
Benchmarking on the Automated Analyses of Feature Models:
A Preliminary Roadmap ∗

Sergio Segura and Antonio Ruiz-Cortés
Department of Computer Languages and Systems

University of Seville
Av Reina Mercedes S/N, 41012 Sevilla, Spain

{sergiosegura, aruiz} AT us.es

Abstract

The automated analysis of Feature Models (FMs) is be-
coming a well-established discipline. New analysis opera-
tions, tools and techniques are rapidly proliferating in this
context. However, the lack of standard mechanisms to eval-
uate and compare the performance of different solutions is
starting to hinder the progress of this community. To ad-
dress this situation, we propose the creation of a benchmark
for the automated analyses of FMs. This benchmark would
enable the objective and repeatable comparison of tools and
techniques as well as promoting collaboration among the
members of the discipline. Creating a benchmark requires
a community to share a common view of the problem faced
and come to agreement about a number of issues related to
the design, distribution and usage of the benchmark. In this
paper, we take a first step toward that direction. In partic-
ular, we first describe the main issues to be addressed for
the successful development and maintenance of the bench-
mark. Then, we propose a preliminary research agenda set-
ting milestones and clarifying the types of contributions ex-
pected from the community.

1. Motivation

The automated analysis of feature models consists on
the computer–aided extraction of information from feature
models. This extraction is performed by means of analysis
operations. Typical operations of analysis allow finding out
whether a feature model is void (i.e. it represents no prod-
ucts), whether it contains errors (e.g. feature that cannot
be part of any products) or what is the number of products

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web-Factories
(TIN2006-00472) and the Andalusian Government project ISABEL (TIC-
2533)

of the software product line represented by the model. A
wide range of analysis operations and approaches to auto-
mate them have been reported [5, 7].

Recent workshops [6] and publications [8, 11, 19, 21,
25, 26] reflect an increasing concern to evaluate and com-
pare the performance of different solutions in the context of
automated analyses of feature models. However, the lack
of standard problems to perform these empirical tests of-
ten difficult getting rigorous conclusions widely accepted
by the community. Experiments in this context are mainly
ad-hoc and not public and subsequently not repeatable by
other researchers. Thus, performance conclusions are rarely
rigorous and verifiable. As a result, these conclusions
can barely be used to guide further research hindering the
progress of the different solutions and, in general, of the
whole discipline.

A benchmarkis a test (a.k.a. test problem) or set of
tests used to compare the performance of alternative tools
or techniques [22]. Benchmarks have contributed to the
progress of many disciplines along the years providing a
level playing field for the objective and repeatable compar-
ison of solutions. From a technical standpoint, the usage of
benchmarks leads to a rigorous examination of performance
results. From these results, the strengths and weaknesses
of each proposal are highlighted helping researchers to im-
prove their solutions and identify new research directions.
From a social standpoint, benchmarks promote the collabo-
ration and communication among different researchers. As
a result, these become more aware of the work carried out
by their colleagues and collaborations among researchers
with similar interests emerge naturally.

Developing a benchmark for the automated analyses of
feature models could contribute to the progress of the dis-
cipline, both at the technical and the social level. This was
one of the main conclusions of the first workshop on Analy-
sis of Software Product Lines (ASPL, [6]). There, a number
of attendants agreed on the need for a benchmark (i.e. set



of standard feature models) to evaluate our solutions in rig-
orous and widely accepted way.

Creating a benchmark requires a community to share a
common view of the problem faced and come to agreement
about a number of issues related to the design, distribution
and usage of the benchmark. In this paper, we take a first
step toward that direction. In particular, we first describethe
main issues to be addressed for the successful development
and maintenance of the benchmark. Then, we propose a
preliminary research agenda setting milestones and clarify-
ing the types of contributions expected from the community.

The remainder of this paper is structured as follows. In
Section 2 we detail the open issues to be addressed for the
successful introduction of a benchmark in the community of
automated analyses of feature models. Section 3 presents a
preliminary research agenda for the development and main-
tenance of the benchmark. Finally, we summarize our con-
clusions in Section 4.

2. Open issues

We identify a number of open issues to be addressed for
the successful introduction of a benchmark in the commu-
nity of automated analyses of feature models. Next, we de-
scribe them.

2.1. Are we ready for it?

Sim et al. [22] draw attention to two preconditions
that should exist in order to be success when introducing
a benchmark into a research community.

