is a star then the Taylor resolution is minimal,
as all the least common multiples mA are distinct for different subsets A: every generating
monomial m = xixj contains a variable xi or xj corresponding to a vertex of degree one,
which is therefore contained in no other generating monomial.

Conversely, suppose a graph G has its Taylor resolution minimal. Then for any subset
X of its vertices, the vertex-induced subgraph GX must also have its Taylor resolution
T (S/I(GX)) minimal, as it is a subcomplex of the Taylor resolution for I(G). This means
that G must avoid as a vertex-induced subgraph GX having

• a 3-cycle,

• a 4-cycle, or

• path with 3 edges,

since one can do a small calculation of the Taylor resolution for each, and find that none
of them are minimal. We claim that this forces G to have no cycles – if not, it would
contain some cycle of minimum length, which would either be of length 3, or of length 4,
or of length at least 5 and hence contain a vertex-induced path with 3 edges. Hence G
must be a forest, and its component trees must all have diameter 2, in order to avoid the
path with 3 edges. Thus each component is a star. �

Corollary 4.14 The upper bound inequality

βi,X′,•(I(G)) ≤ βi,X′,•(I(HG))
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asserted by Conjecture 4.9 is valid. Furthermore, equality is achieved if and only if G is
horizontal-vertical, as asserted by Conjecture 4.9.

Proof. Let S = k[x,y], and compare the Taylor resolutions T (S/I(G)) and T (S/I(HG)).
Note that when one only looks at the X-multidegrees, setting the Y -multidegrees to 0, the
two resolutions have exactly the same number of basis elements in each X-multidegree.
The former is a resolution for S/I(G), and hence provides an upper bound on its Betti
numbers, while the latter is a minimal free resolution for S/I(HG) by Proposition 4.13.
This proves the asserted upper bound.

In the case of equality, it follows that a minimal free resolution of S/IG has the ranks βi

of the free modules in the resolution equal to the ranks that occur in the Taylor resolution
T (S/I(G)). Hence this Taylor resolution is minimal, and thus by Proposition 4.13, G is
horizontal-vertical. �

4.4 Two general reductions in the lower bound

Here we give two reductions that may apply to a bipartite graph when one is attempting
to verify the lower bound in Conjecture 4.9. Both will be used in the next section to
verify the case of equality conjectured for the lower bound.

Say that a bipartite graph G on vertex set X t Y , or its diagram D, has the vertex
x ∈ X (resp. y ∈ Y ) as a full row (resp. column) if E(G) contains all of {x} × Y (resp.
X × {y}). Say that x, x′ ∈ X index nested rows if Rx′ ⊆ Rx.

The following two results allow one to remove full columns and/or rows, and remove
nested rows, when considering a minimal counterexample to Conjecture 4.9.

Proposition 4.15 Let G be a bipartite graph on vertex set X t Y . If G has y ∈ Y as a
full column, one has for all i and all X ′ ⊆ X that

βi,X′,•(I(G)) = δi,|X′|−1 + βi,X′,•(I(G \ {y})) + βi−1,X′,•(I(G \ {y})),

where G\{y} denotes the vertex-induced subgraph of G on X t (Y \{y}), and δi,j denotes
the Kronecker delta function.

Consequently, in this situation, G achieves equality in the lower bound of Conjec-
ture 4.9 if and only if G \ {y} does.

Proof. The idea is to compare the most finely graded Betti numbers βi,X′tY ′ for I(G)
versus I(G \ {y}).

If y 6∈ Y ′, clearly GX′tY ′ = (G\{y})X′tY ′, so that βi,X′tY ′(I(G)) = βi,X′tY ′(I(G\{y})).
Furthermore, if y 6∈ Y ′ and Y ′ 6= ∅ then ∆(GX′t(Y ′t{y})) is obtained from ∆(GX′tY ′)

simply by adding in the vertex y as the apex of a cone over the base simplex having vertex
set Y ′. Hence the two complexes are homotopy equivalent, and βi,X′t(Y ′t{y})(I(G)) =
βi−1,X′tY ′(I(G \ {y})).

