
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Computer Science Department Faculty Publication
Series Computer Science

1998

Between MDPs and Semi-MDPs:Learning,
Planning, and Representing Knowledge at Multiple
Temporal Scales
Richard S. Sutton
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion
in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Sutton, Richard S., "Between MDPs and Semi-MDPs:Learning, Planning, and Representing Knowledge at Multiple Temporal Scales"
(1998). Computer Science Department Faculty Publication Series. 213.
Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/213

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/cs_faculty_pubs/213?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

Journal of Artificial Intelligence Research 1 (1998) 1-39 Submitted 3/98; published NOT

Between MDPs and Semi-MDPs:
Learning, Planning, and Representing Knowledge

at Multiple Temporal Scales

Richard S. Sutton rich@cs.umass.edu

Doina Precup dprecup@cs.umass.edu

University of Massachusetts, Amherst, MA 01003 USA

Satinder Singh baveja@cs.colorado.edu

University of Colorado, Boulder, CO 80309 USA

Abstract

Learning, planning, and representing knowledge at multiple levels of temporal abstrac-
tion are key challenges for AI. In this paper we develop an approach to these problems
based on the mathematical framework of reinforcement learning and Markov decision pro-
cesses (MDPs). We extend the usual notion of action to include options—whole courses
of behavior that may be temporally extended, stochastic, and contingent on events. Ex-
amples of options include picking up an object, going to lunch, and traveling to a distant
city, as well as primitive actions such as muscle twitches and joint torques. Options may
be given a priori, learned by experience, or both. They may be used interchangeably with
actions in a variety of planning and learning methods. The theory of semi-Markov decision
processes (SMDPs) can be applied to model the consequences of options and as a basis for
planning and learning methods using them. In this paper we develop these connections,
building on prior work by Bradtke and Duff (1995), Parr (in prep.) and others. Our main
novel results concern the interface between the MDP and SMDP levels of analysis. We
show how a set of options can be altered by changing only their termination conditions
to improve over SMDP methods with no additional cost. We also introduce intra-option
temporal-difference methods that are able to learn from fragments of an option’s execution.
Finally, we propose a notion of subgoal which can be used to improve the options them-
selves. Overall, we argue that options and their models provide hitherto missing aspects of
a powerful, clear, and expressive framework for representing and organizing knowledge.

1. Temporal Abstraction

To make everyday decisions, people must foresee the consequences of their possible courses of
action at multiple levels of temporal abstraction. Consider a traveler deciding to undertake
a journey to a distant city. To decide whether or not to go, the benefits of the trip must be
weighed against the expense. Having decided to go, choices must be made at each leg, e.g.,
whether to fly or to drive, whether to take a taxi or to arrange a ride. Each of these steps
involves foresight and decision, all the way down to the smallest of actions. For example,
just to call a taxi may involve finding a telephone, dialing each digit, and the individual
muscle contractions to lift the receiver to the ear. Human decision making routinely involves

c©1998 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Sutton, Precup, & Singh (Revised)

planning and foresight—choice among temporally-extended options—over a broad range of
time scales.

In this paper we examine the nature of the knowledge needed to plan and learn at
multiple levels of temporal abstraction. The principal knowledge needed is the ability to
predict the consequences of different courses of action. This may seem straightforward, but
it is not. It is not at all clear what we mean either by a “course of action” or, particularly, by
“its consequences”. One problem is that most courses of action have many consequences,
with the immediate consequences different from the longer-term ones. For example, the
course of action go-to-the-librarymay have the near-term consequence of being outdoors
and walking, and the long-term consequence of being indoors and reading. In addition, we
usually only consider courses of action for a limited but indefinite time period. An action
like wash-the-car is most usefully executed up until the car is clean, but without specifying
a particular time at which it is to stop. We seek a way of representing predictive knowledge
that is:

Expressive The representation must be able to include basic kinds of commonsense knowl-
edge such as the examples we have mentioned. In particular, it should be able to pre-
dict consequences that are temporally extended and uncertain. This criterion rules
out many conventional engineering representations, such as differential equations and
transition probabilities. The representation should also be able to predict the con-
sequences of courses of action that are stochastic and contingent on subsequent ob-
servations. This rules out simple sequences of action with a deterministically known
outcome, such as conventional macro-operators.

Clear The representation should be clear, explicit, and grounded in primitive observations
and actions. Ideally it would be expressed in a formal mathematical language. Any
predictions made should be testable simply by comparing them against data: no
human interpretation should be necessary. This criterion rules out conventional AI
representations with ungrounded symbols. For example, “Tweety is a bird” relies
on people to understand “Tweety,” “Bird,” and “is-a”; none of these has a clear
interpretation in terms of observables. A related criterion is that the representation
should be learnable. Only a representation that is clear and directly testable from
observables is likely to be learnable. A clear representation need not be unambiguous.
For example, it could predict that one of two events will occur at a particular time,
but not specify which of them will occur.

Suitable for Planning A representation of knowledge must be suitable for how it will
be used as part of planning and decision-making. In particular, the representation
should enable interrelating and intermixing knowledge at different levels of temporal
abstraction.

It should be clear that we are addressing a fundamental question of AI: how should
an intelligent agent represent its knowledge of the world? We are interested here in the
underlying semantics of the knowledge, not with its surface form. In particular, we are
not concerned with the data structures of the knowledge representation, e.g., whether the

2

Between MDPs and Semi-MDPs (Revised)

knowledge is represented by neural networks or symbolic rules. Whatever data structures
are used to generate the predictions, our concern is with their meaning, i.e., with the
interpretation that we or that other parts of the system can make of the predictions. Is
the meaning clear and grounded enough to be tested and learned? Do the representable
meanings include the commonsense predictions we seem to use in everyday planning? Are
these meanings sufficient to support effective planning?

Planning with temporally extended actions has been extensively explored in several
fields. Early AI research focused on it from the point of view of abstraction in planning
(e.g., Fikes, Hart, and Nilsson, 1972; Newell and Simon, 1972; Nilsson, 1973; Sacerdoti,
1974). More recently, macro-operators, qualitative modeling, and other ways of chunking
action selections into units have been extensively developed (e.g., Kuipers, 1979; de Kleer
and Brown, 1984; Korf, 1985, 1987; Laird, Rosenbloom and Newell, 1986; Minton, 1988;
Iba, 1989; Drescher, 1991; Ruby and Kibler, 1992; Dejong, 1994; Levinson and Fuchs, 1994;
Nilsson, 1994; Say and Selahattin, 1996; Brafman and Moshe, 1997; Haigh, Shewchuk, and
Veloso, 1997). Roboticists and control engineers have long considered methodologies for
combining and switching between independently designed controllers (e.g., Brooks, 1986;
Maes, 1991; Koza and Rice, 1992; Brockett, 1993; Grossman et al., 1993; Millán, 1994;
Araujo and Grupen, 1996; Colombetti, Dorigo, and Borghi, 1996; Dorigo and Colombetti,
1994; Tóth, Kovács, and Lörincz, 1995; Sastry, 1997; Rosenstein and Cohen, 1998). More
recently, the topic has been taken up within the framework of MDPs and reinforcement
learning, as we do here (Watkins, 1989; Ring, 1991; Wixson, 1991; Schmidhuber, 1991;
Mahadevan and Connell, 1992; Tenenberg, Karlsson, and Whitehead, 1992; Lin, 1993;
Dayan and Hinton, 1993; Dayan, 1993; Kaelbling, 1993; Singh et al., 1994; Chrisman,
1994; Hansen, 1994; Uchibe, Asada and Hosada, 1996; Asada et al., 1996; Thrun and
Schwartz, 1995; Kalmár, Szepesvári, and Lörincz, 1997, in prep.; Dietterich, 1998; Matarić,
1997; Huber and Grupen, 1997; Wiering and Schmidhuber, 1997; Parr and Russell, 1998;
Drummond, 1998; Hauskrecht et al., 1998; Meuleau, in prep.). Our recent work in this area
(Precup and Sutton, 1997, 1998; Precup, Sutton, and Singh, 1997, 1998; see also McGovern,
Sutton, and Fagg, 1997; McGovern and Sutton, 1998) can be viewed as a combination and
generalization of Singh’s hierarchical Dyna (1992a,b,c,d) and Sutton’s mixture models (1995;
Sutton and Pinette, 1985). In the current paper we simplify our treatment of the ideas by
linking temporal abstraction to the theory of Semi-MDPs, as in Parr (in prep.), and as we
discuss next.

2. Between MDPs and SMDPs

In this paper we explore the extent to which Markov decision processes (MDPs) can provide
a mathematical foundation for the study of temporal abstraction and temporally extended
action. MDPs have been widely used in AI in recent years to study planning and learning in
stochastic environments (e.g., Barto, Bradtke, and Singh, 1995; Dean et al., 1995; Boutilier,
Brafman, and Gelb, 1997; Simmons and Koenig, 1995; Geffner and Bonet, in prep.). They
provide a simple formulation of the AI problem including sensation, action, stochastic cause-
and-effect, and general goals formulated as reward signals. Effective learning and planning
methods for MDPs have been proven in a number of significant applications (e.g., Marbach

3

Sutton, Precup, & Singh (Revised)

MDP

SMDP

Options
over MDP

State

Time

Figure 1: The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed at either level.

et al., 1998; Nie and Haykin, to appear; Singh and Bertsekas, 1997; Tesauro, 1995). How-
ever, conventional MDPs include only a single temporal scale of action. They are based on
a discrete time step: the unitary action taken at time t affects the state and reward at time
t+1. There is no notion of a course of action persisting over a variable period of time. As a
consequence, MDP methods are unable to take advantage of the simplicities and efficiencies
sometimes available at higher levels of temporal abstraction.

An alternative is to use semi-Markov decision processes (SMDPs), a special kind of MDP
appropriate for modeling continuous-time discrete-event systems (e.g., see Puterman, 1994;
Mahadevan et al., 1997; Crites and Barto, 1996). The actions in SMDPs are permitted
to take variable amounts of time and are intended to model temporally-extended courses
of action. The existing theory of SMDPs also specifies how to model the results of these
actions and how to plan with them. However, existing SMDP work is limited because the
temporally extended actions are treated as indivisible and unknown units. There is no
attempt in SMDP theory to look inside the temporally extended actions, to examine or
modify how they are comprised of lower-level actions. As we have tried to suggest above,
this is the essence of analyzing temporally abstract actions in AI applications: goal directed
behavior involves multiple overlapping scales at which decisions are made and modified.

In this paper we explore what might be viewed as a middle ground between MDPs
and SMDPs. The base problem we consider is that of a conventional discrete-time MDP,1

but we also consider courses of action within the MDP whose results are state transitions

1. In fact, the base system could itself be an SMDP with only technical changes in our framework. Never-
theless, treating it as an ordinary MDP is simpler and clearer for the purposes of this paper.

4

Between MDPs and Semi-MDPs (Revised)

of extended and variable duration. We use the term options2 for these courses of action,
which include primitive actions as a special case. Any fixed set of options defines a new
discrete-time SMDP embedded within the original MDP, as suggested by Figure 1. The
top panel shows the state trajectory over discrete time of an MDP, the middle panel shows
the larger state changes over continuous time of an SMDP, and the last panel shows how
these two levels of analysis can be superimposed through the use of options. In this case the
underlying base system is an MDP, with regular, single-step transitions, while the options
define (potentially) larger transitions, like those of an SMDP, that last for a number of
discrete steps. All the usual SMDP theory applies to the superimposed SMDP defined by
the options but, in addition, we have an explicit interpretation of them in terms of the
underlying MDP. The SMDP actions (the options) are no longer black boxes, but policies
in the base MDP which can be examined, changed, learned, and planned in their own right.
This is what we see as the essential insight of the current work that enables new results of
relevance to AI.