The first precondition requires a minimum level of matu-
rity in the discipline. As evidence that this minimum level
has been reached, a sufficient number of different propos-
als to be evaluated using the benchmarks should be already
available. This would provide some guarantee of the fu-
ture interest of the community in the benchmark. This is
a relevant condition since the effort needed to introduce a
benchmark into a discipline is significant [17, 22, 24]. The
community should have a strong commitment to participate
actively on its development and maintenance, e.g. propos-
ing new test problems regularly.

The second precondition point out the need for an ac-
tive collaboration among researchers. These should be well-
disposed to work together to solve common problems. Ac-
cording to Sim, these collaborations help researchers to gain
familiarity and experience creating a community more re-
ceptive to the results and consequently more likely to use
the benchmark. Some evidences of the willingness to col-
laborate may be deduced from previous collaboration be-
tween the members of the community, e.g. multi-author
publications.

A number of evidences suggest that these two conditions
already exist in the domain of automated analyses of feature
models. In the context of maturity, existing surveys [5, 7]
reflect that a sufficient number of proposals to be evaluated
using the benchmark are already available. Additionally,
an increasing concern to evaluate and compare the perfor-
mance of tools and techniques is detected in recent publica-
tions [8, 11, 19, 21, 25, 26]. In the context of collaboration,
recent workshops [6] and multi-authors publications such
as [4] or [25] (best paper award at SPLC’08) also suggest
that the community is ready to incur in the development of a
benchmark. Despite this, we consider that the introduction
of a benchmark must be still further debated by the commu-
nity in order to find out the level of interest and commitment
of its members to participate on it.

2.2. Agreeing a format

Reaching a consensus on a language to specify test prob-
lems is a key point for a benchmark being accepted by the
community. To this end, the semantic, abstract and concrete
syntax of the language should be carefully studied. The se-
mantic should be well defined to avoid ambiguity and re-
dundancies in the specification of the problems. The ab-
stract syntax should be flexible enough to enable the usage
of the benchmark with tools and techniques using different
notations. Finally, the concrete syntax should be as simple
as possible to simplify its understanding and manipulation.

For the semantic and abstract syntax of the language,
an overview of the available papers surveying feature mod-
elling notations would be desirable. A good starting point
could be the work of Schobbenset al. [20]. In their work,
the authors survey a number of feature diagram notations
and study some of their formal properties. As a result,
they propose a new feature diagram language, VFDs (Var-
ied Feature Diagrams), embedding all other variants.

For the concrete syntax, that is, the specific format used
to represent and distribute the problems, we foresee two
main options: plain text and XML. These appear to be
the most popular input formats used in the existing feature
model analyses tools. An example of tool using plain text
is the Ahead Tool Suite1 in which feature models are rep-
resented as grammars. Some examples of tools using XML
are the Feature Model Plug-in2, the FAMA framework3 and
Pure::Variants4. For the selection of one format or another,
advantages and drawbacks of each option should be evalu-
ated and debated. On the one hand, plain text formats tend
to be shorter than XML documents and usually more suit-
able to be written by human beings. On the other hand,

1http://www.cs.utexas.edu/users/schwartz/ATS.html
2http://gp.uwaterloo.ca/fmp/
3http://www.isa.us.es/fama/
4http://www.pure-systems.com/



XML is a widely extended mechanism to exchange infor-
mation easy to be defined (e.g. XML schema) and parsed.

A review of the formats used in related software bench-
marks could also be helpful to support a decision. In a
first outlook to these benchmarks we noticed that plain text
seems to be the preferred format especially on those bench-
marks related to mathematical problems. Some examples
are the DIMACS CNF format [1] for satisfiability problems,
the MPS format [2] for linear programming or the AMPLE
format [10] for linear and nonlinear optimization problems.
We also found some related benchmark dealing with XML
format such as GXL [12], introduced in the context of re-
verse engineering, or XCSP [3] for constraint programming.

Finally, feature modelling community could also benefit
from the lessons learned in other domains when selecting
a format. We found in XCSP an interesting case of this.
In the current version of the format (i.e. 2.1), released in
January 2008 for the Third International CSP Solver Com-
petition5, the authors felt the need to distinguish between
two variants of the format: a’fully-tagged’ representation
and a’abridged’ one. According to the authors, the tagged
notation is’suitable for using generic XML tools but is more
verbose and more tedious to write for a human being’mean-
while the abridged notation’is easier to read and write for
a human being, but less suitable for generic XML tools’. As
a negative consequence of this, authors of XCSP must now
provide up-to-date support for two different formats which
include updating documentation, parsers, tools to convert
from one representation to another, etc. Studying the syner-
gies between XCSP and our future benchmark format could
help us to predict whether we could find the same problem
using XML. Reporting similar lessons learned in other do-
mains would be highly desirable for supporting a decision.

