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Between-group analysis of microarray data
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ABSTRACT
Motivation: Most supervised classification methods are
limited by the requirement for more cases than variables.
In microarray data the number of variables (genes) far
exceeds the number of cases (arrays), and thus filtering
and pre-selection of genes is required. We describe the
application of Between Group Analysis (BGA) to the
analysis of microarray data. A feature of BGA is that it can
be used when the number of variables (genes) exceeds
the number of cases (arrays). BGA is based on carrying
out an ordination of groups of samples, using a standard
method such as Correspondence Analysis (COA), rather
than an ordination of the individual microarray samples.
As such, it can be viewed as a method of carrying out COA
with grouped data.
Results: We illustrate the power of the method using
two cancer data sets. In both cases, we can quickly
and accurately classify test samples from any number of
specified a priori groups and identify the genes which
characterize these groups. We obtained very high rates
of correct classification, as determined by jack-knife or
validation experiments with training and test sets. The
results are comparable to those from other methods in
terms of accuracy but the power and flexibility of BGA
make it an especially attractive method for the analysis of
microarray cancer data.
Availability: The methods described are implemented
in ADE-4 which runs under MacOS and Windows, and
is freely available at http://pbil.univ-lyon1.fr/ADE-4/. All
scripts are available on request.
Contact: A.Culhane@ucc.ie
Supplementary information: Supplementary figures and
tables are available at http://bioinfo.ucc.ie/BGA/.

INTRODUCTION

Several class prediction approaches have been applied to
the analysis of microarray data (reviewed by Sherlock,
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2000). These rely on the researcher specifying groupings
in advance where the aim is to discover combinations
of genes which can be used to classify new unknown
samples. Discriminant functions (Dudoit et al., 2000),
artificial neural networks (Khan et al., 2001), Bayesian
classifiers and support vector machines (SVM; Furey et
al., 2000) have been applied to the problem of classifying
tumour samples. These methods have been shown to be
successful when applied to the problem of classification
but suffer from a problem of dimensionality. For exam-
ple, to properly use conventional discriminant function
analysis, one must have more cases than variables, ideally
by a factor of 10 or more. With microarray data sets, we
usually have exactly the reverse with data sets having
many thousands of variables (genes) and only a few tens
of cases (microarray samples). This problem is most
commonly circumvented by selecting subsets of genes
in advance or iteratively during training. Typically these
subsets use about 50 genes although, it has been suggested
that just a few genes might be statistically preferable (Li
and Yang, 2001). Such gene selections may be cumber-
some to produce, possibly involving arbitrary selection
criterion or may miss highly informative combinations of
genes.

In this paper, we wish to describe the application of a
powerful yet simple and flexible method called between-
group analysis (BGA) a multiple discriminant approach
that can be safely used with any combinations of numbers
of genes and samples (Dolédec and Chessel, 1987). It
is used in the framework of a conventional ordination
technique such as COA or principal component analysis
(PCA) and as such, allows for great flexibility with regard
to the assumptions made in carrying out the analysis.
When combined with COA it is especially powerful as
it allows us to examine the correspondences between the
grouped samples and those genes which most facilitate
the discrimination of these groupings (Fellenberg et al.,
2001).

The basis of BGA is to ordinate the groups rather than
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the individual samples. For N groups we find N − 1
eigenvectors or axes that arrange the groups so as to
maximise the between group variances. The individual
samples are then plotted along them. Each eigenvector can
be used as a discriminator to separate one of the groups
from the rest. New samples are then placed on the same
axes and can be classified on an axis-by-axis basis or by
proximity to the group centroids.

When applied to tumour data, BGA is fast and simple
to use yet produces accurate discrimination as judged by
the performance on test data or by a jack-knife analysis.
Despite this simplicity, the results allow a detailed and
simultaneous analysis of the entire set of genes. We are
able to quickly and simply identify potential marker genes
for all tumour types, including clinically important genes
that were missed in other analyses or which were only
found using combinations of other techniques. We can
specify any groupings we wish, ask for the axes (and
genes) that most discriminate these, and test the reliability
and accuracy of these discriminations. Thus BGA can also
be used as an exploratory technique to examine potential
heterogeneity with groups.