The first part of the paper (Sections 3-5) develops the formal machinery for options as
temporally extended actions equivalent to SMDP actions within a base MDP. We define
new value functions and Bellman equations for this case, but most of the results are simple
applications of existing SMDP theory or of existing reinforcement learning methods for
SMDPs (as we cite there). The primary appeal of our formalization is that it enables
multi-step options to be treated identically to primitive actions in existing planning and
learning methods. In particular, the consequences of multi-step options can be modeled
just as SMDP actions are modeled, and the models can be used in existing MDP planning
methods interchangeably with models of primitive MDP actions.

Our novel results are contained in the second part of the paper, which introduces several
ways of going beyond an SMDP analysis of options to change or learn their internal structure
in terms of the MDP. The first issue we consider is that of effectively combining a given set of
policies into a single overall policy. For example, a robot may have pre-designed controllers
for servoing joints to positions, picking up objects, and visual search, but still face a difficult
problem of how to coordinate and switch between these behaviors (e.g., Mahadevan and
Connell, 1992; Matarić, 1997; Uchibe et al., 1996; Sastry, 1997; Maes and Brooks, 1990;
Koza and Rice, 1992; Dorigo and Colombetti, 1994; Kalmár et al., 1997, in prep). The
second issue we consider is that of intra-option learning—looking inside options to learn
simultaneously about all options consistent with each fragment of experience. Finally, we
define a notion of subgoal that can be used to shape options and create new ones.

2. The choice of this term may deserve some explanation. In previous work we have used other terms
including “macro-actions,” “behaviors,” “abstract actions,” and “subcontrollers” for structures closely
related to options. Our work has evolved such that at this time we feel it is helpful to introduce a
new term for the specific formal structure we use in this paper. This distinguishes options from slightly
different formulations of temporally extended actions without taking over existing or informal terms.
The term “options” is meant as a parallel to “actions,” which we use formally only for primitive choices.
For some it may seem inappropriate that “option” does not in itself connote a course of action that is
large or temporally extended, but to us this is desireable. Options are not just “macro”; include primitive
actions and single-step stochastic choices among primitive actions as common special cases. The term
“option” suggests only choice among alternatives, which is exactly our intended meaning.

5

Sutton, Precup, & Singh (Revised)

3. Reinforcement Learning (MDP) Framework

In this section we briefly review the conventional reinforcement learning framework of
discrete-time, finite Markov decision processes, or MDPs, which forms the basis for our
extensions to temporally extended courses of action. In this framework, a learning agent
interacts with an environment at some discrete, lowest-level time scale t = 0, 1, 2, . . . On
each time step the agent perceives the state of the environment, st ∈ S, and on that ba-
sis chooses a primitive action, at ∈ Ast. In response to each action, at, the environment
produces one step later a numerical reward, rt+1, and a next state, st+1. It is notationaly
convenient to suppress the differences in available actions across states whenever possible;
we let A =

⋃
s∈S As denote the union of the action sets. If S and A, are finite, then the

environment’s transition dynamics are modeled by one-step state-transition probabilities,

pass′ = Pr
{
st+1 = s′ | st = s, at = a

}
,

and one-step expected rewards,

ras = E{rt+1 | st = s, at = a},

for all s, s′ ∈ S and a ∈ A (it is understood here that pass′ = 0 for a 6∈ As). These two sets
of quantities together constitute the one-step model of the environment.

The agent’s objective is to learn an optimal Markov policy , a mapping from states to
probabilities of taking each available primitive action, π : S × A → [0, 1], that maximizes
the expected discounted future reward from each state s:

V π(s) = E
{
rt+1 + γrt+1 + γ2rt+1 + · · ·

∣∣∣ st = s, π
}

(1)

= E
{
rt+1 + γV π(st+1)

∣∣∣ st = s, π
}

=
∑
a∈As

π(s, a)

[
ras + γ

∑
s′
pass′V

π(s′)

]
, (2)

where π(s, a) is the probability with which the policy π chooses action a ∈ As in state s,
and γ ∈ [0, 1] is a discount-rate parameter. This quantity, V π(s), is called the value of state
s under policy π, and V π is called the state-value function for π. The optimal state-value
function gives the value of a state under an optimal policy:

V ∗(s) = max
π

V π(s) (3)

= max
a∈As

E
{
rt+1 + γV ∗(st+1)

∣∣∣ st = s, at = a
}

= max
a∈As

[
ras + γ

∑
s′
pass′V

∗(s′)

]
. (4)

Any policy that achieves the maximum in (3) is by definition an optimal policy. Thus,
given V ∗, an optimal policy is easily formed by choosing in each state s any action that
achieves the maximum in (4). Planning in reinforcement learning refers to the use of
models of the environment to compute value functions and thereby to optimize or improve

6

Between MDPs and Semi-MDPs (Revised)

policies. Particularly useful in this regard are Bellman equations, such as (2) and (4), which
recursively relate value functions to themselves. If we treat the values, V π(s) or V ∗(s), as
unknowns, then a set of Bellman equations, for all s ∈ S, forms a system of equations whose
unique solution is in fact V π or V ∗ as given by (1) or (3). This fact is key to the way in
which all temporal-difference and dynamic programming methods estimate value functions.

For learning methods, of particular importance are a parallel set of value functions and
Bellman equations for state–action pairs rather than for states. The value of taking action
a in state s under policy π, denoted Qπ(s, a), is the expected discounted future reward
starting in s, taking a, and henceforth following π:

Qπ(s, a) = E
{
rt+1 + γrt+1 + γ2rt+1 + · · ·

∣∣∣ st = s, at = a, π
}

= ras + γ
∑
s′
pass′V

π(s′)

= ras + γ
∑
s′
pass′

∑
a′
π(s, a′)Qπ(s′, a′).

This is known as the action-value function for policy π. The optimal action-value function
is

Q∗(s, a) = max
π

Qπ(s, a)

= ras + γ
∑
s′
pass′ max

a′
Q∗(s′, a′).

Finally, many tasks are episodic in nature, involving repeated trials, or episodes, each
ending with a reset to a standard state or state distribution. In these episodic tasks, we
include a single special terminal state , arrival in which terminates the current episode. The
set of regular states plus the terminal state (if there is one) is denoted S+. Thus, the s′ in
pass′ in general ranges over the set S+ rather than just S as stated earlier. In an episodic
task, values are defined by the expected cumulative reward up until termination rather than
over the infinite future (or, equivalently, we can consider the terminal state to transition to
itself forever with a reward of zero).

4. Options

We use the term options for our generalization of primitive actions to include temporally
extended courses of action. Options consist of three components: a policy π : S × A →
[0, 1], a termination condition β : S+ → [0, 1], and an initiation set I ⊆ S. An option
〈I, π, β〉 is available in state s if and only if s ∈ I. If the option is taken, then actions
are selected according to π until the option terminates stochastically according to β. In
particular, if the option taken in state st is Markov , then the next action at is selected
according to the probability distribution π(st, ·). The environment then makes a transition
to state st+1, where the option either terminates, with probability β(st+1), or else continues,
determining at+1 according to π(st+1, ·), possibly terminating in st+2 according to β(st+2),

7

Sutton, Precup, & Singh (Revised)

and so on.3 When the option terminates, then the agent has the opportunity to select
another option. For example, an option named open-the-door might consist of a policy for
reaching, grasping and turning the door knob, a termination condition for recognizing that
the door has been opened, and an initiation set restricting consideration of open-the-door
to states in which a door is present. In episodic tasks, termination of an episode also
terminates the current option (i.e., β maps the terminal state to 1 in all options).

The initiation set and termination condition of an option together restrict its range of
application in a potentially useful way. In particular, they limit the range over which the
option’s policy need be defined. For example, a handcrafted policy π for a mobile robot to
dock with its battery charger might be defined only for states I in which the battery charger
is within sight. The termination condition β could be defined to be 1 outside of I and when
the robot is successfully docked. A subpolicy for servoing a robot arm to a particular joint
configuration could similarly have a set of allowed starting states, a controller to be applied
to them, and a termination condition indicating that either the target configuration has
been reached within some tolerance or that some unexpected event has taken the subpolicy
outside its domain of application. For Markov options it is natural to assume that all states
where an option might continue are also states where the option might be taken (i.e., that
{s : β(s) < 1} ⊆ I). In this case, π need only be defined over I rather than over all of S.

Sometimes it is useful for options to “timeout,” to terminate after some period of time
has elapsed even if they have failed to reach any particular state. This is not possible with
Markov options because their termination decisions are made solely on the basis of the
current state, not on how long the option has been executing. To handle this and other
cases of interest we consider a generalization to semi-Markov options, in which policies
and termination conditions may make their choices dependent on all prior events since the
option was initiated. In general, an option is initiated at some time, say t, determines the
actions selected for some number of steps, say k, and then terminates in st+k. At each
intermediate time T , t ≤ T < t + k, the decisions of a Markov option may depend only
on sT , whereas the decisions of a semi-Markov option may depend on the entire sequence
st, at, rt+1, st+1, at+1, . . . , rT , sT , but not on events prior to st (or after sT). We call this
sequence the history from t to T and denote it by htT . We denote the set of all histories by
Ω. In semi-Markov options, the policy and termination condition are functions of possible
histories, that is, they are π : Ω × A → [0, 1] and β : Ω → [0, 1]. The semi-Markov case
is also useful for cases in which options use a more detailed state representation than is
available to the policy that selects the options, as in hierarchical abstract machines (Parr,
in press; Parr and Russell, 1998).

Given a set of options, their initiation sets implicitly define a set of available options
Os for each state s ∈ S. These Os are much like the sets of available actions, As. We
can unify these two kinds of sets by noting that actions can be considered a special case of
options. Each action a corresponds to an option that is available whenever a is available
(I = {s : a ∈ As}), that always lasts exactly one step (β(s) = 1, ∀s ∈ S), and that selects
a everywhere (π(s, a) = 1, ∀s ∈ I). Thus, we can consider the agent’s choice at each time

3. The termination condition β plays a role similar to the β in β-models (Sutton, 1995), but with an
opposite sense. That is, β(s) in this paper corresponds to 1− β(s) in that earlier paper.

8

Between MDPs and Semi-MDPs (Revised)

to be entirely among options, some of which persist for a single time step, others which are
more temporally extended. The former we refer to as single-step or primitive options and
the latter as multi-step options. Just as in the case of actions, it is convenient to notationaly
suppress the differences in available options across states. We let O =

⋃
s∈S Os denote the

set of all available options.

Our definition of options is crafted to make them as much like actions as possible,
except temporally extended. Because options terminate in a well defined way, we can
consider sequences of them in much the same way as we consider sequences of actions. We
can also consider policies that select options instead of primitive actions, and we can model
the consequences of selecting an option much as we model the results of an action. Let us
consider each of these in turn.

Given any two options a and b, we can consider taking them in sequence, that is, we
can consider first taking a until it terminates, and then b until it terminates (or omitting
b altogether if a terminates in a state outside of b’s initiation set). We say that the two
options are composed to yield a new option, denoted ab, corresponding to this way of behav-
ing. The composition of two Markov options will in general be semi-Markov, not Markov,
because actions are chosen differently before and after the first option terminates. The
composition of two semi-Markov options is always another semi-Markov option. Because
actions are special cases of options, we can also compose them, producing a deterministic
action sequence, in other words, a classical macro-operator.

More interesting are policies over options. When initiated in a state st, the Markov
policy over options µ : S × O → [0, 1] selects an option o ∈ Ost according to probability
distribution µ(st, ·). The option o is then taken in st, determining actions until it terminates
in st+k, at which point a new option is selected, according to µ(st+k, ·), and so on. In this
way a policy over options, µ, determines a conventional policy over actions, or flat policy,
π = flat(µ). Henceforth we use the unqualified term policy for policies over options, which
include flat policies as a special case. Note that even if a policy is Markov and all of the
options it selects are Markov, the corresponding flat policy is unlikely to be Markov if any
of the options are multi-step (temporally extended). The action selected by the flat policy
in state sT depends not just on sT but on the option being followed at that time, and this
depends stochastically on the entire history htT since the policy was initiated at time t.
By analogy to semi-Markov options, we call policies that depend on histories in this way
semi-Markov policies.4 5

Our definitions of state values and action values can be generalized to apply to general
policies and options. First we define the value of a state s ∈ S under a semi-Markov flat

4. This and other similarities suggest that the concepts of policy and option can be unified. In such
a unification, options would select other options, and thus arbitrary hierarchical structures would be
permitted. Although this appears straightforward, for simplicity we restrict ourselves in this paper to
just two levels: policies that select options, and options that select actions.