2.3. Selection of test problems

The design of test problems is recognized as one of the
most difficult and controversial steps during the develop-
ment of a benchmark [22, 24]. Walter Tichy advises:

’The most subjective and therefore weakest
part of a benchmark test is the benchmark’s
composition. Everything else, if properly docu-
mented, can be checked by the skeptic. Hence,
benchmark composition is always hotly debated.’
[24] (page 36)

These test problems should be representative of the real
problems to be solved by the tool or technique under test.
As discussed in [9, 14], there are essentially three sources
of test problems: those which arise in real scenarios, those
that are specifically developed to exercise a particular aspect

5http://cpai.ucc.ie/

of the tool or technique under test and randomly generated
ones. There is not a consensus about the criteria for the se-
lection of one type or another [14]. In practice, researchers
from different research disciplines usually adopt a pattern
of use. There exist well-documented deficiencies of each
alternative. In the case of specific collection of problems,
Jacksonet al. [14] summarizes them as follows:

• The test set is usually small compared whit the total set
of potential test problems.

• The problems are commonly small and regular. There
may exist large-scale problems but they are often not
distributed because it is difficult and time-consuming.

• Problems may have similar properties. As a result of
this, some of the features of the tool or technique could
be not exercised.

• Optimizing a technique or tool for a set of test prob-
lems may not provide ideal performance in other set-
tings.

Randomly generated problems overcome some of the
drawbacks detailed previously but also attract other nega-
tive opinions. In particular, these critics focus on the lack of
realism of those problems and the systematic structures that
sometimes may appear on them.

Two main types of problems are reported in the context
of feature models: invented and randomly generated ones.
One the one hand, invented feature models are usually small
and regular. They are used for research purposes but they
rarely can be used to showcase the performance of a tool or
technique. On the other hand, randomly generated ones are
more adequate to check the performance of tools but they do
not represent real problems and rarely can be replicated by
other researchers. There exist references in the literature to
software product lines with thousand of features [23] (page
32) but to the best of our knowledge associated feature mod-
els are not available. We presume this may due to the effort
required to distribute them or to confidentiality issues.

Different types of contribution would be welcome by the
community of automated analyses of feature models in the
context of a benchmark. Firstly, feature models from real
scenarios are highly desirable to both studying their prop-
erties and using them as motivating inputs for the tools
and techniques under evaluation. Notice that these feature
models could include not only feature models from indus-
try but also feature models extracted from OS projects (e.g.
[13, 16]). Secondly, collection of problems published in the
literature would be helpful since they represent widely ac-
cepted problems by the community. Finally, random feature
models will be needed to evaluate the performance of tools
and techniques dealing with large-scale problems. Regard-
less the type of problem proposed, this should be clearly



justified by stating what characteristics make it a good test
problem and what it is hoped to learn as a result of running
it.

2.4. Benchmark development

The key principle underlying the benchmark develop-
ment is that it must be a community effort [22, 24]. Mem-
bers of the discipline should participate actively in the de-
velopment and maintenance of the benchmark through a
number of tasks. Some of these are:

• Agreeing a format for the test problems.

• Design and publication of test problems.

• Usage of the benchmark and publication of results.

• Regular submission of new test problems.

• Report errors or possible improvements in the format
or existing test problems.

Note that continued evolution of the benchmark is re-
quired to prevent users from optimizing their tools or tech-
niques for a specific set of test problems.

Based on their experience, Simet al. [22] attributes the
success of a benchmark development process to three fac-
tors, namely:

• ’The effort must be lead by a small number of champi-
ons’. This small group of people should be responsi-
ble of keeping the project alive and will be commonly
in charge of organizing and coordinating activities to
promote discussion among the members of the com-
munity.

• ’Design decisions for the benchmark need to be sup-
ported by laboratory work’.Some experiments may
be needed to show the effectiveness of a solution and
to support decisions.

• ’The benchmark must be developed by consensus’.To
this end, it is necessary to promote the discussion of
the members of the community in many formats as
possible. Some options are workshops, conferences,
mailing lists, discussion forums, Request for Com-
ments (RFC), etc. In this context, Sim point at face-
to-face meeting in conferences and workshops as the
most effective method.