Lastly, note that βi,X′,{y}(I(G)) = 1 for i = |X ′| − 1 and 0 for all other i.
Since βi,X′,•(I(G)) =

∑
Y ′⊂Y βi,X′tY ′(I(G)), the formula in the proposition follows.

The second assertion is a consequence of the formula, as RG will have a full column
whenever G does. �
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Proposition 4.16 Let G be a bipartite graph on vertex set X t Y with two nested rows
Rx2 ⊂ Rx1. Then

βi,X,•(I(G)) = βi−1,X\{x1},•(I(G \ {x1}))

for all i.
Consequently, if Conjecture 4.9 holds for all bipartite graphs with smaller |X|, it will

also hold for G.

Proof. For the first assertion, introduce the ideal I(G) + (x1). Although this ideal is no
longer quadratic, it is still generated by squarefree monomials, and hence is the Stanley-
Reisner ideal for a simplicial complex on this vertex set X t Y . This complex is the
simplicial complex of I(G \ {x1}) with x1 still considered as an element of the ground set.
Hochster’s formula (Proposition 2.7) shows that

βi−1,X\{x1},•(I(G \ {x1})) = βi,X,•(I(G) + (x1)).

Hence it only remains to show that

βi,X,•(I(G)) = βi,X,•(I(G) + (x1)). (4.2)

Letting S := k[x,y], one can relate the Betti numbers of I(G) + (x1) and of I(G) via the
long exact sequence in TorS(−, k) associated to the short exact sequence of S-modules

0 → S/(I(G) : x1)(− deg x1)
x1−→ S/I(G) → S/(I(G) + (x1)) → 0

where
(I(G) : x1) := {f ∈ k[x,y] : fx1 ∈ I(G)}

denotes the usual ideal quotient (or colon ideal). The ideal (I(G) : x1) is also not quadratic,
but is still generated by squarefree monomials, with unique minimal monomial generating
set given by

{yj : {x1, yj} ∈ E(G)} t {xiyj : {xi, yj} ∈ E(G) with xi 6= x1 and {x1, yj} 6∈ E(G)}.
(4.3)

Note that x2 ∈ X does not appear among any of these minimal generators for (I(G) : x1),
because every edge of the form {x2, yj} ∈ E(G) also has {x1, yj} ∈ E(G). Therefore
the finely graded component corresponding to X does not appear in the minimal free
resolution for (I(G) : x1), and hence

βi,X,•(I(G) : x1) = βi−1,X,•(S/I(G) : x1) = 0 for all i.

Therefore the desired relation (4.2) follows from the aforementioned long exact sequence.
For the second assertion, note that the hypothesis on G implies that the row-nested

graph RG will also have rows (RG)x2 ⊆ (RG)x1 nested in the same way, and hence the
formula in the proposition holds for RG also. The rest is straightforward. �
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4.5 The case of equality in the lower bound

Although we do not know how to prove the lower bound in Conjecture 4.9 in general, we
prove here its assertion about when equality is achieved.

Theorem 4.17 Let G be a bipartite graph on vertex set X t Y , and RG the unique (up
to isomorphism) row-nested graph having the same row sizes/X-degrees. Then for all i
and all X ′ ⊆ X one has

βi,X′,•(I(G)) = βi,X′,•(I(RG))

(
=

{(
mindeg(X′)
i−|X′|+2

)
if |X ′| < i + 2

0 otherwise.

})

if and only if G is nearly row-nested.

Proof.

The forward implication.
Note that if G is not nearly row-nested, then Proposition 4.12(ii) shows that G contains

some vertex-induced subgraph GX′,Y ′ isomorphic to either the disjoint of an edge with a
path of two edges having both endpoints in Y , or a 6-cycle.