5. Note that semi-Markov policies are more specialized than nonstationary policies. Whereas nonstationary
policies may depend arbitrarily on all preceding events, semi-Markov policies may depend only on events
back to some particular time. The stochastics of their decisions must be determined solely by the event
subsequence from that time to the present, independent of the events preceding that time.

9

Sutton, Precup, & Singh (Revised)

policy π as the expected return if the policy is started in s:

V π(s) def= E
{
rt+1 + γrt+2 + γ2rt+3 + · · ·

∣∣∣ E(π, s, t)
}
,

where E(π, s, t) denotes the event of π being initiated in s at time t. The value of a state
under a general policy µ can then be defined as the value of the state under the corresponding
flat policy: V µ(s) def= V flat(µ)(s), for all s ∈ S.

It is natural to generalize action-value functions to option-value functions. We define
Qµ(s, o), the value of taking option o in state s ∈ I under policy µ, as

Qµ(s, o) def= E
{
rt+1 + γrt+2 + γ2rt+3 + · · ·

∣∣∣ E(oµ, s, t)
}
, (5)

where oµ, the composition of o and µ, denotes the semi-Markov policy that first follows
o until it terminates and then starts choosing according to µ in the resultant state. For
semi-Markov options, it is useful to define E(o, h, t), the event of o continuing from h at
time t, where h is a history ending with st. In continuing, actions are selected as if the
history had preceded st. That is, at is selected according to o(h, ·), and o terminates at t+1
with probability β(hatrt+1st+1); if it doesn’t terminate, then at+1 is selected according to
o(hatrt+1st+1, ·), and so on. With this definition, (5) holds not just for states, but for any
history s ending in a state.

5. SMDP (Option-to-Option) Methods

Options are closely related to the actions in a special kind of decision problem known as a
semi-Markov decision process, or SMDP (e.g., see Puterman, 1994). In fact, any MDP with
a fixed set of options is an SMDP, as we state formally below. This theorem is not really a
result, but a simple observation that follows more or less immediately from definitions. We
present it as a theorem to highlight it and state explicitly its conditions and consequences:

Theorem 1 (MDP + Options = SMDP) For any MDP, and any set of options de-
fined on that MDP, the decision process that selects among those options, executing each to
termination, is an SMDP.

Proof: (Sketch) An SMDP consists of 1) a set of states, 2) a set of actions, 3) for each
pair of state and action, an expected cumulative discounted reward, and 4) a well-defined
joint distribution of the next state and transit time. In our case, the set of states is S, and
the set of actions is just the set of options. The expected reward and the next-state and
transit-time distributions are defined for each state and option by the MDP and by the
option’s policy and termination condition, π and β. These expectations and distributions
are well defined because the MDP is Markov and the options are semi-Markov; thus the
next state, reward, and time are dependent only on the option and the state in which it
was initiated. The transit times of options are always discrete, but this is simply a special
case of the arbitrary real intervals permitted in SMDPs. �

10

Between MDPs and Semi-MDPs (Revised)

The relationship between MDPs, options, and SMDPs provides a basis for the theory of
planning and learning methods with options. In later sections we discuss the limitations of
this theory due to its treatment of options as indivisible units without internal structure,
but in this section we focus on establishing the benefits and assurances that it provides. We
establish theoretical foundations and then survey SMDP methods for planning and learning
with options. Although our formalism is slightly different, these results are in essence taken
or adapted from prior work (including classical SMDP work and Bradtke and Duff, 1995;
Parr, in prep.; Parr and Russell, 1998; Singh, 1992a,b,c,d; Sutton, 1995; Precup and Sutton,
1997, 1998; Precup, Sutton, and Singh, 1997, 1998; McGovern, Sutton, and Fagg, 1997). A
result very similar to Theorem 1 was proved in detail by Parr (in prep.). In Sections 6–9
we present new methods that improve over SMDP methods.

Planning with options requires a model of their consequences. Fortunately, the appro-
priate form of model for options, analogous to the ras and pass′ defined earlier for actions, is
known from existing SMDP theory. For each state in which an option may be started, this
kind of model predicts the state in which the option will terminate and the total reward
received along the way. These quantities are discounted in a particular way. For any option
o, let E(o, s, t) denote the event of o being initiated in state s at time t. Then the reward
part of the model of o for any state s ∈ S is

ros = E
{
rt+1 + γrt+2 + · · · + γk−1rt+k

∣∣∣ E(o, s, t)
}
, (6)

where t + k is the random time at which o terminates. The state-prediction part of the
model of o for state s is

poss′ =
∞∑
k=1

p(s′, k) γk, (7)

for all s′ ∈ S, where p(s′, k) is the probability that the option terminates in s′ after k steps.
Thus, poss′ is a combination of the likelihood that s′ is the state in which o terminates together
with a measure of how delayed that outcome is relative to γ. We call this kind of model a
multi-time model (Precup and Sutton, 1997, 1998) because it describes the outcome of an
option not at a single time but at potentially many different times, appropriately combined.6

Using multi-time models we can write Bellman equations for general policies and options.
For any Markov policy µ, the state-value function can be written

V µ(s) = E
{
rt+1 + · · ·+ γk−1rt+k + γkV µ(st+k)

∣∣∣ E(µ, s, t)
}
,

where k is the duration of the first option selected by µ,

=
∑
o∈Os

µ(s, o)

[
ros +

∑
s′
poss′V

µ(s′)

]
, (8)

6. Note that this definition of state predictions for options differs slightly from that given earlier for primitive
actions. Under the new definition, the model of transition from state s to s′ for a primitive action a is
not simply the corresponding transition probability, but the transition probability times γ. Henceforth
we use the new definition given by (7).

11

Sutton, Precup, & Singh (Revised)

which is a Bellman equation analogous to (2). The corresponding Bellman equation for the
value of an option o in state s ∈ I is

Qµ(s, o) = E
{
rt+1 + · · ·+ γk−1rt+k + γkV µ(st+k)

∣∣∣ E(o, s, t)
}

= E
{
rt+1 + · · ·+ γk−1rt+k + γk

∑
o′∈Os

µ(st+k, o′)Qµ(st+k, o′)
∣∣∣ E(o, s, t)

}
= ros +

∑
s′
poss′

∑
o′∈Os

µ(s′, o′)Qµ(s′, o′). (9)

Note that all these equations specialize to those given earlier in the special case in which µ
is a conventional policy and o is a conventional action. Also note that Qµ(s, o) = V oµ(s).

Finally, there are generalizations of optimal value functions and optimal Bellman equa-
tions to options and to policies over options. Of course the conventional optimal value
functions V ∗ and Q∗ are not affected by the introduction of options; one can ultimately do
just as well with primitive actions as one can with options. Nevertheless, it is interesting
to know how well one can do with a restricted set of options that does not include all the
actions. For example, in planning one might first consider only high-level options in order
to find an approximate plan quickly. Let us denote the restricted set of options by O and
the set of all policies selecting only from options in O by Π(O). Then the optimal value
function given that we can select only from O is

V ∗O(s) def= max
µ∈Π(O)

V µ(s)

= max
o∈Os

E
{
rt+1 + · · ·+ γk−1rt+k + γkV ∗O(st+k)

∣∣∣ E(o, s, t)
}
,

where k is the duration of o when taken in st,

= max
o∈Os

[
ros +

∑
s′
poss′V

∗
O(s′)

]
(10)

= max
o∈Os

E
{
r + γkV ∗O(s′)

∣∣∣ E(o, s)
}
, (11)

where E(o, s) denotes option o being initiated in state s. Conditional on this event are the
usual random variables: s′ is the state in which o terminates, r is the cumulative discounted
reward along the way, and k is the number of time steps elapsing between s and s′. The
value functions and Bellman equations for optimal option values are

Q∗O(s, o) def= max
µ∈Π(O)

Qµ(s, o)

= E
{
rt+1 + · · ·+ γk−1rt+k + γkV ∗O(st+k)

∣∣∣ E(o, s, t)
}
,

where k is the duration of o from st,
= E

{
rt+1 + · · ·+ γk−1rt+k + γk max

o′∈Ost+k
Q∗O(st+k, o′)

∣∣∣ E(o, s, t)
}
,

= ros +
∑
s′
poss′ max

o′∈Ost+k
Q∗O(s′, o′) (12)

= E
{
r + γk max

o′∈Ost+k
Q∗O(s′, o′)

∣∣∣ E(o, s)
}
,

12

Between MDPs and Semi-MDPs (Revised)

where r, k, and s′ are again the reward, number of steps, and next state due to taking
o ∈ Os.

Given a set of options, O, a corresponding optimal policy , denoted µ∗O, is any policy
that achieves V ∗O, i.e., for which V µ∗O(s) = V ∗O(s) in all states s ∈ S. If V ∗O and models of
the options are known, then optimal policies can be formed by choosing in any proportion
among the maximizing options in (10) or (11). Or, if Q∗O is known, then optimal policies
can be found without a model by choosing in each state s in any proportion among the
options o for which Q∗O(s, o) = maxo′ Q∗O(s, o′). In this way, computing approximations to
V ∗O or Q∗O become key goals of planning and learning methods with options.

5.1 SMDP Planning

With these definitions, an MDP together with the set of options O formally comprises an
SMDP, and standard SMDP methods and results apply. Each of the Bellman equations
for options, (8), (9), (10), and (12), defines a system of equations whose unique solution
is the corresponding value function. These Bellman equations can be used as update rules
in dynamic-programming-like planning methods for finding the value functions. Typically,
solution methods for this problem maintain an approximation of V ∗O(s) or Q∗O(s, o) for all
states s ∈ S and all options o ∈ Os. For example, synchronous value iteration (SVI) with
options starts with an arbitrary approximation V0 to V ∗O and then computes a sequence of
new approximations {Vk} by

Vk(s) = max
o∈Os

ros +
∑
s′∈S+

poss′Vk−1(s′)

 (13)

for all s ∈ S. The action-value form of SVI starts with an arbitrary approximation Q0 to
Q∗O and then computes a sequence of new approximations {Qk} by

Qk(s, o) = ros +
∑
s′∈S+

poss′ max
o′∈Os′

Qk−1(s′, o′)

for all s ∈ S and o ∈ Os. Note that these algorithms reduce to the conventional value
iteration algorithms in the special case that O = A. Standard results from SMDP theory
guarantee that these processes converge for general semi-Markov options: limk→∞ Vk = V ∗O
and limk→∞Qk = Q∗O for all sets of options O.

The plans (policies) found using temporally abstract options are approximate in the
sense that they achieve only V ∗O, which is less than the maximum possible, V ∗. On the
other hand, if the models used to find them are correct, then they are guaranteed to achieve
V ∗O. We call this the value achievement property of planning with options. This contrasts
with planning methods that abstract over state space, which generally cannot be guaranteed
to achieve their planned values even if their models are correct (e.g., Dean and Lin, 1995).

As a simple illustration of planning with options, consider the rooms example, a grid-
world environment of four rooms shown in Figure 2. The cells of the grid correspond to
the states of the environment. From any state the agent can perform one of four actions,

13

Sutton, Precup, & Singh (Revised)

o

HALLWAYS

o

8 multi-step options

up

down

rightleft

(to each room’s 2 hallways)

G

4 stochastic
primitive actions

Fail 33%
of the time

G

Figure 2: The rooms example is a gridworld environment with stochastic cell-to-cell actions
and room-to-room hallway options. Two of the hallway options are suggested by
the arrows labeled o1 and o2. The labels G1 and G2 indicate two locations used
as goals in experiments described in the text.