SYSTEMS AND METHODS
Gene expression datasets
The data set from Golub et al. (1999) contained 72
samples from two types of acute leukaemia: 47 acute
lymphoblastic leukaemia (ALL) and 25 acute myeloid
leukaemia (AML). Samples were obtained from patient
bone marrow or peripheral blood and the gene expression
patterns analyzed on Affymetrix oligonucleotide arrays
containing 6817 genes (7159 probe sets). The data set is
available from http://www.genome.wi.mit.edu/cancer.

The second data set reported gene expression pro-
files of four types of small round blue cell tumours of
childhood (SRBCT) published by Khan et al. (2001).
They used cDNA microarrays containing 6567 clones
of which 3789 were known genes and 2778 were ESTs
to study the expression of genes in neuroblastoma
(NB), rhabdomyosarcoma (RMS), Burkitt lymphoma
(BL, a subset of non-Hodgkin lymphoma), and the
Ewing family of tumours (EWS). The data set con-
tained both tumour biopsy and cell line samples. A
filtered data set containing gene expression profiles
of 2308 genes in these samples is available from
http://research.nhgri.nih.gov/microarray/Supplement/.

Software
BGA with COA or PCA of microarray data were com-
puted using ADE-4 (Thioulouse et al., 1997), a general
purpose package for multivariate analysis, which has
been used widely in the analysis of environmental
and ecological data. It runs under MacOS 7 and Win-

dows operating systems and can be downloaded from
http://pbil.univ-lyon1.fr/ADE-4/. The ADE-4 modules
required to perform BGA using COA or PCA are ADE-
trans, FilesUtil (Transpose), CategVar (Read Categ File),
PCA (Correlation Matrix PCA), COA (Correspondence
Analysis), Discrimin (Initialize: Link Prep, Between
Analysis: Test, Between Analysis: Run). ADE-4 can be
run interactively or in batch mode. We wrote scripts in
Python v2.1 to automate some analyses by calling the
ADE-4 modules directly e.g. for the jack-knife analysis.
Graphs were plotted using the ADE-4 modules Graph1D,
Scatters and Scatterclass.

Mathematical basis of between-group analysis
BGA is carried out by ordinating groups (sets of grouped
microarray samples) and then projecting the individual
sample locations on the resulting axes. This is most easily
done using PCA or COA. In this description, we will first
describe COA and then show how we carry out the BGA
on microarray data. We follow Fellenberg et al. (2001) and
Perriere et al. (1996) in our notation and also the extensive
documentation in the ADE-4 package (Thioulouse et al.,
1997). Figures to aid interpreration of this description are
available on the supplementary web page.

Consider a raw data table (N) of gene expression data
for I genes (rows) and J microarray samples (columns)
with elements ni j . With microarray data, the rows and
columns of N are usually normalized in various ways.
For COA we must ensure that all elements of N are non-
negative (usually integers), by adding a constant to all
values if required. We denote the row sums and column
sums of N as ni+ and n+ j respectively. The grand total
of all the elements of N is denoted n++. The relative
contribution or weight of gene i to the total variation in
the data set is then denoted ri and is calculated as

ri = ni+/n++ (1)

while the relative contribution of sample j is denoted as
c j and is calculated as

c j = n+ j/n++ (2)

Similarly, the contribution of each individual element of N
to the total variation in the data set is denoted as pi j and is
calculated as

pi j = ni j/n++ (3)

This produces two vectors R and C of length I and J and
one I × J matrix. We convert these into an I × J table of
χ2 values X using

xi j = (pi j − ri c j )/
√

ri c j (4)

It is this table X that is analyzed to produce the correspon-
dence analysis. This table shows the associations between
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genes and samples. The total association between all genes
and all samples is given by the total χ2 value for the data
set (x++) which is the grand total of all the elements of X.
COA then consists of decomposing this total χ2 into com-
ponents for each gene and each sample along each of K
eigenvectors where K is min(I − 1, J − 1). These eigen-
vectors are ranked according to their eigenvalues. The total
of all the eigenvalues equals the total χ2 value for the data
set. The actual method used in ADE-4 to derive the eigen-
vectors is general singular value decomposition (Dolédec
and Chessel, 1987) where we calculate matrix B below as:

B = D1/2
c XDr Xt D1/2

c (5)

Here, D1/2
c is a J × J matrix with the square roots of

the elements of C along the diagonal and zeros elsewhere.
Similarly Dr is an I × I matrix derived from vector R with
the elements of R along the diagonal and zeros elsewhere.
Finally B is a J × J matrix which is diagonalized to
produce J eigenvalues (at least one of which will be zero)
and eigenvectors.