For the successful development of a benchmark, com-
munity should be aware of how they can contribute. To this
end, detailed information about the different tasks to be car-
ried out and the effort required for each of them would be
highly desirable. This paper pretend to be a first contribu-
tion in that direction (see Section 3).

2.5. Support infrastructure

Successful benchmarks are commonly provided together
with a set of tools and mechanism to support its usage and
improvement. Some examples are mailing list to enable
discussion among users, test problems generators, parsers,
documentation, etc. These contributions are welcome at any
time but they are especially appealing during the release of
the benchmark in order to promote its usage within the com-
munity. Participating at this level may required an important
effort from the community but it also may appear as good
opportunity to come in contact with other researchers work-
ing in similar topics.

Contributions from the community of feature models in
any of these forms (i.e. generators, parsers, etc.) will be
greatly welcome.

2.6. Using the benchmark

Performing experiments and reporting its results is not a
trivial task. The analysis, presentation and interpretation of
these results should be rigorous in order to be widely ac-
cepted by the community. To assist in this process, a num-
ber of guidelines for reporting empirical results are avail-
able in the literature. Some good examples can be found
in the areas of mathematical software [9, 14] and software
engineering [15, 18].

At the analysis level, aspects such as the statistic mech-
anisms used, the treatment of outliers or the application of
quality control procedures to verify the results should be
carefully studied.

A number of considerations should also be taken into
account when presenting results. As an example, Kitchen-
ham et al. [18] suggest a number of general recommen-
dations in the context of experiments in software engineer-
ing. These include providing appropriate descriptive statis-
tics (e.g. present numerator and denominator for percent-
ages) or making a good usage of graphics (e.g. avoid using
pie charts).

Finally, the interpretation of results should also follow
some well-defined criteria and address different aspects.
These may include describing inferences drawn from the
data to more general conditions and limitations of the study.

Contributions for the correct usage of the benchmark in
the context of automated analyses of feature models would
be helpful. These may include guidelines and recommenda-
tions about how to get (e.g. useful measures), analyse (e.g.
adequate statistics packages), present (e.g. suitable graphs)
and interpret (e.g. predictive models) the benchmark re-
sults.



3. Preliminary roadmap

Based on the open issues introduced in previous sections,
we propose a preliminary roadmap for the development of
a benchmark for the automated analyses of feature models.
In particular, we first clarify the types of contributions ex-
pected from the community. Then, we propose a research
agenda.

3.1. Types of contributors

The main goal of this section is to clarify the ways in
which the community can contribute to the development
and usage of the benchmark. To this end, we propose di-
viding up the members of the discipline interested in the
benchmark into three groups according to their level of in-
volvement in it, namely:

• Users.This group will be composed of the members of
the discipline interested exclusively in the usage of the
benchmark and the publication of performance results.
Exceptionally, they will also inform about bugs in the
test problems and tools related to the benchmark.

• Developers.This group will be composed of members
of the community interested in collaborating in the de-
velopment of the benchmark. In addition to the tasks
expected from users, the contributions from this group
include:

– Designing and maintaining new test problems

– Proposing guidelines and recommendations for
an appropriate usage of the benchmark.

– Developing tools and/or documentation, e.g. test
problem generators.

• Administrators. These will be the’champions’ in
charge of most part of the work. This group will be
composed of a few researchers from one or more labo-
ratories. In addition to the tasks associated to the users
and developers, the contributions expected from this
group include:

– Organizing and coordinating activities to pro-
mote discussion (e.g. performance competi-
tions).

– Proposing a format to be accepted by the com-
munity.

– Publication of test problems.

– Setting mechanisms to promote contributions
from the community, e.g. template for submit-
ting new test problems

3.2. Research agenda

We identify a number of tasks to be carried out for the
development and maintenance of a successful benchmark
for the automated analyses of feature models. Figure 1 de-
picts a simplified process model illustrating these tasks us-
ing BPMN6 notation. Rectangles depict tasks (T-X) and
diamond shapes represent decisions (D-X). For the sake of
simplicity, we distinguish tree group of tasks: those carried
out by the community (i.e. administrators, developers and
users of the benchmark), those performed by the adminis-
trators and those tasks accomplished by both administrators
and developers.