Target
Hallway

Figure 3: The policy underlying one of the eight hallway options.

up, down, left or right, which have a stochastic effect. With probability 2/3, the actions
cause the agent to move one cell in the corresponding direction, and with probability 1/3,
the agent moves instead in one of the other three directions, each with probability 1/9. In
either case, if the movement would take the agent into a wall then the agent remains in the
same cell. For now we consider a case in which rewards are zero on all state transitions.

In each of the four rooms we provide two built-in hallway options designed to take the
agent from anywhere within the room to one of the two hallway cells leading out of the
room. A hallway option’s policy π follows a shortest path within the room to its target
hallway while minimizing the chance of stumbling into the other hallway. For example,
the policy for one hallway option is shown in Figure 3. The termination condition β(s)
for each hallway option is zero for states s within the room and 1 for states outside the
room, including the hallway states. The initiation set I comprises the states within the

14

Between MDPs and Semi-MDPs (Revised)

Iteration #1Initial Values Iteration #2

O=A

Primitive
options

O=H

Hallway
options

Figure 4: Value functions formed over iterations of planning by synchronous value iteration
with primitive actions and with hallway options. The hallway options enabled
planning to proceed room-by-room rather than cell-by-cell. The area of the disk
in each cell is proportional to the estimated value of the state, where a disk that
just fills a cell represents a value of 1.0.

room plus the non-target hallway state leading into the room. Note that these options are
deterministic and Markov, and that an option’s policy is not defined outside of its initiation
set. We denote the set of eight hallway options by H. For each option o ∈ H, we also
provide a priori its accurate model ros and poss′, for all s ∈ I and s′ ∈ S (assuming there
is no goal state, see below). Note that although the transition models poss′ are nominally
large (order |I|× |S|), in fact they are sparse, and relatively little memory (order |I|× 2) is
actually needed to hold the nonzero transitions from each state to the two adjacent hallway
states.7

Now consider a sequence of planning tasks for navigating within the grid to a designated
goal state, in particular, to the hallway state labeled G1 in Figure 2. Formally, the goal state
is a state from which all actions lead to the terminal state with a reward of +1. Throughout
this paper we discount with γ = 0.9 in the rooms example.

7. The off-target hallway states are exceptions in that they have three possible outcomes: the target hallway,
themselves, and the neighboring state in the off-target room.

15

Sutton, Precup, & Singh (Revised)

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5

Figure 5: An example in which the goal is different from the subgoal of the hallway options.
Planning here was by SVI with options O = A∪H. Initial progress was due to the
models of the primitive actions, but by the third iteration room-to-room planning
dominated and greatly accelerated planning.

As a planning method, we used SVI as given by (13), with various sets of options O.
The initial value function V0 was 0 everywhere except the goal state, which was initialized
to its correct value, V0(G1) = 1, as shown in the leftmost panels of Figure 4. This figure
contrasts planning with the original actions (O = A) and planning with the hallway options
and not the original actions (O = H). The upper part of the figure shows the value function
after the first two iterations of SVI using just primitive actions. The region of accurately
valued states moved out by one cell on each iteration, but after two iterations most states
still had their initial arbitrary value of zero. In the lower part of the figure are shown the
corresponding value functions for SVI with the hallway options. In the first iteration all
states in the rooms adjacent to the goal state became accurately valued, and in the second
iteration all the states become accurately valued. Although the values continued to change
by small amounts over subsequent iterations, a complete and optimal policy was known by
this time. Rather than planning step-by-step, the hallway options enabled the planning to
proceed at a higher level, room-by-room, and thus be much faster.

16

Between MDPs and Semi-MDPs (Revised)

This example is a particularly favorable case for the use of multi-step options because
the goal state is a hallway, the target state of some of the options. Next we consider a
case in which there is no such coincidence, in which the goal lies in the middle of a room,
in the state labeled G2 in Figure 2. The hallway options and their models were just as in
the previous experiment. In this case, planning with (models of) the hallway options alone
could never completely solve the task, because these take the agent only to hallways and
thus never to the goal state. Figure 5 shows the value functions found over five iterations of
SVI using both the hallway options and options corresponding to the primitive actions (i.e.,
using O = A ∪ H). In the first two iterations, accurate values were propagated from G2

by one cell per iteration by the models corresponding to the primitive actions. After two
iterations, however, the first hallway state was reached, and subsequently room-to-room
planning using the temporally extended hallway options dominated. Note how the lower-
left-most state was given a nonzero value during iteration three. This value corresponds
to the plan of first going to the hallway state above and then down to the goal; it was
overwritten by a larger value corresponding to a more direct route to the goal in the next
iteration. Because of the options, a close approximation to the correct value function was
found everywhere by the fourth iteration; without them only the states within three steps
of the goal would have been given non-zero values by this time.

We have used SVI in this example because it is a particularly simple planning method
which makes the potential advantage of multi-step options particularly clear. In large
problems, SVI is impractical because the number of states is too large to complete many
iterations, often not even one. In practice it is often necessary to be very selective about the
states updated, the options considered, and even the next states considered. These issues
are not resolved by multi-step options, but neither are they greatly aggravated. Options
provide a tool for dealing with them more flexibly. Planning with options need be no
more complex than planning with actions. In the SVI experiments above there were four
primitive options and eight hallway options, but in each state only two hallway options
needed to be considered. In addition, the models of the primitive actions generate four
possible successors with non-zero probability whereas the multi-step options generate only
two. Thus planning with the multi-step options was actually computationally cheaper than
conventional SVI in this case. In the second experiment this was not the case, but the
use of multi-step options still did not greatly increase the computational costs. In general,
of course, there is no guarantee that multi-step options will reduce the overall expense
of planning. For example, Hauskrecht et al. (1998) showed that adding multi-step options
may actually slow SVI if the initial value function is optimistic. Research with deterministic
macro-operators has identified a related “utility problem” when too many macros are used
(e.g., see Minton, 1990, Tambe, Newell, and Rosenbloom, 1990; Greiner and Jurisica, 1992).
Temporal abstraction provides the flexibility to greatly reduce computational complexity,
but can also have the opposite effect if used indiscriminately.

5.2 SMDP Value Learning

The problem of finding an optimal policy over a set of options O can also be addressed
by learning methods. Because the MDP augmented by the options is an SMDP, we can

17

Sutton, Precup, & Singh (Revised)

Episodes Episodes

Steps
per

episode

A

A

A

H

A U H

A U H

Goal
at G

Goal
at G

1 10 100 1000 10,000
10

100

1000

1 10 100 1000 10,000
10

100

1000

HH

Figure 6: Performance of SMDP Q-learning in the rooms example with various goals and
sets of options. After 100 episodes, the data points are averages over groups of
10 episodes to make the trends clearer. The step size parameter was optimized
to the nearest power of 2 for each goal and set of options. The results shown
used α = 1

8 in all cases except that with O = H and G1 (α = 1
16) and that with

O = A ∪H and G2 (α = 1
4).

apply SMDP learning methods as developed by Bradtke and Duff (1995), Parr and Russell
(1998; Parr, in prep.), Mahadevan et al. (1997), or McGovern, Sutton and Fagg (1997).
Much as in the planning methods discussed above, each option is viewed as an indivisible,
opaque unit. When the execution of option o is started in state s, we next jump to the state
s′ in which o terminates. Based on this experience, an approximate option-value function
Q(s, o) is updated. For example, the SMDP version of one-step Q-learning (Bradtke and
Duff, 1995), which we call SMDP Q-learning , updates after each option termination by

Q(s, o)← Q(s, o) + α

[
r + γk max

o′∈Os′
Q(s′, o′)−Q(s, o)

]
,

where k denotes the number of time steps elapsing between s and s′, r denotes the cumula-
tive discounted reward over this time, and it is implicit that the step-size parameter α may
depend arbitrarily on the states, option, and time steps. The estimate Q(s, o) converges
to Q∗O(s, o) for all s ∈ S and o ∈ O under conditions similar to those for conventional Q-
learning (Parr, in prep.), from which it is easy to determine an optimal policy as described
earlier.

As an illustration, we applied SMDP Q-learning to the rooms example (Figure 2) with
the goal at G1 and at G2. As in the case of planning, we used three different sets of options,
A, H, and A ∪H. In all cases, options were selected from the set according to an ε-greedy
method. That is, options were usually selected at random from among those with maximal
option value (i.e., ot was such that Q(st, ot) = maxo∈Ost Q(st, o)), but with probability ε the
option was instead selected randomly from all available options. The probability of random
action, ε, was 0.1 in all our experiments. The initial state of each trial was in the upper-
left corner. Figure 6 shows learning curves for both goals and all sets of options. In all

18

Between MDPs and Semi-MDPs (Revised)

cases, multi-step options caused the goal to be reached much more quickly, even on the very
first trial. With the goal at G1, these methods maintained an advantage over conventional
Q-learning throughout the experiment, presumably because they did less exploration. The
results were similar with the goal at G2, except that theH method performed worse than the
others in the long term. This is because the best solution requires several steps of primitive
actions (the hallway options alone find the best solution running between hallways that
sometimes stumbles upon G2). For the same reason, the advantages of the A ∪H method
over the A method were also reduced.

6. Termination Improvement

SMDP methods apply to options, but only when they are treated as opaque indivisible
units. More interesting and potentially more powerful methods are possible by looking
inside options and by altering their internal structure, as we do in the rest of this paper. In
this section we take a first step in altering options to make them more useful. This is the
area where working simultaneously in terms of MDPs and SMDPs is most relevant. We can
analyze options in terms of the SMDP and then use their MDP interpretation to change
them and produce a new SMDP.

In particular, in this section we consider altering the termination conditions of options.
Note that treating options as indivisible units, as SMDP methods do, is limiting in an
unnecessary way. Once an option has been selected, such methods require that its policy be
followed until the option terminates. Suppose we have determined the option-value function
Qµ(s, o) for some policy µ and for all state–options pairs s, o that could be encountered while
following µ. This function tells us how well we do while following µ, committing irrevocably
to each option, but it can also be used to re-evaluate our commitment on each step. Suppose
at time t we are in the midst of executing option o. If o is Markov in s, then we can compare
the value of continuing with o, which is Qµ(st, o), to the value of terminating o and selecting
a new option according to µ, which is V µ(s) =

∑
q µ(s, q)Qµ(s, q). If the latter is more highly

valued, then why not terminate o and allow the switch? We prove below that this new way
of behaving is indeed better.

In the following theorem we characterize the new way of behaving as following a policy
µ′ that is the same as the original policy, µ, but over a new set of options: µ′(s, o′) = µ(s, o),
for all s ∈ S. Each new option o′ is the same as the corresponding old option o except that
it terminates whenever termination seems better than continuing according to Qµ. In other
words, the termination condition β′ of o′ is the same as that of o except that β′(s) = 1
if Qµ(s, o) < V µ(s). We call such a µ′ a termination improved policy of µ. The theorem
generalizes this in that termination improvement is optional (not required) at each state
where it could be done. This weakens the requirement that Qµ(s, o) be completely known.
A more important generalization is that the theorem applies to semi-Markov options rather
than just Markov options. This is an important generalization, but can make the result
less intuitively accessible on first reading. Fortunately, the result can be read as restricted
to the Markov case simply by replacing every occurrence of “history” with “state”, set of
histories, Ω, with set of states, S, etc.

