BETTI NUMBERS OF POWERS OF IDEALS

GIOIA FAILLA - MONICA LA BARBIERA PAOLA L. STAGLIANÒ

Abstract

Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be a standard graded polynomial ring over a field K, let $\mathscr{M}=\left(x_{1}, \ldots, x_{n}\right)$ be the graded maximal ideal and I a graded ideal of A. For each i the Betti numbers $\beta_{i}\left(I^{k}\right)$ of I^{k} are polynomial functions for $k \gg 0$. We show that if I is \mathscr{M}-primar, then these polynomial functions have the same degree for all i.

1. Introduction

Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be a standard graded polynomial ring over a field K and $I \subset A$ be a graded ideal. Many authors studied the resolution of the graded ideal $I^{k}, k>0$. More precisely they are interested to the total Betti numbers, the graded Betti numbers and the regularity of I^{k} as a function of k, see ([3]) for a survey on these results. To study these invariants one considers the Rees algebra $\mathscr{R}(I)$ of I, since I^{k} is its k th graded component. Let $S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ be a bigraded polynomial ring over the field K with $\operatorname{deg} x_{i}=(1,0)$ for $i=$ $1, \ldots, n$ and $\operatorname{deg} y_{j}=\left(d_{j}, 1\right)$ for $j=1, \ldots, m$. The Rees algebra $\operatorname{deg} \mathscr{R}(I)=$ $\oplus_{k \geq 0} I^{k} t^{k} \subset S[t]$ is a finitely generated bigraded module over S, and $\mathscr{R}(I)_{(*, k)}=$ $\oplus_{j} \mathscr{R}(I)_{(j, k)}=I^{k}$. In our paper, we are interested in the asymptotic behavior of the total Betti numbers of I^{k}. Kodiyalam [2] proved that there are polynomials $P_{i}(t)$ with $P_{i}(k)=\beta_{i}\left(I^{k}\right)$ for $k \gg 0$, and Singla [3] showed $\operatorname{deg} P_{i+1}(t) \leq \operatorname{deg} P_{i}(t)$
for any $i \geq 0$. Now we prove that, if I is an \mathscr{M}-primary graded ideal of A where $\mathscr{M}=\left(x_{1}, \ldots, x_{n}\right)$ is the graded maximal ideal of A, then $\operatorname{deg} P_{i+1}(t)=\operatorname{deg} P_{i}(t)$ for all $i \geq 0$.

2. Notation and Results

Let $A=K\left[x_{1}, \ldots, x_{n}\right]$ be a standard graded polynomial ring over a field K, and let $\mathscr{M}=\left(x_{1}, \ldots, x_{n}\right) \subset A$ be the graded maximal ideal of A. Let $I \subset A$ be a graded ideal, minimally generated by the homogeneous elements $f_{1}, f_{2}, \ldots, f_{s}$ with $\operatorname{deg} f_{i}=d_{i}$ for $i=1, \ldots, s$, and let $\mathscr{R}(I)=\bigoplus_{k \geq 0} I^{k} t^{k} \subset S[t]$ be the Rees algebra of I.

Let $S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ be a bigraded polynomial ring over the field K with $\operatorname{deg} x_{i}=(1,0)$ for $i=1, \ldots, n$ and $\operatorname{deg} y_{j}=\left(d_{j}, 1\right)$ for $j=1, \ldots, m$. Then the K-algebra homomorphism $S \rightarrow \mathscr{R}(I)$ induced by $x_{i} \mapsto x_{i}$ and $y_{j} \mapsto f_{j} t$ is a surjective homomorphism of bigraded K-algebras (provided we assign to an element $f t^{k} \in \mathscr{R}(I)$ the natural bidegree $(\operatorname{deg} f, k)$). Thus $\mathscr{R}(I)$ may be viewed as bigraded S-module.

