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Abstract

■ Research on the cognitive neuroscience of aging has identi-

fied myriad neurocognitive processes that are affected by the

aging process, with a focus on identifying neural correlates of

cognitive function in aging. This study aimed to test whether

internetwork connectivity among six cognitive networks is sen-

sitive to age-related changes in neural efficiency and cognitive

functioning. A factor analytic connectivity approach was used to

model network interactions during 11 cognitive tasks grouped

into four primary cognitive domains: vocabulary, perceptual

speed, fluid reasoning, and episodic memory. Results showed

that both age and task domain were related to internetwork

connectivity and that some of the connections among the net-

works were associated with performance on the in-scanner

tasks. These findings demonstrate that internetwork connec-

tivity among several cognitive networks is not only affected by

aging and task demands but also shows a relationship with task

performance. As such, future studies examining internetwork

connectivity in aging should consider multiple networks and

multiple task conditions to better measure dynamic patterns

of network flexibility over the course of cognitive aging. ■

INTRODUCTION

Studies of the cognitive neuroscience of aging have con-

sistently found deleterious effects of aging on cognitive

status and neural integrity and efficiency (Grady, 2008;

Hedden & Gabrieli, 2004). Over the course of adulthood,

there exists a gradual decline in memory function, execu-

tive function, working memory, and attentional resources

and a concomitant progression of neural degeneration,

resulting in thinner cortex, white matter loss, and patterns

of hyper- and hyporecruitment of brain regions. As such,

a primary focus of research in this field has centered on

identifying neural correlates of cognitive function in older

adulthood. Recent studies have combined multiple be-

havioral and imaging modalities to investigate cognitive

decline in aging and have found myriad neural metrics

that may predict cognitive function in the context of aging

(Hedden et al., 2016).

Recently neuroimaging research on cognitive aging has

begun to utilize functional connectivity analyses to mea-

sure network-scale differences in neural recruitment be-

tween age groups. Of particular note is the emphasis

placed on a neural network known as the default mode

network (DMN), which is thought to be engaged primar-

ily during rest and mind-wandering thought (Greicius,

Supekar, Menon, & Dougherty, 2009; Laird et al., 2009;

Dosenbach et al., 2007; Esposito et al., 2006). Although this

network has traditionally been studied during resting-

state fMRI scans, recent studies have examined how this

network is engaged during a cognitive task and have

found that it “decouples” from task-related networks dur-

ing performance of a task, such that correlated activity

between a task-relevant network and the task-irrelevant

DMN drops considerably in the presence of a task (Prakash,

Heo, Voss, Patterson, & Kramer, 2012; Sala-Llonch et al.,

2012; Grady et al., 2010; Fox et al., 2005). This network-

based approach to fMRI analysis has gained traction within

special populations, such as older adults (OAs) with and

without neurodegenerative disease, as it allows exam-

ination of complex large-scale networks known to be

structurally affected by brain aging and dementia (Fujiyama

et al., 2016; Hirsiger et al., 2016; Jones et al., 2016; Liu et al.,

2016; Suckling et al., 2015). Importantly, unlike younger

adults, OAs do not show the same degree of anti-

correlation between the DMN and task-specific networks,

and this lack of anticorrelation between networks nega-

tively correlates with performance on the task (Prakash

et al., 2012; Miller et al., 2008). These findings suggest that

this relatively greater connectivity between these two

networks may underlie age-related differences in task

performance.

Although this type of connectivity research has primar-

ily focused on the DMN and executive function-related

task networks (Damoiseaux, 2017; Prakash et al., 2012;

Grady et al., 2010; Uddin, Kelly, Biswal, Castellanos, &

Milham, 2009), more recent studies have broadened their

study of internetwork connectivity to examine network
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interactions across multiple cognitive networks. Specif-

ically, interactions between the DMN and the dorsal at-

tention network (DAN) have shown to be modulated by

age and cognitive state (Esposito et al., 2018; Damoiseaux,

2017; Dixon et al., 2017; Amer, Anderson, Campbell,

Hasher, & Grady, 2016; Spreng, Stevens, Viviano, & Schacter,

2016), and this interaction may be further coordinated by

the frontoparietal control (FP) network (Avelar-Pereira,

Bäckman, Wåhlin, Nyberg, & Salami, 2017; Grady, Sarraf,

Saverino, & Campbell, 2016; Spreng, Sepulcre, Turner,

Stevens, & Schacter, 2013). In addition, another study

found the salience (SAL) network to be critically involved

in coordinating the DMN and central executive networks

and found that this pattern was significantly disrupted in

individuals with mild cognitive impairment (Chand, Wu,

Hajjar, & Qiu, 2017).