As a preliminary step, community of automated analyses
of feature models should evaluate whether we are ready to
incur in the development of a benchmark (T-01). As dis-
cussed in Section 2.1, we consider this discipline is mature
enough and has the necessary culture of collaboration to
start working on it. However, we still consider that a no-
ticeable interest from the members of the discipline to par-
ticipate either in the development or the usage of the bench-
mark should be detected. If this precondition is not met
(D-01), it does not mean the benchmark cannot be used.
Rather, it means that some actions should be then carried
out to establish this precondition. In this context, Sim sug-
gests waiting for more research results and planning activi-
ties to promote collaboration among researchers (T-02).

Once the community agrees on the need for a bench-
mark, the design of a format for the test problems should
be the first step (T-03). This should be proposed by the ad-
ministrators and approved by a substantial part of the com-
munity (D-02). It should be presented in a standard format
such a technical report and include a versioning system to
keep record of its evolution. Note that several attempts (i.e.
versions) could be needed until reaching a wide consensus.

Once an accepted format is available, an initial set of
test problems (T-04) and support tools (T-05) should be re-
leased by administrators. At the very least, we consider
these should include a parser for the test problems and plat-
form to publish the material related to the benchmark (e.g.
FTP site). At this point, the benchmark would already be
fully usable.

Finally, a number of contributions from the community
for the maintenance and improvement of the benchmark
would be expected. These includei) Using the benchmark
and publishing the results (T-06), ii) Reporting bug and sug-
gestions (T-07), iii) Organizing activities to promote dis-
cussion among the members of the community (T-08), iv)
Proposing new test problems (T-09), v) Developing tools
and documentation (T-10), andvi) Providing guidelines and
recommendations for an appropriate usage of the bench-
mark (T-11).

6http://www.bpmn.org/



D-01: 
Are we 
ready?

D-02: 
Consensus?

T-04: Develop 
initial set of 

test problems

T-05: Develop 
initial support 
infrastructure

T-06: Use the benchmark 
and publish results

T-09: Propose new test 
problems

T-10: Develop tools and 
documentation

T-11: Propose guidelines 
and recommendations for 

using the benchmark

T-07: Report bugs and 
suggestions

T-03: Propose 
a format

T-01: Evaluate whether the 
community of automated 

analyses of FMs is ready for 
a benchmark

NoYes

C
o

m
m

u
n

it
y

(A
dm

in
is

tr
at

or
s 

+
 D

ev
el

op
er

s 
+ 

U
se

rs
)

A
d

m
in

is
tr

at
o

rs
A

d
m

in
is

tr
at

o
rs

 +
 D

ev
el

o
p

er
s

No

Yes

T-08: Organize activities 
to promote discussion

T-02: Wait for research 
results and more 

opportunities to discuss.

Figure 1. A process model of the proposed research agenda

4. Conclusions

The introduction of a benchmark for the automated anal-
yses of feature models could contribute to the progress of
the discipline by providing a set of standard mechanisms
for the objective and repeatable comparison of solutions. A
key principle underlying the creation a benchmark is that
it must be a community effort developed by consensus. To
this end, members of the discipline should first share a com-
mon view of the problem faced and the tasks to be carried
out for its development. This is the main contribution of
this paper. In particular, we first described the open issues
to be addressed for the successful introduction of a bench-
mark for the automated analyses of feature models. Then,
we proposed a preliminary roadmap clarifying the types of
contributions expected from the community and the main
steps to be taken. To the best of knowledge, this is the first
contribution in the context of benchmarking on the auto-
mated analyses of feature models.

Acknowledgments

We would like to thank Dr. David Benavides whose use-
ful comments and suggestions helped us to improve the pa-
per substantially.

References

[1] DIMACS Conjunctive Normal Form
format (CNF format). Online at
http://www.satlib.org/Benchmarks/SAT/satformat.ps.

[2] Mathematical Programming System (MPS format).
Online at http://lpsolve.sourceforge.net/5.5/mps-
format.htm.

[3] XML Representation of Constraint Networks For-
mat XCSP 2.1. Online at http://www.cril.univ-
artois.fr/CPAI08/XCSP21.pdf.

[4] D. Batory, D. Benavides, and A. Ruiz-Cortés. Auto-
mated analysis of feature models: Challenges ahead.
Communications of the ACM, December:45–47, 2006.

[5] D. Benavides.On the Automated Analyisis of Software
Product Lines using Feature Models. A Framework for
Developing Automated Tool Support.PhD thesis, Uni-
versity of Seville, 2007.

[6] D. Benavides, A. Ruiz-Cortés, D. Batory, and P. Hey-
mans. First International Workshop on Analyses of
Software Product Lines (ASPL’08), September 2008.
Limerick, Ireland.