In the first case, consider the subdiagrams for RG and G restricted to the two rows
X ′ = {x1, x2}, which will have sizes |Rx1| = a, |Rx2 | = b and, say, a ≥ b. In RG, these two
rows are nested, while in G they overlap in c columns where a − c ≥ 2. One calculates

β1,X′,•(I(RG)) =

(
b

1 − 2 + 2

)
= b

by the formula in the statement of the theorem. Meanwhile, we argue using Corollary 2.15
that

β1,X′,•(I(G)) ≥ c + (a − c)(b − c).

This is because one has β1,X′tY ′(I(G)) = 1 for

• any of the c choices of Y ′ equal to a single column in the overlap of the two rows,
and

• any of the (a − c)(b − c) choices of Y ′ having two columns of size one.

But then the fact that a − c ≥ 2 implies

β1,X′,•(I(G)) ≥ c + (a − c)(b − c) > b = β1,X′,•(I(RG)).

In the second case, we may assume that the former subgraphs GX′,Y ′ do not exist in G,
but a 6-cycle G{x1,x2,x3},{y1,y2,y3} does exist. The proof of Proposition 4.12(ii) showed that
in this situation, the subgraph G{x1,x2,x3},Y will have every y of Y \ {y1, y2, y3} giving a
full column. Hence by Proposition 4.15, it suffices to remove these full columns and show
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that a 6-cycle G does not achieve the lower bound in the conjecture. For this, observe
that a 6-cycle G has

β3,X′,•(I(RG)) =

(
2

3 − 3 + 2

)
= 1

< 2 = dimk H̃1(∆(I(G))) = β3,X′,Y ′(I(G)) ≤ β3,X′,•(I(G)).

Here the calculation H̃1(∆(I(G))) ∼= k2 comes from direct inspection: if the 6-cycle
G{x1,x2,x3},{y1,y2,y3} has edges E(G) = {xi, yj}1≤i6=j≤3, then ∆(I(G)) consists of two trian-
gles {x1, x2, x3}, {y1, y2, y3} together with the three edges {xi, yi}i=1,2,3 connecting them,
and is homotopy equivalent to a wedge of two circles.

The reverse implication.
Assume that G is a nearly row-nested bipartite graph on X t Y , and one must show

that βi,X′,•(I(G)) = βi,X′,•(I(RG)) for all i and all X ′ ⊂ X. Proceed by induction on
|X| + |Y |. By the reductions in Propositions 4.16 and 4.15 one may assume that G
contains no nested pair of rows, and that it contains no full columns. Because G is nearly
row-nested, containing no nested pair of rows implies all the rows Rxi

have the same
cardinality c. Containing no full columns then forces c = 1. But in this case, both G and
RG are horizontal-vertical, having their Taylor resolutions minimal by Proposition 4.13,
and

βi,X′,•(I(G)) = βi,X′,•(I(RG)) =

{
1 if i = |X ′| − 1

0 otherwise.

�

Note that the above result gives a characterization of nearly row-nested graphs by
means of its Betti numbers βi,X′,•. In this sense it is analogous to the characterization of
Ferrers graphs as the bipartite graphs whose minimal free resolutions are linear (see [10,
Theorem 4.2]).

4.6 Verifying the bipartite conjecture for Dbip
X,Y

Having already verified the upper bound and the cases of equality for the upper and lower
bounds in Conjecture 4.9 generally, we verify here that the lower bound holds for the
bipartite graphs Dbip

X,Y , using Corollary 2.15. The crux is the following lemma.

Lemma 4.18 Let D be a shifted skew diagram, and X, Y linearly ordered subsets.
If Dbip

X,Y has no empty rows, then there exists a subset Y ′ ⊆ Y for which Dbip
X,Y ′ is

spherical and rect(Dbip
X,Y ′) = |Y ′|.