19

Sutton, Precup, & Singh (Revised)

Theorem 2 (Termination Improvement) For any MDP, any set of options O, and
any Markov policy µ : S × O → [0, 1], define a new set of options, O′, with a one-to-one
mapping between the two option sets as follows: for every o = 〈I, π, β〉 ∈ O we define a
corresponding o′ = 〈I, π, β′〉 ∈ O′, where β′ = β except that for any history h that ends in
state s and in which Qµ(h, o) < V µ(s), we may choose to set β′(h) = 1. Any histories whose
termination conditions are changed in this way are called termination-improved histories.
Let policy µ′ be such that for all s ∈ S, and for all o′ ∈ O′, µ′(s, o′) = µ(s, o), where o is
the option in O corresponding to o′. Then

1. V µ′(s) ≥ V µ(s) for all s ∈ S.

2. If from state s ∈ S there is a non-zero probability of encountering a termination-
improved history upon initiating µ′ in s, then V µ′(s) > V µ(s).

Proof: Shortly we show that, for an arbitrary start state s, executing the option given by
the termination improved policy µ′ and then following policy µ thereafter is no worse than
always following policy µ. In other words, we show that the following inequality holds:∑

o′
µ′(s, o′)[ro

′
s +

∑
s′
po
′
ss′V

µ(s′)] ≥ V µ(s) =
∑
o

µ(s, o)[ros +
∑
s′
poss′V

µ(s′)]. (14)

If this is true, then we can use it to expand the left-hand side, repeatedly replacing every
occurrence of V µ(x) on the left by the corresponding

∑
o′ µ
′(x, o′)[ro

′
x +

∑
x′ p

o′
xx′V

µ(x′)]. In
the limit, the left-hand side becomes V µ′ , proving that V µ′ ≥ V µ.

To prove the inequality in (14), we note that for all s, µ′(s, o′) = µ(s, o), and show that

ro
′
s +

∑
s′
po
′
ss′V

µ(s′) ≥ ros +
∑
s′
poss′V

µ(s′) (15)

as follows. Let Γ denote the set of all termination improved histories: Γ = {h ∈ Ω : β(h) 6=
β′(h)}. Then,

ro
′
s +

∑
s′
po
′
ss′V

µ(s′) = E
{
r + γkV µ(s′)

∣∣∣ E(o′, s), h 6∈ Γ
}

+E
{
r + γkV µ(s′)

∣∣∣ E(o′, s), h ∈ Γ
}
,

where s′, r, and k are the next state, cumulative reward, and number of elapsed steps
following option o from s, and where h is the history from s to s′. Trajectories that end
because of encountering a history not in Γ never encounter a history in Γ, and therefore
also occur with the same probability and expected reward upon executing option o in state
s. Therefore, if we continue the trajectories that end because of encountering a history in
Γ with option o until termination and thereafter follow policy µ, we get

E
{
r + γkV µ(s′)

∣∣∣ E(o′, s), h 6∈ Γ
}

+ E
{
β(s′)[r + γkV µ(s′)] + (1− β(s′))[r + γkQµ(h, o)]

∣∣∣ E(o′, s), h ∈ Γ
}

= ros +
∑
s′
poss′V

µ(s′),

20

Between MDPs and Semi-MDPs (Revised)

because option o is semi-Markov. This proves (14) because for all h ∈ Γ, Qµ(h, o) ≤ V µ(s′).
Note that strict inequality holds in (15) if Qµ(h, o) < V µ(s′) for at least one history h ∈ Γ
that ends a trajectory generated by o′ with non-zero probability. �

As one application of this result, consider the case in which µ is an optimal policy for
some given set of Markov options O. We have already discussed how we can, by planning
or learning, determine the optimal value functions V ∗O and Q∗O and from them the optimal
policy µ∗O that achieves them. This is indeed the best that can be done without changing
O, that is, in the SMDP defined by O, but less than the best possible achievable in the
MDP, which is V ∗ = V ∗A. But of course we typically do not wish to work directly in the
primitive options A because of the computational expense. The termination improvement
theorem gives us a way of improving over µ∗O with little additional computation by stepping
outside O. That is, at each step we interrupt the current option and switch to any new
option that is valued more highly according to Q∗O. Checking for such options can typically
be done at vastly less expense per time step than is involved in the combinatorial process of
computing Q∗O. In this sense, termination improvement gives us a nearly free improvement
over any SMDP planning or learning method that computes Q∗O as an intermediate step.
Kaelbling (1993) may have been the first to demonstrate this effect—improved performance
by interrupting a temporally extended substep based on a value function found by planning
at a higher level—albeit in a more restricted setting than we consider here.

In the extreme case, we might interrupt on every step and switch to the greedy option—
the option in that state that is most highly valued according to Q∗O. In this case, options
are never followed for more than one step, and they might seem superfluous. However, the
options still play a role in determining Q∗O, the basis on which the greedy switches are made,
and recall that multi-step options enable Q∗O to be found much more quickly than Q∗ could
(Section 5.1). Thus, even if multi-step options are never actually followed for more than one
step, they can still provide substantial advantages in computation and in our theoretical
understanding.

Figure 7 shows a simple example. Here the task is to navigate from a start location to a
goal location within a continuous two-dimensional state space. The actions are movements
of 0.01 in any direction from the current state. Rather than work with these low-level
actions, infinite in number, we introduce seven landmark locations in the space. For each
landmark we define a controller that takes us to the landmark in a direct path (cf. Moore,
1994). Each controller is only applicable within a limited range of states, in this case
within a certain distance of the corresponding landmark. Each controller then defines an
option: the circular region around the controller’s landmark is the option’s initiation set,
the controller itself is the policy, and arrival at the target landmark is the termination
condition. We denote the set of seven landmark options by O. Any action within 0.01 of
the goal location transitions to the terminal state, the discount rate γ is 1, and the reward
is −1 on all transitions, which makes this a minimum-time task.

One of the landmarks coincides with the goal, so it is possible to reach the goal while
picking only from O. The optimal policy within O runs from landmark to landmark, as
shown by the thin line in the upper panel of Figure 7. This is the optimal solution to the
SMDP defined by O and is indeed the best that one can do while picking only from these

21

Sutton, Precup, & Singh (Revised)

SMDP Solution
(600 Steps)

Termination-Improved
Solution (474 Steps)

range (input set) of each
run-to-landmark controller

landmarks

S

G

0
1

2
3

0

1

2

3

-600

-500

-400

-300

-200

-100

0

0
1

2
3

0

1

2

3

-600

-500

-400

-300

-200

-100

0

V - SMDP Value Function*O
µγ

Landmarks
Problem

V - Termination Improved

Figure 7: Termination improvement in navigating with landmark-directed controllers. The
task (top) is to navigate from S to G in minimum time using options based on
controllers that run each to one of seven landmarks (the black dots). The circles
show the region around each landmark within which the controllers operate. The
thin line shows the SMDP solution, the optimal behavior that uses only these
controllers without interrupting them, and the thick line shows the corresponding
termination improved solution, which cuts the corners. The lower two panels show
the state-value functions for the SMDP and termination-improved solutions.

22

Between MDPs and Semi-MDPs (Revised)

0

0.02

0.04

0.06

0 0.5 1 1.5 2

Position

Velocity

Termination
Improved

121 Steps

SMDP Solution
210 Steps

Figure 8: Phase-space plot of the SMDP and termination improved policies in a simple
dynamical task. The system is a mass moving in one dimension: xt+1 = xt+ ẋt+1,
ẋt+1 = ẋt+at−0.175ẋt where xt is the position, ẋt the velocity, 0.175 a coefficient
of friction, and the action at an applied force. Two controllers are provided as
options, one that drives the position to zero velocity at x∗ = 1.0 and the other
to x∗ = 2.0. Whichever option is being followed at time t, its target position x∗

determines the action taken, according to at = 0.01(x∗ − xt).

options. But of course one can do better if the options are not followed all the way to each
landmark. The trajectory shown by the thick line in Figure 7 cuts the corners and is shorter.
This is the termination-improvement policy with respect to the SMDP-optimal policy. The
termination-improvement policy takes 474 steps from start to goal which, while not as good
as the optimal policy in primitive actions (425 steps), is much better, for nominal additional
cost, than the SMDP-optimal policy, which takes 600 steps. The state-value functions, V µ∗O

and V µ′ for the two policies are shown in the lower part of Figure 7. Note how the values
for the improved policy are everywhere greater than the values of the original policy.

Figure 8 shows results for an example using controllers/options with dynamics. The
task here is to move a mass along one dimension from rest at position 0.0 to rest at position
2.0, again in minimum time. There is no option that takes the system all the way from
0.0 to 2.0, but we do have an option that takes it from 0.0 to 1.0 and another option that
takes it from any position greater than 0.5 to 2.0. Both options control the system precisely
to its target position and to zero velocity, terminating only when both of these are correct
to within ε = 0.0001. Using just these options, the best that can be done is to first move
precisely to rest at 1.0, using the first option, then re-accelerate and move to 2.0 using
the second option. This SMDP-optimal solution is much slower than the corresponding
termination improved policy, as shown in Figure 8. Because of the need to slow down to
near-zero velocity at 1.0, it takes over 200 time steps, whereas the improved policy takes
only 121 steps.

23

Sutton, Precup, & Singh (Revised)

7. Intra-Option Model Learning

The models of an option, ros and poss′, can be learned from experience given knowledge of
the option (i.e., of its I, π, and β). For a semi-Markov option, the only general approach
is to execute the option to termination many times in each state s, recording in each case
the resultant next state s′, cumulative discounted reward r, and elapsed time k. These
outcomes are then averaged to approximate the expected values for ros and poss′ given by (6)
and (7). For example, an incremental learning rule for this could update its model after
each execution of o by

r̂os = r̂os + α[r − r̂os], (16)

and
p̂osx = p̂osx + α[γkδxs′ − p̂osx], (17)

for all x ∈ S+, where δsx = 1 if s = x and is 0 else, and where the step-size parameter, α,
may be constant or may depend on the state, option, and time. For example, if α is 1 divided
by the number of times that o has been experienced in s, then these updates maintain the
estimates as sample averages of the experienced outcomes. However the averaging is done,
we call these SMDP model-learning methods because, like SMDP value-learning methods,
they are based on jumping from initiation to termination of each option, ignoring what
happens along the way. In the special case in which o is a primitive action, SMDP model-
learning methods reduce to those used to learn conventional one-step models of actions.

One drawback to SMDP model-learning methods is that they improve the model of
an option only when the option terminates. Because of this, they cannot be used for
nonterminating options and can only be applied to one option at a time—the one option
that is executing at that time. For Markov options, special temporal-difference methods
can be used to learn usefully about the model of an option before the option terminates.
We call these intra-option methods because they learn from experience within a single
option. Intra-option methods can even be used to learn about the model of an option
without ever executing the option, as long as some selections are made that are consistent
with the option. Intra-option methods are examples of off-policy learning methods (Sutton
and Barto, 1998) because they learn about the consequences of one policy while actually
behaving according to another, potentially different policy. Intra-option methods can be
used to simultaneously learn models of many different options from the same experience.
Intra-option methods were introduced by Sutton (1995), but only for a prediction problem
with a single unchanging policy, not for the full control case we consider here.

Just as there are Bellman equations for value functions, there are also Bellman equations
for models of options. Consider the intra-option learning of the model of a Markov option
o = 〈I, π, β〉. The correct model of o is related to itself by

ros =
∑
a∈As

π(s, a)E
{
r + γ(1− β(s′))ros′

}
where r and s′ are the reward and next state given that action a is taken in state s,

=
∑
a∈As

π(s, a)

[
ras +

∑
s′
pass′(1− β(s′))ros′

]
,

24

Between MDPs and Semi-MDPs (Revised)

and

posx =
∑
a∈As

π(s, a)γE
{

(1− β(s′))pos′x + β(s′)δs′x
}

=
∑
a∈As

π(s, a)
∑
s′
pass′(1− β(s′))pos′x + β(s′)δs′x

for all s, x ∈ S. How can we turn these Bellman-like equations into update rules for learning
the model? First consider that action at is taken in st, and that the way it was selected
is consistent with o = 〈I, π, β〉, that is, that at was selected with the distribution π(st, ·).
Then the Bellman equations above suggest the temporal-difference update rules

r̂ost ← r̂ost + α
[
rt+1 + γ(1− β(st+1))r̂ost+1

− r̂ost
]

(18)

and

p̂ostx ← p̂ostx + α
[
γ(1− β(st+1))p̂ost+1x + γβ(st+1)δst+1x − p̂ostx

]
, (19)

for all x ∈ S+, where p̂oss′ and r̂os are the estimates of poss′ and ros , respectively, and α is
a positive step-size parameter. The method we call one-step intra-option model learning
applies these updates to every option consistent with every action taken, at. Of course,
this is just the simplest intra-option model-learning method. Others may be possible using
eligibility traces and standard tricks for off-policy learning (as in Sutton, 1995).