The results of a COA are viewed by plotting the co-
ordinates of all genes and samples along the top 2 or 3
eigenvectors. Groupings of samples or trends in the data
set can be seen and interpreted using the proximity of
genes and samples in plots as a guide. Samples and genes
which are strongly associated, as measured by their χ2

values, will lie in a similar direction from the origin.
BGA is carried out where we can specify G groups

of samples in advance. The purpose of the analysis is
then to ordinate these groups so as to separate them
maximally in some space. This is achieved by grouping
the J columns (samples) and calculating the vector C of
column weights with G elements where each element is
the sum of column weights for one group i.e. Cg is the
sum of the sample weights for group g. Matrix Dc then
has G × G elements and the COA is carried out as before
using Equation (5) above. The result of this is to produce
G-1 eigenvectors with the co-ordinates of all genes and
of the group centroids. Finally, all individual samples are
plotted on the G-1 eigenvectors as supplemental points.

BGA can also be carried out using PCA. We used the
default PCA method in ADE-4 where the raw data set
is normalized row by row (gene by gene) such that each
row has zero mean and unit standard deviation. By default,
using ADE-4 for PCA, the column weight vector C is set
to give uniform weights that total to 1 (i.e. all c j are set
to 1/J ) and similarly the row weight vector R elements
are set to 1/I . BGA with PCA can then be carried out
exactly as before using the normalized data matrix (X)

and the row and column weight vectors R and C. These are
subjected to a generalized singular value decomposition.

If there are only 2 groups, then the result of the analysis
will be a single vector with the positions of all samples

and all genes. We can plot new samples as supplemental
points and classify them according to which group they are
nearest to. We use the following formula for the weighted
mean to calculate a threshold where X̄1 is the mean for
group 1 and X̄2 is the mean for group 2, and SD1 and
SD2 are the group standard deviations:

X̄1SD2 + X̄2SD1

SD1 + SD2
(6)

This is a simple method, which will assign all new samples
as belonging to one group depending on whether the co-
ordinate falls above or below the threshold.

If there are more than 2 groups, then there will be G-
1 axes. We can then treat each axis as a discriminator of
one group where each axis serves to separate one group
from the rest. Thus an individual sample is classified to
a group if its co-ordinate along any axis, falls on the
correct side of the threshold for that axis. If it fails to
fall on the correct side of any of the thresholds, it will
belong to the remaining group. When classifying new
samples we simply first assign each sample to the nearest
group centroid where proximity is measured by Euclidean
distance in the space described by the G-1 axes. We then
reclassify each sample if it can be allocated to any one
group by falling on the correct side of a threshold on any
of the axes.

Validation and accuracy assessment
We tested the method by measuring the percentage of test
samples that could be correctly classified. We also used
a simple jack-knife procedure which involves removing a
single sample from the data set and carrying out an entire
BGA analysis of the remaining samples. The removed
sample is then classified and the success or failure of the
classification is recorded. This is repeated for all samples
and the result shown as the percentage of samples that can
be correctly classified.

RESULTS
Classification of acute leukaemia samples
Using sample information from Golub et al. (1999)
training samples were categorized as AML or ALL and
were subjected to BGA using PCA and COA. The result of
a BGA using two groups is a single axis or discriminator
separating the two groups. The axis discriminating ALL
and AML samples is shown Figure 1a. The individual
microarray training samples are then plotted on the
same axis and this gives a visual indication of the
degree to which the two groups are separable, using this
discriminating axis.