Let W by a graded A-module. The numbers $\beta_{i, j}(W)=\operatorname{dim}_{K} \operatorname{Tor}_{i}(K, W)_{j}$ are called the graded Betti numbers of the module W, and the numbers

$$
\beta_{i}(W)=\sum_{j} \beta_{i j}(W)=\operatorname{dim}_{K} \operatorname{Tor}_{i}(K, W)
$$

are called the total Betti number of W.
Now let N be any finitely generated bigraded S-module. We set

$$
N^{(k)}=\bigoplus_{i} N_{(i, k)}
$$

Then for each $k, N^{(k)}$ is a graded A-module. In the special case $\mathrm{m} N=\mathscr{R}(I)$, we have $\mathscr{R}(I)^{(k)}=I^{k}$.

We quote the following results from [2] and [3, Theorem 2.2.4]:
Theorem 2.1. With the assumptions and notation introduced one has:
(a) (Kodiyalam) There exist polynomials P_{i}^{N} such that $P_{i}^{N}(k)=\beta_{i}\left(N^{(k)}\right)$ for all $k \gg 0$.
(b) (Singla) $\operatorname{deg} P_{i+1}^{N} \leq \operatorname{deg} P_{i}^{N}$ for all $i \geq 0$.

In this note we show
Theorem 2.2. Let $I \subset A=K\left[x_{1}, \ldots, x_{n}\right]$ be a \mathscr{M}-primary ideal. Then

$$
\operatorname{deg} P_{0}^{I}=\operatorname{deg} P_{1}^{I}=\cdots=\operatorname{deg} P_{n-1}^{I}=n-1
$$

For the proof of the theorem we need the following simple

Lemma 2.3. Let (R, \mathscr{N}) be a Noetherian local domain of dimension 1, and let $I \subset \mathscr{N}$ be a nonzero ideal. Then $R: I \neq R$.

Proof. The assumptions imply that R / I is a local ring of dimension 0 . Therefore, there exists an integer $k>0$ such that $(\mathscr{N} / I)^{k}=(0)$. This implies that $\mathscr{N}^{k} \subset I$. Hence $R: \mathscr{N} \subset R: \mathscr{N}^{k} \subset R: I$, and it is enough to prove that R is a proper subset of $R: \mathscr{N}$. In order to see this, consider the exact sequence:

$$
0 \rightarrow \mathscr{N} \rightarrow R \rightarrow R / \mathscr{N} \rightarrow 0
$$

This sequence yields the exact sequence
$0 \rightarrow \operatorname{Hom}_{R}(R / \mathscr{N}, R) \rightarrow \operatorname{Hom}_{R}(R, R) \rightarrow \operatorname{Hom}_{R}(\mathscr{N}, R) \rightarrow \operatorname{Ext}_{R}^{1}(R / \mathscr{N}, R) \rightarrow 0$.
Since $\operatorname{Hom}_{R}(R / \mathscr{N}, R)=0$ and $\operatorname{Hom}_{R}(R, R)=R$, it follows that $(R: \mathscr{N}) / R \cong$ Ext ${ }^{1}(R / \mathscr{N}, R)$, and since $\operatorname{Ext}^{1}(R / \mathscr{N}, R) \neq 0$, we conclude that $R \neq R: \mathscr{N}$, as desired.

Now we are ready to prove our main result.
Proof of 2.2. We observe that $\beta_{0}\left(I^{k}\right)=\mu\left(I^{k}\right)=\operatorname{dim}\left(I^{k} / \mathscr{M} I^{k}\right)$, where $\mu\left(I^{k}\right)$ is the minimal number of generators of I^{k}. Thus $\beta_{0}\left(I^{k}\right)$ is the Hilbert function of $\overline{\mathscr{R}(I)}=\mathscr{R}(I) / \mathscr{M} \mathscr{R}(I)$, and hence $\beta_{0}\left(I^{k}\right)$ is a polynomial function for $k \gg 0$ (which we denoted by P_{0}^{I}), whose degree is $\operatorname{dim} \overline{\mathscr{R}(I)}-1$. Since I is \mathscr{M}-primary, one has, according to $[1,4.6 .13]$, that $\operatorname{dim} \overline{\mathscr{R}(I)}=n$, so that $\operatorname{deg} P_{0}^{I}=n-1$.

By Theorem 2.1, $\operatorname{deg} P_{0}^{I} \geq \operatorname{deg} P_{1}^{I} \geq \cdots \geq \operatorname{deg} P_{n-1}^{I}$. Thus it remains to prove that $\operatorname{deg} P_{n-1}^{I}=n-1$.