As an illustration, consider the use of SMDP and intra-option model learning in the
rooms example. As before, we assume that the eight hallway options are given, but now we
assume that their models are not given and must be learned. In this experiment, the rewards
were selected according to a normal probability distribution with a standard deviation of
0.1 and a mean that was different for each state–action pair. The means were selected
randomly at the beginning of each run uniformly from the [−1, 0] interval. Experience was
generated by selecting randomly in each state among the two possible options and four
possible actions, with no goal state. In the SMDP model-learning method, equations (16)
and (17) were applied whenever an option terminated, whereas, in the intra-option model-
learning method, equations (18) and (19) were applied on every step to all options that were
consistent with the action taken on that step. In this example, all options are deterministic,
so consistency with the action selected means simply that the option would have selected
that action.

For each method, we tried a range of values for the step-size parameter, α = 1
2 ,

1
4 ,

1
8 , and

1
16 . Results are shown in Figure 9 for the value that seemed to be best for each method,
which happened to be α = 1

4 in all cases. For the SMDP method, we also show results
with the step-size parameter set such that the model estimates were sample averages, which
should give the best possible performance of this method (these lines are labeled 1/t). The
figure shows the average and maximum errors over the state–option space for each method,
averaged over the eight options and 30 repetitions of the experiment. As expected, the
intra-option method was able to learn significantly faster than the SMDP methods.

25

Sutton, Precup, & Singh (Revised)

0

1

2

3

4

0 20,000 40,000 60,000 80,000 100,000

Options Executed Options Executed

SMDP

Intra
SMDP 1/t

SMDP

Intra SMDP 1/t

Reward
Prediction

Error
State

Prediction
Error

Max Error

Avg. Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20,000 40,000 60,000 80,000 100,000

SMDP

SMDP

SMDP 1/t

Intra

Intra

SMDP 1/t

Max
Error
Avg.
Error

Figure 9: Model learning by SMDP and intra-option methods. Shown are the average and
maximum over I of the absolute errors between the learned and true models, av-
eraged over the eight hallway options and 30 repetitions of the whole experiment.
The lines labeled ‘SMDP 1/t’ are for the SMDP method using sample averages;
the others all used α = 1/4.

8. Intra-Option Value Learning

We turn now to the intra-option learning of option values and thus of optimal policies
over options. If the options are semi-Markov, then again the SMDP methods described in
Section 5.2 are probably the only feasible methods; a semi-Markov option must be completed
before it can be evaluated in any way. But if the options are Markov and we are willing to
look inside them, then we can consider intra-option methods. Just as in the case of model
learning, intra-option methods for value learning are potentially more efficient than SMDP
methods because they extract more training examples from the same experience.

For example, suppose we are learning to approximate Q∗O(s, o) and that o is Markov.
Based on an execution of o from t to t+k, SMDP methods extract a single training example
for Q∗O(s, o). But because o is Markov, it is, in a sense, also initiated at each of the steps
between t and t+k. The jumps from each intermediate si to st+k are also valid experiences
with o, experiences that can be used to improve estimates of Q∗O(si, o). Or consider an
option that is very similar to o and which would have selected the same actions, but which
would have terminated one step later, at t+ k + 1 rather than at t+ k. Formally this is a
different option, and formally it was not executed , yet all this experience could be used for
learning relevant to it. In fact, an option can often learn something from experience that is
only slightly related (occasionally selecting the same actions) to what would be generated
by executing the option. This is the idea of off-policy training—to make full use of whatever
experience occurs to learn as much as possible about all options irrespective of their role in
generating the experience. To make the best use of experience we would like an off-policy
and intra-option version of Q-learning.

26

Between MDPs and Semi-MDPs (Revised)

It is convenient to introduce new notation for the value of a state–option pair given that
the option is Markov and executing upon arrival in the state:

U∗O(s, o) = (1− β(s))Q∗O(s, o) + β(s) max
o′∈O

Q∗O(s, o′).

Then we can write Bellman-like equations that relateQ∗O(s, o) to expected values of U∗O(s′, o),
where s′ is the immediate successor to s after initiating Markov option o = 〈I, π, β〉 in s:

Q∗O(s, o) =
∑
a∈As

π(s, a)E
{
r + γU∗O(s′, o)

∣∣∣ s, a}

=
∑
a∈As

π(s, a)

[
ras +

∑
s′
pass′U

∗
O(s′, o)

]
, (20)

where r is the immediate reward upon arrival in s′. Now consider learning methods based
on this Bellman equation. Suppose action at is taken in state st to produce next state st+1

and reward rt+1, and that at was selected in a way consistent with the Markov policy π
of an option o = 〈I, π, β〉. That is, suppose that at was selected according to the distri-
bution π(st, ·). Then the Bellman equation above suggests applying the off-policy one-step
temporal-difference update:

Q(st, o)← Q(st, o) + α
[
(rt+1 + γU(st+1, o))−Q(st, o)

]
, (21)

where
U(s, o) = (1− β(s))Q(s, o) + β(s) max

o′∈O
Q(s, o′).

The method we call one-step intra-option Q-learning applies this update rule to every option
o consistent with every action taken, at. Note that the algorithm is potentially dependent
on the order in which options are updated.

Theorem 3 (Convergence of intra-option Q-learning) For any set of deterministic
Markov options O, one-step intra-option Q-learning converges w.p.1 to the optimal Q-
values, Q∗O, for every option regardless of what options are executed during learning provided
every primitive action gets executed in every state infinitely often.

Proof: (Sketch) On experiencing the transition, (s, a, r′, s′), for every option o that picks
action a in state s, intra-option Q-learning performs the following update:

Q(s, o)← Q(s, o) + α(s, o)[r′ + γU(s′, o)−Q(s, o)].

Let a be the action selection by deterministic Markov option o = 〈I, π, β〉. Our result
follows directly from Theorem 1 of Jaakkola, Jordan, and Singh (1994) and the observation
that the expected value of the update operator r′ + γU(s′, o) yields a contraction, proved
below:

|E{r′ + γU(s′, o)} −Q∗O(s, o)| = |ras +
∑
s′
pass′U(s′, o)−Q∗O(s, o)|

27

Sutton, Precup, & Singh (Revised)

-4

-3

-2

-1

0

0 10001000 6000 2000 3000 4000 5000 6000

EpisodesEpisodes

Option
values
for G

Average
value of

greedy policy

Learned value

Learned value

Upper
hallway
option

Left
hallway
option

True value

True value-4

-3

-2

1 10 100

Value of Optimal Policy

Figure 10: The learning of option values by intra-option methods without ever selecting
the options. Experience was generated by selecting randomly among primitive
actions, with the goal at G1. Shown on the left is the value of the greedy policy,
averaged over all states and 30 repetitions of the experiment, as compared with
the value of the optimal policy. The right panel shows the learned option values
from state G2 approaching their correct values.

= |ras +
∑
s′
pass′U(s′, o)− ras −

∑
s′
pass′U

∗
O(s′, o)|

≤ |
∑
s′
pass′

[
(1− β(s′))(Q(s′, o)−Q∗O(s′, o))

+β(s′)(max
o′∈O

Q(s′, o′)−max
o′∈O

Q∗O(s′, o′)
]
|

≤
∑
s′
pass′ max

s′′,o′′
|Q(s′′, o′′)−Q∗O(s′′, o′′)|

≤ γmax
s′′,o′′

|Q(s′′, o′′)−Q∗O(s′′, o′′)|

�
As an illustration, we applied this intra-option method to the rooms example, this time

with the goal in the rightmost hallway, cell G1 in Figure 2. Actions were selected randomly
with equal probability from the four primitives. The update (21) was applied first to the
primitive options, then to any of the hallway options that were consistent with the action.
The hallway options were updated in clockwise order, starting from any hallways that faced
up from the current state. The rewards were the same as in the experiment in the previous
section. Figure 10 shows learning curves demonstrating the effective learning of option
values without ever selecting the corresponding options.

Intra-option versions of other reinforcement learning methods such as Sarsa, TD(λ), and
eligibility-trace versions of Sarsa and Q-learning should be straightforward, although there

28

Between MDPs and Semi-MDPs (Revised)

has been no experience with them. The intra-option Bellman equation (20) could also be
used for intra-option sample-based planning.

9. Learning the Policies of Options

Perhaps the most important aspect of working between MDPs and SMDPs is that the
options making up the SMDP actions may be changed. We have seen one way in which this
can be done by changing their termination conditions. Perhaps more fundamental than that
is changing their policies, which we consider briefly in this section. It is natural to think
of options as achieving subgoals of some kind, and to adapt each option’s policy to better
achieve its subgoal. For example, if the option is open-the-door, then it is natural to adapt
its policy over time to make it more effective and efficient in opening the door, which may
make it more generally useful. Given subgoals for options, it is relatively straightforward to
design off-policy intra-option learning methods to adapt the policies to better achieve those
subgoals. For example, it may be possible to simply apply Q-learning to learn independently
about each subgoal and option (as in Singh, 1992b; Lin, 1993; Dorigo and Colombetti, 1994;
Thrun and Schwartz, 1995).

On the other hand, it is not clear which is the best way to formulate subgoals to
associate with options, or even what the basis for evaluation should be. One of the important
considerations is the extent to which models of options constructed to achieve one subgoal
can be transferred to aid in planning to achieve another. We would like a long-lived learning
agent to face a continuing series of subtasks that result in its being more and more capable.
A full treatment of the transfer across subgoals probably involves developing the ideas of
general hierarchical options (options that select other options), which we have avoided in
this paper. Nevertheless, in this section we briefly present a simple approach to associating
subgoals with options. We do this without going to the full hierarchical case, that is, we
continue to consider only options that select only primitive actions. The formalization of
subgoals we present here suffices to illustrate some of the possibilities and problems that
arise. A larger issue which we do not address is the source of the subgoals. We assume that
the subgoals are given and focus on how options can be learned and tuned to achieve them,
and on how learning toward different subgoals can aid each other.

A simple way to formulate a subgoal is by assigning a subgoal value, g(s), to each state
s in a subset of states G ⊆ S. These values indicate how desirable it is to terminate in each
state in G. For example, to learn a hallway option in the rooms task, the target hallway
might be assigned a subgoal value of +1 while the other hallway and all states outside
the room might be assigned a subgoal value of 0. Let Og denote the set of options that
terminate only and always in the states G in which g is defined (i.e., for which β(s) = 0
for s 6∈ G and β(s) = 1 for s ∈ G). Given a subgoal-value function g : G → <, one can
define a new state-value function, denoted V o

g (s), for options o ∈ Og, as the expected value
of the cumulative reward if option o is initiated in state s, plus the subgoal value g(s′) of
the state s′ in which it terminates. Similarly, we can define a new action-value function
Qog(s, a) = V ao

g (s) for actions a ∈ As and options o ∈ Og.

29

Sutton, Precup, & Singh (Revised)

Time steps

RMS Error in
hallway subtask

values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20,000 40,000

Time Steps
60,000

upper
hallway
task

true values

learned
values

lower
hallway
task

80,000 100,000

Values of G
for two tasks

0

0.1

0.2

0.3

0.4

0 20,000 40,000 60,000 80,000 100,000

[Qg(s,a) - Qg(s,a)]2*

Figure 11: Learning subgoal-achieving hallway options under random behavior. Shown on
the left is the error between Qg(s, a) and Q∗g(s, a) averaged over s ∈ I, a ∈ A,
and 30 repetitions of the whole experiment. The right panel shows the individual
learned values for two options at one state (maximum over the learned action
values) approaching their correct values.