More generally, if Dbip
X,Y has at least k cells in every row, then for every j in the range

1 ≤ j ≤ k, there are at least
(

k

j

)
different choices of subsets Y ′ ⊆ Y for which Dbip

X,Y ′ is

spherical and rect(Dbip
X,Y ′) = |Y ′| − j + 1.
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Proof. For the first assertion, one can give an algorithm to find Y ′. Initialize Y ′ to be
empty. Without loss of generality one can assume that Dbip

X,Y has only one cell in its first
row– simply remove all columns of Y that intersect the top row except for the longest
such column, and one will still have no empty rows in Dbip

X,Y . Add to Y ′ the index yn of

this unique column intersecting the top row, which is now the rightmost column of Dbip
X,Y .

Note also that Dbip
X,Y has a rectangular decomposition that begins with the full rectangle

having this single column yj. As in the algorithm for rectangular decomposition, replace

Dbip
X,Y with its restriction to the rows and columns disjoint from this first full rectangle,

which is again a diagram with no empty rows by construction, and repeat the process
until X is empty.

For the second assertion, one finds
(

k

j

)
different sets Y ′ by a similar algorithm. Initialize

Y ′ to be empty. Without loss of generality one can assume that Dbip
X,Y has exactly k cells

in its first row– simply remove all columns of Y that intersect the top row except for the
longest k of them, and this will preserve the property of every row having at least k cells.
For each j-element subset Y0 of these k columns that intersect the top row, add Y0 to Y ′,
and we will continue the the algorithm to produce a Y ′ for which Dbip

X,Y ′ has |Y ′|−j+1 full
rectangles in its rectangular decomposition. As a first step, remove the other k−j columns
that intersect the top row from Y , and note that Dbip

X,Y has a rectangular decomposition
that begins with a full rectangle containing exactly the j columns that intersect the top
row. Furthermore, the hypothesis that each row has at least k cells ensures that, after
replacing Dbip

X,Y with its restriction to the rows and columns disjoint from this first full
rectangle, one will have a diagram with no empty rows. Thus one can continue the
algorithm from the proof of the first assertion, adding in one more column to Y ′ each
time along with one more full rectangle in the rectangular decomposition. Repeating the
process until X is empty, one obtains the desired Y ′. �

Corollary 4.19 For any shifted skew diagram D and linearly ordered subsets X, Y , Con-
jecture 4.9 holds for Gbip

X,Y (D).

Proof. Let X ′ ⊆ X and let k := mindeg(X ′). Then one must show that

βi,X′,•(I(Gbip
X,Y (D))) ≥

(
k

i − |X ′| + 2

)

for |X ′| < i + 2.
Without loss of generality, X ′ = X. Let I := I(Gbip

X,Y (D)). Let j := i − |X ′| + 2, so

that 1 ≤ j ≤ k, and Lemma 4.18 implies that there are at least
(

k

j

)
different Y ′ ⊂ Y for

which β|X|+|Y ′|−(|Y ′|−j)−2,XtY ′(I) = 1. In other words, β|X|+j−2,X,•(I) ≥
(

k

j

)
. Substituting

j := i − |X ′| + 2 gives the desired lower bound. �

5 EPILOGUE: Further questions

We conclude with a few questions motivated by our results. The first ones concern exten-
sions of our results (such as Corollary 2.15, Theorem 2.20, Corollary 2.21, Theorem 3.13)
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that give the Betti numbers or the explicit maps in the minimal free resolution of certain
ideals.

Question 5.1 Let K ′ ⊂ K be two nested d-uniform hypergraphs with both I(K), I(K ′)
squarefree strongly stable, so that I(K \ K ′) is what we called earlier a skew squarefree
strongly stable ideal.

(i) Are the multigraded Betti numbers for the ideals I(K \ K ′) and I(F (K \ K ′))
independent of the field k, as in Corollary 2.15?

(ii) Is there a combinatorial recipe like the rectangular decomposition that allows one
to compute them?

(iii) Are the Betti numbers for I(K \ K ′) obtained from those of I(F (K \ K ′)) by
specialization, as in Theorem 2.20, Corollary 2.21?

(iv) Can an affirmative answer to questions (i), (ii), (iii) be given via cellular resolutions,
as in Theorem 3.13?