We first tested the validity of the discriminator using a
remove-one jack-knife test. This showed that we could
correctly predict group membership for 35 of the 38
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Fig. 1. Discrimination between acute myeloid and acute lymphoblastic leukaemias. The results of a BGA using COA on the leukaemia data
set of Golub et al. (1999) are shown. (a) The single axis of the analysis with all 38 training and 34 test samples plotted. The analysis begins
with the calculation of the co-ordinates of the two group centres (ALL and AML). Then the 38 training samples (indicated by grey (ALL)
and black (AML) slanted lines) are plotted accordingly. Finally, the 34 test samples are projected on this axis, indicated by grey (ALL) and
black (AML) filled diamonds. A threshold is calculated (represented by a black arrow), between the two training groups and this is used to
distinguish and classify the test samples into the two groups. (b) The same analysis as in (a) but with the positions of the 25 most extreme
genes from either end of the axis indicated by unfilled diamonds. The most extreme 10 of these are labelled.

training samples (92%) using BGA with either COA or
PCA. It should be noted that this is a global analysis where
we have used the entire data set with no selection of genes
or adjustment.

Secondly, the 34 supplementary blind test samples from
Golub et al. (1999) were projected onto the discriminating
axis and each sample was assigned to AML or ALL groups
(Figure 1a). Using BGA with PCA 82.4% of samples
were correctly classified. But when BGA with COA was
used all AML cases (15/15) and 16/20 ALL cases were
correctly assigned (88.2%). In general BGA using COA
tended to out perform PCA ordination. Since COA has
the further advantage that the genes and samples can be
projected along the same axes, we only show results for
BGA with COA in the rest of this paper.

Identification of discriminating genes and potential
molecular markers
After a BGA, the samples are separated along axes and if
we use COA we also get the co-ordinate of every gene.
The genes most responsible for separating the groups are
located at the ends of the axes. The 25 genes with the

most extreme co-ordinates for each group are displayed
in Figure 1b. ALL predictor genes included lymphoid
specific genes, the T-cell-specific tyrosine kinase p56
lck, and the oncogene TCL1. Genes that distinguished
AML included genes that were specific to myeloid lineage
cells, a number of antioxidant enzymes and the AML
immunological markers myeloperoxidase, lysozyme and
ferritin. A full table of discriminating genes is available in
the Supplementary information.

Exploring subclasses in the data
Using BGA, any groupings can be specified, and the axes
(and genes) that most discriminate these can be examined.
Thus we sought to determine whether ALL T and B
cell lineage samples could be distinguished using BGA.
Training samples consisting of 8 T cell and 19 B cell ALL
samples were subjected to BGA using COA. In jackknife
tests 26/27 samples were correctly assigned to B or T
cell ALL classes. Only one B cell ALL was incorrectly
predicted. This BGA analysis was tested by projecting
20 supplementary test ALL samples (19 B cell and 1 T
cell ALL) onto the discriminating axis. All supplementary
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Fig. 2. Discrimination of four subtypes of SRBCTs. The first two axes of a BGA using COA of the data from Khan et al. (2001) are shown.
The four groups are: neuroblastoma (NB), rhabdomyosarcoma (RMS), Burkitt lymphoma (BL, a subset of non-Hodgkin lymphoma), and the
Ewing family of tumours (EWS). The four tumours were discriminated by three axes, and this graph shows axes 1 and 2. Axis 1 (horizontal)
can be used as a discriminator to distinguish BL from the other three while axis two (vertical) discriminates EWS from the rest. Filled circles
and squares represent group centroids and samples respectively. A line connects each training sample to the centre of its group. Training
sample labels –T (e.g. rms-t5) and –C (e.g. rms-c3) represent tissue biopsy and cell line samples respectively. Cell line samples of RMS and
EWS are highlighted in paler shades of grey.

B cell ALL cases (19/19) were correctly assigned, but
sample 67 the only T cell ALL sample from peripheral
blood was not predicted, resulting in a test accuracy of
95%. The genes discriminating T and B cell ALL are given
in the Supplementary information.

Discrimination of small round blue cell tumours of
childhood
BGA can be used with any number of groups. We illustrate
this using four groups of tumours from the data set of Khan
et al. (2001). The training set was subjected to BGA with
COA, and the results are shown in Figure 2. In this case,
we have 4 groups and 3 discriminating axes. Each axis
serves to separate one of the 4 groups from the rest. Axis

1 discriminates BL from the rest; axis 2 serves to separate
EWS from the rest and axis 3 can be used to discriminate
NB from the rest of the groups. 3D graphs of these results
are available on the supplementary web site.