Finally, we can define optimal value functions for any subgoal g: V ∗g (s) = maxo∈Og V o
g (s)

and Q∗g(s, a) = maxo∈Og Qog(s, a). Finding an option that achieves these maximums (an op-
timal option for the subgoal) is then a well defined subtask. For Markov options, this
subtask has Bellman equations and methods for learning and planning just as in the orig-
inal task. For example, the one-step tabular Q-learning method for updating an estimate
Qg(st, at) of Q∗g(st, at) is

Qg(st, at)← Qg(st, at) + α
[
rt+1 + γmax

a
Qg(st+1, at+1)−Qg(st, at)

]
,

if st+1 6∈ G, and

Qg(st, at)← Qg(st, at) + α [rt+1 + γg(st+1)−Qg(st, at)] ,

if st+1 ∈ G.

As a simple example, we applied this method to learn the policies of the eight hallway
options in the rooms example. Each option was assigned subgoal values of +1 for the target
hallway and 0 for all states outside the option’s room, including the off-target hallway. The
initial state was that in the upper left corner, actions were selected randomly with equal
probability, and there was no goal state. The parameters were γ = 0.9 and α = 0.1. All
rewards were zero. Figure 11 shows the learned action values Qg(s, a) for each of the eight
subgoals/options reliably approaching their ideal values, Q∗g(s, a).

It is interesting to note that, in general, the policies learned to achieve subgoals depends
in detail on the precise values assigned by g to the subgoal states. For example, suppose
nonzero expected rewards were introduced into the rooms task, distributed uniformly be-
tween 0 and −1. Then a subgoal value of +10 (at the target hallway) results in an optimal

30

Between MDPs and Semi-MDPs (Revised)

g = 10 g = 1

g = 0 g = 0

Figure 12: Two different optimal policies for options given two different subgoal values at
the target hallway. A subgoal value of +10 (left) results in a more direct policy
than a subgoal of +1.

policy that goes directly to the target hallway and away from the other hallway, as shown
on the left in Figure 12, whereas a subgoal value of +1 may result in an optimal policy
that goes only indirectly to the target hallway, as shown on the right in Figure 12. A
roundabout path may be preferable in the latter case to avoid unusually large penalties. In
the extreme it may even be optimal to head for the off-target hallway, or even to spend an
infinite amount of time running into a corner and never reach any subgoal state. This is not
a problem, but merely illustrates the flexibility of this subgoal formulation. For example,
we may want to have two options for open-the-door, one of which opens the door only if
it is easy to do so, for example, if is unlocked, and one which opens the door no matter
what, for example, by breaking it down if need be. If we had only the first option, then we
would not be able to break down the door if need be, but if we had only the second, then
we would not be able to choose to open the door without committing to breaking it down
if it was locked, which would greatly diminish the option’s usefulness. The ability to learn
and represent options for different intensities of subgoals, or different balances of outcome
values, is an important flexibility.

Subgoals, options, and models of options enable interesting new possibilities for rein-
forcement learning agents. For example, we could present the agent with a series of tasks
as subgoals, perhaps graded in difficulty. For each, the agent would be directed to find an
option that achieves the subgoal and to learn a model of the option. Although the option
and model are constructed based on the task, note that they can be transferred to any other
task. The option just says what to do; if behaving that way is a useful substep on another
task, then it will help on that task. Similarly, the model just predicts the consequences of
behaving that way; if that way of behaving is a useful substep on another task, then the
model will help in planning to use that substep. As long as the model is accurate for its
option it may be useful in planning the solution to another task. Singh (1992a,b,c) and Lin
(1993) provide some simple examples of learning solutions to subtasks and then transferring
them to help solve a new task.

On the other hand, assuring that the models of options remain accurate across changes
in tasks or subgoals is far from immediate. The most severe problem arises when the new

31

Sutton, Precup, & Singh (Revised)

10−1?

Figure 13: A subgoal to which a hallway option does not transfer. The option for passing
from the lower-left room through to the state with subgoal value 10 no longer
works because of the state with subgoal value −1. The original model of this
option is overpromising with respect to the subgoal.

subgoal prevents the successful completion of an option whose model has previously been
learned. Figure 13 illustrates the problem in a rooms example. Here we assume the options
and models have already been learned, then a new subgoal is considered that assigns a
high value, 10 to a state in the lower-right room but a low value, −1, to a state that must
be passed through to enter that room from the lower-left room. The −1 subgoal state
makes it impossible to pass between the two rooms—the subgoal considers only options
that terminate in its subgoal states—and the low value of this state makes it undesirable to
try. Yet the prior model indicates that it is still possible to travel from the lower-left room
“through” the −1 state to the hallway state and thereby to the 10-valued state. Thus,
planning with this model will lead inevitably to a highly-valued but poor policy. Such
problems can arise whenever the new subgoal involves states that which may be passed
through when an option is executed.

On the other hand, such problems can be detected and prevented in a number of ways.
One idea is keep track of which states an option passes through and invalidate options and
models that pass through subgoal states. Another idea is to alter the subgoal formulation
such that subgoal states can be passed through: stopping in them and collecting the subgoal
value is optional rather than required. Finally, note that we do not require models to be
accurate, just non-overpromising (Precup and Sutton, 1998)—that is, they do not have
to predict the correct outcome, just an outcome that is less than or equal to, in expected
value, the correct outcome. This finesse may enable important special cases to be handled
simply. For example, any new subgoal involving states G that all have the same subgoal
value, e.g., any singleton G, can probably be safely transferred to. The sort of problem
shown in Figure 13 can never occur in such cases.

32

Between MDPs and Semi-MDPs (Revised)

10. Conclusion

Representing knowledge flexibly at multiple levels of temporal abstraction has the potential
to greatly speed planning and learning on large problems. Options and their models offer a
set of formal tools for realizing this potential. They offer new capabilities in each of three
areas that we identified as critical at the beginning of this paper. They are clear enough
to be interpreted entirely mechanically, as we have shown by exhibiting simple procedures
for executing options, learning models of them, testing the models against real events,
modifying options, and creating new options given subgoals. They are more expressive
than previous methods based on MDPs and SMDPs in that they permit multiple levels
of temporal abstraction to simultaneously apply to the same system. Finally, they are
explicitly designed to be suitable for planning using methods based on Bellman equations.
Compared to conventional MDP and SMDP formulations, options provide a substantial
increase in expressiveness with no loss of clarity or suitability for planning. Compared with
classical AI representations, they are a substantial increase in clarity and in some aspects
of expressiveness. In particular, they apply to stochastic environments, closed-loop policies,
and to a more general class of goals.

The foundation for the theory of options is provided by the existing theory of SMDPs
and associated learning methods. The fact that each set of options defines an SMDP
provides a rich set of planning and learning methods, convergence theory, and an immediate,
natural, and general way of analyzing mixtures of actions at different time scales. This
theory offers a lot, but still the most interesting cases are beyond it because they involve
interrupting, constructing, or otherwise decomposing options into their constituent parts.
It is the intermediate ground between MDPs and SMDPs that seems richest in possibilities
for new algorithms and results. In this paper we have broken this ground and touched
on many of the issues, but there is far more left to be done. Key issues such as transfer
between subtasks, the source of subgoals, and integration with state abstraction remain
open and unclear. The connection between options and SMDPs provides only a foundation
for addressing these and other issues.

Finally, although this paper has emphasized temporally extended action, it is interesting
to note that there may be implications for temporally extended perception as well. It is
now common to recognize that action and perception are intimately related. To see the
objects in a room is not so much to label or locate them as it is to know what opportunities
they afford for action: a door to open, a chair to sit on, a book to read, a person to talk
to. If the temporally extended actions are modeled as options, then perhaps the models of
the options correspond well to these perceptions. Consider a robot learning to recognize
its battery charger. The most useful concept for it is the set of states from which it can
successfully dock with the charger. This is exactly the concept that would be produced
by the model of a docking option. These kinds of action-oriented concepts are appealing
because they can be tested and learned by the robot without external supervision, as we
have shown in this paper.

33

Sutton, Precup, & Singh (Revised)

Acknowledgements

The authors gratefully acknowledge the substantial help they have received from colleagues
who have shared their related results and ideas with us over the long period during which this
paper was in preparation, especially Amy McGovern, Ron Parr, Tom Dietterich, Andrew
Fagg, B. Ravindran, Manfred Huber, and Andy Barto. We also thank Leo Zelevinsky, Zsolt
Kalmár, Csaba Szepesvári, András Lörincz, Paul Cohen, Robbie Moll, Mance Harmon,
Sascha Engelbrecht, and Ted Perkins. This work was supported by NSF grant ECS-9511805
and grant AFOSR-F49620-96-1-0254, both to Andrew Barto and Richard Sutton. Doina
Precup also acknowledges the support of the Fulbright foundation. Satinder Singh was
supported by NSF grant IIS-9711753.

References

Araujo, E.G., Grupen, R.A. (1996). Learning control composition in a complex environ-
ment. Proceedings of the Fourth International Conference on Simulation of Adaptive
Behavior , pp. 333-342.

Asada, M., Noda, S., Tawaratsumida, S., Hosada, K. (1996). Purposive behavior acquisition
for a real robot by vision-based reinforcement learning. Machine Learning 23:279–303.

Barto, A.G., Bradtke, S.J., Singh, S.P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence 72:81–138.

Boutilier, C., Brafman, R.I., Geib, C. (1997). Prioritized goal Decomposition of Markov
decision processes: Toward a synthesis of classical and decision theoretic planning.
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
pp. 1165–1162.

Bradtke, S.J., and Duff, M.O. (1995). Reinforcement learning methods for continuous-
time Markov decision problems. Advances in Neural Information Processing Systems
8:393–400. MIT Press, Cambridge, MA.

Brafman, R.I., Moshe, T. (1997). Modeling agents as qualitative decision makers. Artificial
Intelligence 94(1):217-268.

Brockett, R.W. (1993). Hybrid models for motion control systems. In Essays in Control:
Perspectives in the Theory and and its Applications, pp. 29–53. Birkhäuser, Boston.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE journal of
Robotics and Automation, 14–23.

Chrisman, L. (1994). Reasoning about probabilistic actions at multiple levels of granularity,
AAAI Spring Symposium: Decision-Theoretic Planning, Stanford University.

Colombetti, M., Dorigo, M., Borghi, G. (1996). Behavior analysis and training: A methodol-
ogy for behavior engineering. IEEE Transactions on Systems, Man, and Cybernetics-
Part B 26(3):365–380

34

Between MDPs and Semi-MDPs (Revised)

Crites, R.H., and Barto, A.G. (1996). Improving elevator performance using reinforcement
learning. Advances in Neural Information Processing Systems 9:1017–1023. MIT
Press, Cambridge, MA.

Dayan, P. (1993). Improving generalization for temporal difference learning: The successor
representation. Neural Computation 5:613–624.

Dayan, P., Hinton, G.E. (1993). Feudal reinforcement learning. Advances in Neural Infor-
mation Processing Systems 5:271–278. San Mateo, CA: Morgan Kaufmann.

de Kleer, J., Brown, J.S. (1984). A qualitative physics based on confluences. Artificial
Intelligence 24(1–3):7–83.

Dean, T., Kaelbling, L.P., Kirman, J., Nicholson, A. (1995). Planning under time con-
straints in stochastic domains. Artificial Intelligence 76(1–2): 35–74.

Dean, T., Lin, S.-H. (1995). Decomposition techniques for planning in stochastic domains.
Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence, pp. 1121–1127. Morgan Kaufmann. See also Technical Report CS-95-10,
Brown University, Department of Computer Science, 1995.

Dejong, G.F. (1994). Learning to plan in continuous domains. Artificial Intelligence 65:71–
141.