[7] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Se-
gura. A survey on the automated analyses of feture
models. InJornadas de Ingenierı́a del Software y
Bases de Datos (JISBD), 2006.

[8] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-
Cortés. A first step towards a framework for the auto-
mated analysis of feature models. InManaging Vari-
ability for Software Product Lines: Working With Vari-
ability Mechanisms, 2006.

[9] H. Crowder, R.S. Dembo, and J.M. Mulvey. On re-
porting computational experiments with mathematical
software. ACM Transactions on Mathematical Soft-
ware, 5(2):193–203, 1979.

[10] R. Fourer, D.M. Gay, and B.W. Kernighan. A mod-
eling language for mathematical programming.Man-
agement Science, 36(5):519–554, 1990.

[11] A. Hemakumar. Finding contradictions in feature
models. InFirst Workshop on Analyses of Software
Product Lines (ASPL 2008). SPLC’08, Limerick, Ire-
land, September 2008.

[12] R.C. Holt, A. Winter, and A. Schürr. GXL: Toward a
Standard Exchange Format. InWCRE ’00: Proceed-
ings of the Seventh Working Conference on Reverse
Engineering (WCRE’00), page 162, Washington, DC,
USA, 2000. IEEE Computer Society.

[13] A. Hubaux, P. Heymans, and D. Benavides. Vari-
ability modelling challenges from the trenches of an
open source product line re-engineering project. In
Proceedings of the Sofware Product Line Conference,
pages 55–64, 2008.

[14] R.H. Jackson, P.T. Boggs, S.G. Nash, and S. Powell.
Guidelines for reporting results of computational ex-
periments. report of the ad hoc committee.Mathemat-
ical Programming, 49(1):413–425, November 1990.

[15] A. Jedlitschka and D. Pfahl. Reporting guidelines for
controlled experiments in software engineering. In
Empirical Software Engineering, 2005. 2005 Interna-
tional Symposium on, pages 10 pp.+, 2005.

[16] C. Kastner, S. Apel, and D. Batory. A case study im-
plementing features using aspectj. InSPLC ’07: Pro-
ceedings of the 11th International Software Product
Line Conference, pages 223–232, Washington, DC,
USA, 2007. IEEE Computer Society.

[17] B.A. Kitchenham. Evaluating software engineering
methods and tool. Part 1 to 12.ACM SIGSOFT Soft-
ware Engineering Notes, 21-23(1), 1996-1998.

[18] B.A Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W.
Jones, D.C. Hoaglin, K.E. Emam, and J. Rosenberg.
Preliminary guidelines for empirical research in soft-
ware engineering.IEEE Transaction on Software En-
gineering, 28(8):721–734, August 2002.

[19] M. Mendonca, A. Wasowski, K. Czarnecki, and
D. Cowan. Efficient compilation techniques for large
scale feature models. InGPCE ’08: Proceedings of
the 7th international conference on Generative pro-
gramming and component engineering, pages 13–22,
New York, NY, USA, 2008. ACM.

[20] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bon-
temps. Generic semantics of feature diagrams.Com-
puter Networks, 51(2):456–479, Feb 2006.

[21] S. Segura. Automated analysis of feature models us-
ing atomic sets. InFirst Workshop on Analyses of
Software Product Lines (ASPL 2008). SPLC’08, pages
201–207, Limerick, Ireland, September 2008.

[22] S.E. Sim, S. Easterbrook, and R.C. Holt. Using bench-
marking to advance research: a challenge to soft-
ware engineering. InICSE ’03: Proceedings of the
25th International Conference on Software Engineer-
ing, pages 74–83, Washington, DC, USA, 2003. IEEE
Computer Society.

[23] V. Sugumaran, S. Park, and K. Kang. Software prod-
uct line engineering.Commun. ACM, 49(12):28–32,
2006.

[24] W.F. Tichy. Should computer scientists experiment
more?Computer, 31(5):32–40, 1998.

[25] J. White, D. Schmidt, D. Benavides P. Trinidad, and
Ruiz-Cortés. Automated diagnosis of product-line
configuration errors in feature models. InProceed-
ings of the 12th Sofware Product Line Conference
(SPLC’08), Limerick, Ireland, September 2008.

[26] J. White and D.C. Schmidt. Filtered cartesian flat-
tening: An approximation technique for optimally se-
lecting features while adhering to resource constraints.
In First International Workshop on Analyses of Soft-
ware Product Lines (at SPLC’08), Limerick, Ireland,
September 2008.