(v) Can one at least do (iv) in the case of I(Gbip
X,Y (D)) with D a shifted skew diagram?

This would mean finding a regular CW-complex whose cells are indexed by the
spherical subdiagrams of a given shifted skew diagram.

Finally, we come back to lower bounds.

Remark 5.2 Remark 4.6 still allows for the possibility that among the monomial ideals
generated in one degree and with a fixed number of minimal generators there is one ideal
that has the smallest total Betti numbers. Is this at least true for ideals that are generated
in degree two? If so, it would be very interesting to describe the ideals that attain the
smallest Betti numbers.

Question 5.3 Can one formulate a reasonable extension of Conjecture 1.2 that applies
to squarefree monomial ideals generated in degrees d ≥ 2, presumably parametrized by
d-uniform hypergraphs with some multipartiteness property?

6 Appendix

6.1 On the topological types of ∆(I(G))

The goal is to observe that the simplical complexes ∆(I(G)) associated to edge ideals
I(G) of graphs G can have arbitrary homeomorphism type, and when G is bipartite they
can have the homotopy type of an arbitrary suspension.

The following is simply the well-known observation that the first barycentric subdivi-
sion of a simplicial complex (see e.g. [26, §15]) is always a flag (clique) complex, that is,
of the form ∆(I(G)).
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Proposition 6.1 For any finite simplicial complex ∆ there exists some graph G with
‖∆(I(G))‖ homeomorphic to ‖∆‖.

Proof. Let G have vertex set V equal to the collection of all nonempty simplices of ∆,
and an edge between two of them if the corresponding simplices of ∆ are not included
within one another. Then ∆(I(G)) is the first barycentric subdivision of ∆, and hence
their geometric relations are homeomorphic. �

In particular, this proposition implies the well-known fact that one can have torsion in
the homology of ∆(I(G)), and hence dependence of the Betti numbers βi(I(G)) on the
choice of the field coefficients k. See Katzman [20] for some constraints on where this
dependence can occur.

Among bipartite graphs G, one does not achieve every homeomorphism type for
∆(I(G)), and not even every homotopy type. However, it is easy to say exactly what
homotopy types one can achieve, namely all suspensions. In particular, one can still have
torsion in the homology of ∆(I(G)) for bipartite G, and hence dependence of the Betti
numbers βi(I(G)) on the choice of the field coefficients k.

Proposition 6.2 For any finite bipartite graph G, the geometric realization ‖∆(I(G))‖
is homotopy equivalent to the suspension of the geometric realization ‖∆‖ of some finite
simplicial complex ∆.

Conversely, for any finite simplicial complex ∆, one can find a bipartite graph G for
which ‖∆(I(G))‖ is homotopy equivalent to the suspension of ‖∆‖.

Proof. Let G be a bipartite graph on vertex set XtY . Let T be the geometric realization
of ‖∆(I(G))‖ in R|X|+|Y | where the vertices corresponding to X (resp. Y ) are sent to
standard basis vectors in the first |X| (resp. last |Y |) coordinates, and simplices are
embedded piecewise-linearly with these vertices. Define f : R|X|+|Y | → R to be the linear
map which sums the last |Y | coordinates of the vector, so that f(T ) ⊆ [0, 1].

One can write T = TX ∪ TY where

TX := T ∩ f−1

[
0,

1

2

]

TY := T ∩ f−1

[
1

2
, 1

]

TX ∩ TY = T ∩ f−1

(
1

2

)

and note that there are straight-line homotopies that deformation retract TX , TY onto the
simplices X(= T ∩ f−1(0)) and Y (= T ∩ f−1(1)). Hence TX , TY are contractible, and so
their union T is homotopy equivalent to the suspension of their intersection T ∩f−1(1

2
) by

Lemma 6.3 below. This intersection comes equipped with a regular CW-decomposition
having cells {

σ ∩ f−1

(
1

2

)
: σ ∈ ∆(I(G))

}
.
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Since every regular CW-complex is homeomorphic to a finite simplicial complex (e.g. its
own barycentric subdivision), the first assertion is proven.