Class prediction of test samples. We tested the discrim-
ination using a set of 20 test samples from EWS, RMS,
and NB tumours and EWS, NB and BL cell lines. We also
included two control samples from normal muscle tissue
and three from unrelated cancer cell lines. Samples were
projected onto the discriminating axes of the training data
and the class of unknown samples were assigned as de-
scribed in the methods. The co-ordinates of the projected
blind samples can be seen in Figure 3.
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Fig. 3. Projection of supplementary blind samples of SRBCTs. The same analysis as in Figure 2 but with the projected locations of the 25
test samples, labelled test-1 to test-25 where (a) shows the first two axes (1,2) and (b) shows axes 3 and 2. Training sample labels are omitted
for clarity. The test samples are assigned to one of the four groups, based on proximity to the group centroids and position in relation to
each discriminating axis. The 25 test samples are labelled and the symbols represent the group to which they should be assigned: BL (open
squares), NB (open circles), RMS (closed circles) and EWS (closed squares). The control samples, which do not belong to one of the 4
groups, are represented by asterisk symbols.

Almost all EWS, BL, NB and RMS test samples were
projected closest to their respective clusters and 19/20
samples were correctly predicted. All NB training samples
were cell line samples but NB test data contained both
cell line and biopsy samples. Figure 3b shows that the test
cell line samples were projected closest to the NB training
cluster and the NB biopsy samples were further from the
cluster. One NB test biopsy sample was not classified. The
two normal skeletal muscle samples clustered closest to
the RMS cluster and the three unrelated cancer cell lines
clustered in the centre of the figures as they could not be
assigned clearly to any of the training classes.

Heterogeneity in the training samples. In Figures 2 and
3, a clear separation of cell line versus biopsy samples
can be seen within EWS and RMS classes. Continuous
passaging, potential contamination or the matrix upon
which cells are cultured may influence gene expression
in vitro. Equally biopsy samples frequently contain other
cell populations due to components such as surrounding
normal tissue, stroma, vasculature or immune elements.
Thus we investigated whether these sample populations
could be differentiated.

EWS and RMS samples were analyzed independently.
EWS and RMS training samples were each subjected to
BGA with COA, and the supplementary test samples were
projected onto the discriminating axes. All EWS cell and

tissue samples, and all RMS tissue samples in the test
data set were correctly predicted (100% accuracy). Dis-
criminating genes included collagens, matrix metallopro-
teinases and other cell matrix associated proteins, which
were expressed in tissue samples, but were expressed at a
low level or not detected in cell line samples.

Identification of discriminating genes and potential molec-
ular markers. After a BGA, the samples are separated
along axes. The genes that are most responsible for sepa-
rating the groups are those with the highest (or lowest) co-
ordinates along these axes. In the Khan data set, we have
4 groups and 3 axes; each axis serves to distinguish one
group from the other three (Figures 2 and 3). Low scores
(co-ordinates) on axes one, two and three were associated
with genes that were relatively highly expressed in BL,
EWS and NB respectively. High scores on both axes one
and two were associated with genes upregulated in RMS
(Figure 4).

The list of discriminating genes identified by BGA was
very similar to those reported by Khan et al. (2001). On
axes one, two and three, 17/20, 15/20 and 17/20 of the
most discriminating genes were among the top 96 genes
previously reported by Khan et al. (2001). Moreover the
rank of the top 10 genes distinguishing EWS predicted
by Khan et al. (2001) exactly matched those identified
by BGA. A full table of predictor genes is given in the
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Fig. 4. Gene predictors of 4 subtypes of SRBCTs. The same analysis as in Figures 2 and 3 but with the locations of all genes indicated by
small grey squares. The training data microarray samples are shown as black lines connecting the position of each sample (black square) to
its group centre. Only the names of the most extreme genes from the ends of the axes (axes 1 and 2) are indicated and highlighted with rings.
Highly negative scores on axis 1 and 2 correlated with highly expressed genes in BL and EWS respectively. Positive scores on both axis 1
and 2, were associated with genes that were highly expressed in RMS.

Supplementary information.