Dietterich, T.G. (1998). The MAXQ method for hierarchical reinforcement learning. In
Machine Learning: Proceedings of the Fifteenth International Conference, pp. 118–
126. Morgan Kaufman.

Dorigo, M., Colombetti, M. (1994). Robot shaping: Developing autonomous agents through
learning. Artificial Intelligence 71:321–370.

Drescher, G.L. (1991). Made Up Minds: A Constructivist Approach to Artificial Intelli-
gence. MIT Press.

Drummond, C. (1998). Composing functions to speed up reinforcement learning in a chang-
ing world. Proceedings of the Tenth European Conference on Machine Learning.
Springer-Verlag.

Fikes, R.E., Hart, P.E., Nilsson, N.J. (1972). Learning and executing generalized robot
plans. Artificial Intelligence 3:251–288.

Geffner, H., Bonet, B. (in preparation). High-level planning and control with incomplete
information using POMDPs.

Greiner, R., Jurisica, I. (1992). A statistical approach to solving the EBL utility problem,
Proceedings AAAI-92.

Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (1993). Hybrid Systems. Springer-
Verlag, New York.

Haigh, K.Z., Shewchuk, J., Veloso, M.M. (1997). Exploring geometry in analogical route
planning. Journal of Experimental and Theoretical Artificial Intelligence 9:509–541.

35

Sutton, Precup, & Singh (Revised)

Hansen, E. (1994). Cost-effective sensing during plan execution. Proc. AAAI-94, pp. 1029–
1035.

Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L.P., Dean, T. (1998). Hierarchi-
cal solution of Markov decision processes using macro-actions. In: Uncertainty in
Arificial Intelligence: Proceedings of the Fourteenth Conference, pp. 220-229.

Huber, M., Grupen, R.A. (1997). A feedback control structure for on-line learning tasks.
Robotics and Autonomous Systems 22(3-4):303-315.

Iba, G.A. (1989). A heuristic approach to the discovery of macro-operators. Machine
Learning 3:285–317.

Jaakkola, T., Jordan, M.I., and Singh, S.P. (1994). On the convergence of stochastic itera-
tive dynamic programming algorithms. Neural Computation 6(6):1185–1201.

Kaelbling, L.P. (1993). Hierarchical learning in stochastic domains: Preliminary results.
Proc. of the Tenth Int. Conf. on Machine Learning, pp. 167–173, Morgan Kaufmann.

Kalmár, Z., Szepesvári, C., Lörincz, A. (1997). Module based reinforcement learning for
a real robot. Proceedings of the Sixth European Workshop on Learning Robots,
pp. 22–32.

Kalmár, Z., Szepesvári, C., Lörincz, A. (in preparation). Module based reinforcement
learning: Experiments with a real robot.

Korf, R.E. (1985). Learning to Solve Problems by Searching for Macro-Operators. Boston:
Pitman Publishers.

Korf, R.E. (1987). Planning as search: A quantitative approach. Artificial Intelligence
33:65–88.

Koza, J.R., Rice, J.P. (1992). Automatic programming of robots using genetic program-
ming. Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 194–
201.

Kuipers, B.J. (1979). Commonsense knowledge of space: Learning from experience. Proc.
IJCAI-79, pp. 499–501.

Laird, J.E., Rosenbloom, P.S., Newell, A. (1986). Chunking in SOAR: The anatomy of a
general learning mechanism. Machine Learning 1:11–46.

Levinson, R., Fuchs, G. (1994). A pattern-weight formulation of search knowledge. Tech-
nical Report UCSC-CRL-94-10, University of California at Santa Cruz.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis,
Carnegie Mellon University. Technical Report CMU-CS-93-103.

Maes, P. (1991). A bottom-up mechanism for behavior selection in an artificial creature.
Proceedings of the First International Conference on Simulation of Adaptive Behavior.
MIT Press.

Maes, P., Brooks, R. (1990). Learning to coordinate behaviors. Proceedings of AAAI-90,
pp. 796–802.

36

Between MDPs and Semi-MDPs (Revised)

Mahadevan, S., Connell, J. (1992). Automatic programming of behavior-based robots using
reinforcement learning. Artificial Intelligence 55(2-3):311–365.

Mahadevan, S., Marchalleck, N., Das, T., Gosavi, A. (1997). Self-improving factory simu-
lation using continuous-time average-reward reinforcement learning. Proceedings of
the 14th International Conference on Machine Learning.

Marbach, P., Mihatsch, O., Schulte, M., Tsitsiklis, J.N. (1998). Reinforcement learning for
call admission control in routing in integrated service networks. Advances in Neural
Information Processing Systems 10. San Mateo: Morgan Kaufmann.

Mataric, M.J. (1997). Behavior-based control: Examples from navigation, learning, and
group behavior. Journal of Experimental and Theoretical Artificial Intelligence 9(2–
3).

McGovern, A., Sutton, R.S., Fagg, A.H. (1997). Roles of macro-actions in accelerating
reinforcement learning. Proceedings of the 1997 Grace Hopper Celebration of Women
in Computing.

McGovern, A., Sutton, R.S., (1998). Macro-actions in reinforcement learning: An empir-
ical analysis. Technical Report 98-70, University of Massachusetts, Department of
Computer Science.

Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kaelbling, L.P., Dean, T., Boutilier,
C. (in preparation). Solving very large weakly coupled Markov decision processes.

Millán, J. del R. (1994). Learning reactive sequences from basic reflexes. Proceedings of the
Third International Conference on Simulation of Adaptive Behavior , pp. 266–274.

Minton, S. (1988). Learning Search Control Knowledge: An Explanation-based Approach.
Kluwer Academic.

Minton, S. (1990). Quantitative results concerning the utilty of explanation-based learning.
Artificial Intelligence 42(2-3):363-391.

Moore, A.W. (1994). The parti-game algorithm for variable resolution reinforcement learn-
ing in multidimensional spaces, Advances in Neural Information Processing Systems
7:711–718, MIT Press, Cambridge, MA.

Newell, A., Simon, H.A. (1972). Human Problem Solving. Prentice-Hall, Englewood Cliffs,
NJ.

Nie, J., and Haykin, S. (to appear). A Q-learning based dynamic channel assignment
technique for mobile communication systems. IEEE Transactions on Vehicular Tech-
nology.

Nilsson, N.J. (1973). Hierarchical robot planning and execution system. SRI AI Center
Technical Note 76, SRI International, Inc., Menlo Park, CA.

Nilsson, N. (1994). Teleo-reactive programs for agent control. Journal of Artificial Intelli-
gence Research, 1:139–158.

37

Sutton, Precup, & Singh (Revised)

Parr, R., Russell, S. (1998). Reinforcement learning with hierarchies of machines. Advances
in Neural Information Processing Systems 11. MIT Press, Cambridge, MA.

Parr, R. (in preparation). Hierarchical control and learning for Markov decision processes,
chapter 3.

Precup, D., Sutton, R.S. (1997). Multi-time models for reinforcement learning. Proceedings
of the ICML’97 Workshop on Modelling in Reinforcement Learning.

Precup, D., Sutton, R.S. (1998). Multi-time models for temporally abstract planning.
Advances in Neural Information Processing Systems 11. MIT Press, Cambridge,
MA.

Precup, D., Sutton, R.S., Singh, S.P. (1997). Planning with closed-loop macro actions.
Working notes of the 1997 AAAI Fall Symposium on Model-directed Autonomous
Systems.

Precup, D., Sutton, R.S., Singh, S.P. (1998). Theoretical results on reinforcement learning
with temporally abstract options. Proceedings of the Tenth European Conference on
Machine Learning. Springer-Verlag.

Puterman, M. L. (1994). Markov Decision Problems. Wiley, New York.

Rosenstein, M.T., Cohen, P.R. (1998). Concepts from time series. Proceedings of the
Fifteenth National Conference on Artificial Intelligence.

Ring, M. (1991). Incremental development of complex behaviors through automatic con-
struction of sensory-motor hierarchies. Proceedings of the Eighth International Con-
ference on Machine Learning, pp. 343–347, Morgan Kaufmann.

Rudy, D., Kibler, D. (1992). Learning episodes for optimization. Proceedings of the Ninth
International Conference on Machine Learning, Morgan Kaufmann.

Sacerdoti, E.D. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence
5:115–135.

Sastry, S. (1997). Algorithms for design of hybrid systems. Proceedings of the International
Conference of Information Sciences.

Say, A.C.C., Selahattin, K. (1996). Qualitative system identification: Deriving structure
from behavior. Artificial Intelligence 83(1):75–141.

Schmidhuber, J. (1991). Neural Sequence Chunkers. Technische Universitat Munchen TR
FKI-148-91.

Simmons, R., Koenig, S. (1995). Probabilistic robot navigation in partially observable envi-
ronments. Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pp. 1080–1087. Morgan Kaufmann.

Singh, S.P. (1992a). Reinforcement learning with a hierarchy of abstract models. Pro-
ceedings of the Tenth National Conference on Artificial Intelligence, pp. 202–207.
MIT/AAAI Press.

38

Between MDPs and Semi-MDPs (Revised)

Singh, S.P. (1992b). Scaling reinforcement learning by learning variable temporal resolution
models. Proceedings of the Ninth International Conference on Machine Learning,
pp. 406–415, Morgan Kaufmann.

Singh, S.P. (1992c). Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning 8(3/4):323–340.

Singh, S.P. (1992d). The efficient learning of multiple task sequences. In Advances in
Neural Information Processing Systems 4:251–258, Morgan Kaufmann.

Singh S.P., Barto A.G., Grupen R.A., Connolly C.I. (1994). Robust reinforcement learning
in motion planning. Advances in Neural Information Processing Systems 6:655–662,
Morgan Kaufmann.

Singh, S.P., Bertsekas, D. (1997). Reinforcement learning for dynamic channel allocation
in cellular telephone systems. Advances in Neural Information Processing Systems
9:974–980. MIT Press.

Sutton, R.S. (1995). TD models: Modeling the world at a mixture of time scales. Pro-
ceedings of the Twelfth International Conference on Machine Learning, pp. 531–539,
Morgan Kaufmann.

Sutton, R.S., Barto, A.G. (1998). Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Sutton, R.S., Pinette, B. (1985). The learning of world models by connectionist networks.
Proc. of the Seventh Annual Conf. of the Cognitive Science Society, pp. 54-64.

Tambe, M., Newell A., and Rosenbloom, P. (1990). The problem of expensive chunks and
its solution by restricting expressiveness. Machine Learning 5(3):299–348.

Tenenberg, J. Karlsson, J., Whitehead, S. (1992). Learning via task decomposition. Proc.
Second Int. Conf. on the Simulation of Adaptive Behavior. MIT Press.

Tesauro, G.J. (1995). Temporal difference learning and TD-Gammon. Communications of
the ACM 38:58–68.

Thrun, T., Schwartz, A. (1995). Finding structure in reinforcement learning. Advances in
Neural Information Processing Systems 7. San Mateo: Morgan Kaufmann.

Tóth, G.J., Kovács, S., Lörincz, A. (1995). Genetic algorithm with alphabet optimization.
Biological Cybernetics 73:61–68.

Uchibe, M., Asada, M., Hosada, K. (1996). Behavior coordination for a mobile robot using
modular reinforcement learning. Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1329–1336.

Watkins, C.J.C.H. (1989). Learning with Delayed Rewards. PhD thesis, Cambridge Uni-
versity.

Wiering, M., Schmidhuber, J. (1997). HQ-learning. Adaptive Behavior 6(2).

Wixson, L.E. (1991). Scaling reinforcement learning techniques via modularity, Proc.
Eighth Int. Conf. on Machine Learning, pp. 368–372, Morgan Kaufmann.

39

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1998

	Between MDPs and Semi-MDPs:Learning, Planning, and Representing Knowledge at Multiple Temporal Scales
	Richard S. Sutton
	Recommended Citation

	jair.dvi