For the converse, start with a finite simplicial complex ∆. Create a bipartite graph G
on vertex XtY , where X is the collection of vertices of ∆ and Y is the collection of facets
of ∆, with an edge {x, y} if x corresponds to a vertex of ∆ that does not lie on the facet of
∆ corresponding to y. It is not hard to see that the maximal simplices of ∆(I(G)) (other
than X, Y ) are exactly the sets X ′ t Y ′ of the following form: Y ′ = {F1, . . . , Fr} 6= ∅

indexes a collection of facets whose intersection F1 ∩ · · · ∩ Fr is X ′, and X ′ 6= ∅.
We claim that T := ‖∆(I(G))‖ has TX ∩ TY = T ∩ f−1(1

2
) homotopy equivalent to

‖∆‖, and hence T is homotopy equivalent to the suspension of ‖∆‖ by the first part of
the proof. To see the claim, one can exhibit good coverings (that is, ones in which all
intersections of the covering sets are either empty or contractible) of ‖∆‖ and of T∩f−1(1

2
)

that have isomorphic nerves.
Cover ‖∆‖ by the simplices which are achieved as intersections F1∩· · ·∩Fr of nonempty

collections of facets Fi. Since each facet F is itself such an intersection, this covers
‖∆‖. Because intersections of simplices in a simplicial complex are always empty or other
simplices, this is a good covering.

Cover T ∩ f−1(1
2
) by the polyhedral cells σ ∩ f−1(1

2
) as σ runs through all the sets

X ′ t Y ′ (described above) that give facets of ∆(I(G)) other than X, Y . It is not hard
to see that these cells intersect in the same fashion as their corresponding simplices σ
intersect, hence their intersections are always of the form τ ∩ f−1(1

2
) for some simplex

τ . Since this intersection set τ ∩ f−1(1
2
) is always empty or contractible, this is a good

covering.
The above analyses of intersections of the covering sets also shows that the nerves

of the two covers are identical. Hence the two spaces ‖∆‖, T ∩ f−1(1
2
) that they cover

are both homotopy equivalent to the nerve of the cover by the usual Nerve Lemma [5,
Theorem 10.6]. �

6.2 A wedge lemma

The goal is here to state and prove the following commonly-used wedge lemma, whose
special cases were used in two proofs above. Although it is well-known, and even a special
case of a variation on a lemma of Björner, Wachs and Welker (alluded to in their [7,
Lemma 7.1, Remark 7.2]), we include a proof for completeness.

Lemma 6.3 Let X, Y be two subspaces of a topological space, and assume that the in-
clusion maps X ∩ Y ↪→ X, Y are both cofibrations, and both homotopic to a constant
map.

Then the union X ∪ Y is homotopy equivalent to the wedge X ∨ Y ∨Σ(X ∩ Y ), where
here Σ denotes suspension.

In the situations where we need this lemma, X ∩ Y, X, and Y are all subcomplexes of
a CW -complex, and hence the cofibration hypothesis always holds. Furthermore, we
can take advantage of the fact that if Z ↪→ Z ′ is an inclusion of a subcomplex Z in a
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CW -complex Z ′, it is homotopic to a constant map if either Z or Z ′ is contractible, a
hypothesis that holds in the two special cases where we wish to apply the lemma:

• If X and Y are contractible, then X ∪ Y is homotopy equivalent to Σ(X ∩ Y )
(used in the proof of Lemma 6.4 below).

• If X ∩ Y and Y are contractible, then X ∪ Y is homotopy equivalent to X
(used in the proof of Proposition 6.2 above).

Proof.(of Lemma 6.3; cf. proof of [7, Lemma 7.1]) The inclusions X ∩ Y ↪→ X, Y give
rise to a diagram of spaces D over the 3-element poset Q that has two maximal elements
corresponding to X, Y and one minimum element corresponding to X∩Y . By [7, Corollary
2.4], the union X ∪ Y is homotopy equivalent to the homotopy colimit of this diagram
hocolimD.