DISCUSSION
BGA was used to discriminate between AML and ALL
classes in the data set from Golub et al. (1999). Golub et
al. (1999) reported 36/38 samples were correctly called
in jack-knife tests. BGA is comparable as 35/38 samples
were correctly assigned using the full data set, and
between 34 and 38 samples were predicted if genes were

ranked and filtered to remove noisy data (data available
on supplementary web page). Thus BGA is robust and
performs comparably to other studies without the absolute
need for gene filtering.

Although BGA with PCA ordination tended to out
perform COA in jack-knife tests, BGA assignment of
supplementary test samples was more accurate using the
latter. Between 30/34 and 33/34 of supplementary test
samples were correctly assigned depending on whether the
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genes were filtered to reduce background noise. BGA out-
performs or performs with similar effectiveness to other
approaches. For example, using a weighted voting scheme,
29/34 blind test samples were predicted correctly (Golub
et al., 1999) and SVM methods assigned between 30 and
32 test samples correctly (Furey et al., 2000).

We observed that where samples were consistently
predicted in all BGA analyses, the samples also had high
prediction strength (PS) scores in the Golub study (Golub
et al., 1999). For example, Golub et al. (1999) failed to
classify training sample 12 (an ALL B-cell sample from
bone marrow) and test sample 67 (the only peripheral
blood ALL T cell sample in the data set) as these samples
had the lowest PS scores in tests. A further study by Furey
et al. (2000) was unable to classify sample 67. Equally
these samples were misclassified in almost all BGA/COA
analyses.

One major advantage of BGA is the ease with which
we can identify discriminating genes. Genes that dis-
criminated ALL and AML included IL-8, lysozyme and
adenosine deaminase, MB-1, topisomerase II, which
is consistent with other studies (Golub et al., 1999).
However of the top 25 genes which most differentiated
each class, only 6/25 ALL and 7/25 AML discriminating
genes were also reported by Golub et al. (1999). Of these
genes not reported by other studies, many were clinically
significant. For example the oncogene TCL1 that has
been tightly linked to the pathogenesis of mature T-cell
leukaemia (Pekarsky et al., 2001) and the chemokine
receptor CXCR4 which is highly expressed in ALL, and
is reported to play an essential role in liver, spleen, lymph
nodes and brain invasion in ALL (Crazzolara et al., 2001)
were both identified as ALL predictor genes.

Any sub-grouping can be examined easily and rapidly
using BGA. B and T cell lineage ALL samples were dis-
criminated using BGA with COA. In jack-knife analysis,
96% of samples were correctly assigned as B or T cell.
Using an unsupervised approach, Golub et al. (1999) were
able to distinguish these subclasses in four self organizing
map clusters. Furey et al. (2000) were able to assign all B
and T cell cases using SVM if a larger training set of all
training and test samples were utilized. BGA easily dif-
ferentiated these two groups and MHC and T cell receptor
(TCR) genes were found to discriminate B and T cell ALL
samples respectively. Interestingly, the top six genes that
discriminated ALL T cell samples also matched those re-
ported by Grant et al. (2001).

We were also able to use BGA to discriminate the
four SRBCT subclasses and 19/20 supplementary test
samples were correctly classified. Khan et al. (2001) were
able to assign all 20 test samples, of which 17 were
confidently predicted using an artificial neural network
(ANN) trained on 96 genes. Genes which effectively
discriminated SRBCTs, as identified by BGA, correlated

well with those reported by Khan et al. (2001). BGA
was trained on the complete data set of 2308 genes and
the results are comparable to the more complex ANN
approach. Furthermore cell line and tissue samples could
be differentiated. Thus genes specific to in vitro cell
passaging or to heterogeneity in tissue samples, which are
not significant to disease prognosis can be identified and
flagged.

The main limitation of our method is how it deals with
samples when they do not belong to any of the groups
that were used to train the analysis. Currently, each test
sample must be assigned to one of the groups. This is
due to the crude class assignment method we use which
allocates each sample to the nearest group centroid. This
can be overcome by using a more probabilistic class
assignment method that would indicate the chances of a
sample belonging to each class.

BGA is clearly a useful and general purpose technique
for dealing with grouped microarray samples. It can be
considered as a variation of COA or PCA for dealing with
grouped samples or as a multiple discriminant method.
Either way, it is simple to use, fast and flexible and
produces useful visual summaries of data sets as well as
accurate assignments to classes.
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