Note that

$$
\begin{aligned}
\beta_{n-1}\left(I^{k}\right) & =\operatorname{dim}_{K} \operatorname{Tor}_{n-1}\left(x_{1}, \ldots, x_{n} ; I^{k}\right)=\operatorname{dim}_{K} \operatorname{Tor}_{n}\left(x_{1}, \ldots, x_{n} ; A / I^{k}\right) \\
& \left.=\operatorname{dim}_{K} H_{n}\left(x_{1}, \ldots, x_{n} ; A / I^{k}\right)=\operatorname{dim}_{K}\left(I^{k}: \mathscr{M}\right) / I^{k}\right) .
\end{aligned}
$$

Thus P_{n-1}^{I} is the Hilbert polynomial of the graded $\overline{\mathscr{R}(I)}$-module

$$
(\mathscr{R}(I): \mathscr{M} \mathscr{R}(I)) / \mathscr{R}(I),
$$

and hence $\operatorname{deg} P_{n-1}^{I}=d-1$, where $d=\operatorname{dim}(\mathscr{R}(I): \mathscr{M} \mathscr{R}(I)) / \mathscr{R}(I)$.
In order to complete the proof of the theorem, we have to show that $d=n$. It is clear that $d \leq n$. Suppose $d<n$; then there exists a prime ideal \mathscr{Q} of $\overline{\mathscr{R}(I)}$ with $\operatorname{dim} \overline{\mathscr{R}(I)} / \mathscr{Q}=\operatorname{dim} \overline{\mathscr{R}(I)}=n$, and such that $(\mathscr{R}(I): \mathscr{M} \mathscr{R}(I)) / \mathscr{R}(I))_{\mathscr{Q}}=0$. Let $\mathscr{P} \in \operatorname{Spec}(\mathscr{R}(I))$ be the preimage of \mathscr{Q} under the canonical epimorphism $\mathscr{R}(I) \rightarrow \overline{\mathscr{R}(I)}$. Then \mathscr{P} is a minimal prime ideal of $\mathscr{M} \mathscr{R}(I)$ of height 1 , since

$$
\text { height } \mathscr{P}=\operatorname{dim} \mathscr{R}(I)-\operatorname{dim} \mathscr{R}(I) / \mathscr{P}=
$$

$$
=(n+1)-\operatorname{dim} \overline{\mathscr{R}(I)} / \mathscr{Q}=(n+1)-n=1
$$

It follows that $\operatorname{dim} \mathscr{R}(I)_{\mathscr{P}}=1$, and $\left.(\mathscr{R}(I): \mathscr{M} \mathscr{R}(I)) / \mathscr{R}(I)\right)_{\mathscr{Q}}=0$ implies that $\mathscr{R}(I)_{\mathscr{P}}: \mathscr{M} \mathscr{R}(I)_{\mathscr{P}}=\mathscr{R}(I)_{\mathscr{P}}$, contradicting Lemma 2.3.

Acknowledgements

We would like to thank Professor J. Herzog of University of Essen for the suggestion of the present research during the Pragmatic course in Catania and for the useful discussions, comments and advices.

REFERENCES

[1] W. Bruns - J. Herzog, CohenMacaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993.
[2] V. Kodiyalam, Homological invariants of powers of an ideal, Proc. Amer. Math. Soc. 118 n. 3 (1993), 757-763.
[3] P. Singla, Convex-geometric, homological and combinatorial properties of graded ideals, PHD Thesis, University of Duisburg-Essen 2007.

GIOIA FAILLA
Department of Mathematics
University of Messina, C.da Papardo, salita Sperone, 31 98166 Messina, Italy
e-mail: gfailla@dipmat.unime.it
MONICA LA BARBIERA
Department of Mathematics
University of Messina, C.da Papardo, salita Sperone, 31 98166 Messina, Italy e-mail: monicalb@dipmat.unime.it

PAOLA L. STAGLIANÒ
Department of Mathematics
University of Messina,
C.da Papardo, salita Sperone, 31 98166 Messina, Italy
e-mail: paolasta@dipmat.unime.it