On the other hand, there is another diagram of spaces E over the same poset Q in
which the inclusions X ∩ Y ↪→ X, Y are replaced by the constant maps to which they
are homotopic. Then [7, Lemma 2.1] implies that hocolimD and hocolimE are homotopy
equivalent.

Finally, [7, Lemma 2.2] implies that hocolimE is homotopy equivalent to X ∧ Y ∧
(S0 ∗ (X ∩ Y )), where here S0 is a zero-sphere (that is, two disjoint points) and ∗ denotes
the topological join. Since S0 ∗ (X ∩ Y ) = Σ(X ∩ Y ), this completes the proof. �

The following topological lemma was an essential point in the proof of Theorem 3.13.

Lemma 6.4 Let C be a polytopal complex and v a vertex in C that lies in a unique facet
P , and assume that P has strictly positive dimension.

Then the vertex-induced subcomplex C \ {v}, obtained by deleting v and all faces that
contain it, is homotopy equivalent to C.

Proof. Let P be the unique facet of C containing v, and P \ {v} the polytopal complex
whose maximal faces are the codimension one faces of P not containing v. As topological
spaces, one has

C = (C \ {v}) ∪ P
P \ {v} = (C \ {v}) ∩ P.

Since P is convex and hence contractible, it then suffices by Lemma 6.3 to show that
P \ {v} is contractible. In fact, polytopal complexes of the form P \ {v} are even known
to be homeomorphic to a ball of dimension dim(P ) − 1: one can find a shelling order on
the codimension one faces of P in which the maximal faces of P \ {v} appear as an initial
segment [6, Example 4.7.15 and Proposition 4.7.26(ii)] and [36, Corollary 8.13]. �

6.3 A collapsing lemma

The goal here is Lemma 6.8 below, which was used in Section 2.5 to show that excess
cells in diagrams of shifted skew shapes can be removed without altering the homotopy
type of their associated simplicial complexes.

For this we first recall a central notion from simple homotopy theory [9].
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Definition 6.5 Given two nested simplicial complexes ∆ ⊂ ∆′, say that ∆ is obtained
from ∆′ by an elementary collapse if ∆ = ∆′ \ {G, F} where F is a facet (maximal face)
of ∆ and G is subface of F that lies in no other faces of ∆. It is not hard to see that
this implies ∆ is a strong deformation retract of ∆′, and hence that they are homotopy
equivalent. The notion of simple homotopy equivalence is the equivalence relation ∼ on
simplicial complexes generated by the elementary relations ∆ ∼ ∆′ whenever the two
complexes are related by an elementary collapse.

The following proposition is the straightforward observation that the operation of
Alexander duality ∆ 7→ ∆∨ from Definition 2.8 (anti-)commutes with elementary col-
lapses; this was perhaps observed first by Kahn, Saks and Sturtevant [22].

Proposition 6.6 Let ∆, ∆′ be two simplicial complexes on the same vertex set. Then ∆′

is obtained from ∆ by an elementary collapse if and only if ∆∨ is obtained from (∆′)∨ by
an elementary collapse.

We also recall here the simplest way in which a simplicial complex can be contractible,
namely when it has a cone vertex.

Definition 6.7 A vertex v in a simplicial complex ∆ is called a cone vertex v if every
face F in ∆ either contains v or has v t F in ∆.

Lemma 6.8 Let ∆ ⊂ ∆′ be a pair of nested simplicial complexes. Assume that ∆′ is
obtained from ∆ by adding one new facet F for which the intersection subcomplex 2F ∩∆
has a cone vertex.

Then there is a sequence of elementary collapses from ∆′ down to ∆, so that ∆, ∆′

have the same (simple) homotopy type.
Furthermore, ∆∨ has the same (simple) homotopy type as (∆′)∨.

Proof. Let v be a cone vertex for the subcomplex 2F ∩∆. Order the subfaces F1, F2, . . . , Fs

of F not lying in ∆ that do not contain v, in any order from largest to smallest that respects
the partial ordering by (reverse) inclusion. Then the following pairs of faces (G, F ) give
a sequence of elementary collapses starting from ∆′:

(F1, F1 ∪ {v}), (F2, F2 ∪ {v}), . . . , (Fs, Fs ∪ {v}).

The result at the end of these collapses is ∆.
The assertion for ∆∨ and (∆′)∨ then follows from Proposition 6.6. �

6.4 A polarization lemma

The goal here is Lemma 6.9 about polarizations, which is well-known (e.g., cf. [25,
Exercise 3.15]). However, we have stated it here in the form most convenient for our use,
and included a proof for the sake of completeness.

Let S be a polynomial algebra over a field k, and I ⊂ S a homogeneous ideal with
respect to the standard Z-grading. Then I or S/I or any finitely generated S-module M
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has a minimal free resolution F by free S-modules Fi. Minimality of such a resolution
is equivalent to having all entries in the matrices defining the maps be homogeneous of
positive degree. Recall that the graded Betti number βS

i,j(M) := dimk TorS
i (M, k)j is the

same as the number of homogeneous basis elements of degree j in Fi for any such minimal
free resolution F .

Lemma 6.9 Let S be a polynomial algebra over a field, and I a homogeneous ideal of S.
Given θ in S a non-zero element of degree 1, let S̄ := S/(θ), another polynomial algebra
with standard grading. Set Ī := (I + (θ))/(θ), a homogeneous ideal of S̄.

Then the following are equivalent:

(i) Any minimal free resolution F for I as an S-module has the property that the spe-
cialized complex F := S̄ ⊗S F in which one “mods out θ” gives a minimal free
resolution for Ī as a S̄-module.

(ii) βS̄
i,j(Ī) = βS

i,j(I) for all i, j.

(iii) Hilb(S̄/Ī, t) = (1 − t) Hilb(S/I, t).

(iv) θ acts as a non-zero divisor on S/I.

Proof. The implication (i) implies (ii) is clear. For (ii) implies (iii), recall that taking
the Euler characteristic in each graded component of the minimal resolution F → S →
S/I → 0 gives

Hilb(S/I, t) := Hilb(S, t)
∑

i

(−1)iβS
i,j(S/I)tj.

Since Hilb(S̄, t) = (1 − t) Hilb(S, t), the assertion (iii) follows.
For (iii) implies (iv), recall that for any S-module M , the exact sequence

0 → AnnM(θ)(−1) → M(−1)
·θ
→ M → M/θM → 0

shows that
Hilb(M/θM, t) = (1 − t) Hilb(M, t) + t Hilb(AnnM(θ), t).

Hence θ is a non-zero-divisor on M exactly when Hilb(M/θM, t) = (1 − t) Hilb(M, t).
Apply this to M = S/I.

For (iv) implies (i), first argue the vanishing TorS
i (S/I, S/(θ)) = 0 for i > 0 as follows.

Since θ 6= 0 it is a non-zero-divisor on S, and one has the S-resolution

0 → S(−1)
·θ
→ S → S/(θ) → 0

for S/(θ), which one can tensor over S with S/I to obtain the complex

0 → S/I(−1)
·θ
→ S/I → S/(I + (θ)) → 0.

Taking homology (with the S/(I +(θ)) term omitted) computes the relevant Tor, and the
vanishing follows because the assumption of (iv) implies this complex is exact.
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Now note that since F → S → S/I → 0 is a resolution of S/I, when one tensors over
S with S̄ to obtain

F → S̄ → S/(I + (θ)) → 0,

the homology of this complex (with the S/(I +(θ)) term omitted) will compute the same
Tor. The vanishing result for Tor then implies this complex is exact. Hence F resolves
Ī. In fact, it will be a minimal resolution because tensoring over S with S̄ preserves the
property that all matrix entries in the maps are of positive degree. �
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