In this vein, several studies have attempted to expand

this study of internetwork connectivity to the whole

brain by examining system segregation or internetwork

connectivity across many neural networks. Most of these

studies have utilized resting-state fMRI data to show that

OAs overall show greater between-network connections

than younger adults (King et al., 2018; Ferreira et al.,

2016; Geerligs, Renken, Saliasi, Maurits, & Lorist, 2015;

Chan, Park, Savalia, Petersen, & Wig, 2014; Geerligs,

Maurits, Renken, & Lorist, 2014) and generally show less

segregated/modular network organization (Geerligs

et al., 2015; Song et al., 2014). Furthermore, some of these

studies found a relationship between internetwork con-

nectivity or segregation and performance on cognitive

tasks (King et al., 2018; Chan et al., 2014; Geerligs et al.,

2014), suggesting that this internetwork connectivity may

underlie some of the variability in cognitive performance

in the context of aging. However, although these larger-

scale network studies provide critical information about

whole-brain network connectivity across the adult life-

span, only one of the studies mentioned above examined

functional connectivity during performance of a cognitive

task (Geerligs et al., 2014). Although some of the other

studies make extensions to cognitive performance out-

side the scanner or relate resting-state connectivity data

to BOLD activation during cognitive tasks (Chan, Alhazmi,

Park, Savalia, & Wig, 2017), none of the other studies

examine internetwork connectivity across the whole

brain during a cognitive challenge.

Thus, to bridge the findings from studies examining

connectivity among a few networks during a cognitive

task and those from studies examining internetwork con-

nectivity across the whole brain at rest, this study exam-

ined between-network connectivity across six cognitive

networks (DMN, DAN, FP, cingulo-opercular [CO], SAL,

and memory) during 11 cognitive tasks corresponding

to four primary cognitive domains (vocabulary, percep-

tual speed, fluid reasoning, and episodic memory).

Based on prior studies showing reductions in network

decoupling during cognitive task performance and gener-

ally greater connectivity between networks in aging, the

hypotheses in this study were as follows: (1) Between-

network connectivity patterns among these predefined

cognitive networks will be affected by both task type

and participant age, and (2) connectivity between specific

pairs of cognitive networks will account for significant

variability in task performance. Because task relevance

of networks will be in some ways determined by task

domain, we expect patterns of internetwork connectivity

to differ by domain. For example, although the DMN

and the memory network may be irrelevant for FLUID

and SPEED tasks, they may be relevant for VOCAB and

MEM tasks, suggesting that patterns of interactions with

these networks will likely be affected by task domain. On

the other hand, networks such as the FP network and

the CO network may be more broadly implicated in ex-

ecutive control and thus might be more generally rele-

vant during all cognitive tasks. Furthermore, the SAL

network has been implicated as one that might coordi-

nate correlated activity between task-relevant and task-

irrelevant networks, and thus, its task relevance may

not be as likely to differ by task type.

Regarding Hypothesis 1, we expect that connectivity

between task-relevant and task-irrelevant networks will

be weaker than connectivity from task-relevant networks

to other task-relevant networks. Because past studies on

internetwork connectivity during a cognitive task have

primarily used executive function tasks, these studies

have found that task-relevant networks (i.e., FP, DAN)

tend to show negative correlations with task-irrelevant

networks (frequently the DMN) during a task and that ag-

ing disrupts this pattern (Esposito et al., 2018; Avelar-

Pereira et al., 2017; Damoiseaux, 2017; Dixon et al., 2017;

Amer et al., 2016; Grady et al., 2010, 2016; Spreng et al.,

2013, 2016; Prakash et al., 2012; Sala-Llonch et al., 2012;

Fox et al., 2005). As such, the task-specific hypotheses

of this study are as follows: (1) During FLUID and SPEED

tasks, connections between task-relevant (FP, DAN, CO)

and task-irrelevant (DMN) will be reduced and connec-

tions among task-relevant networks will be increased;

and (2) during VOCAB and MEM tasks, there will be

fewer differences in connections between networks,

because the DMN and the memory network (considered

task-irrelevant in FLUID/SPEED tasks) may in these tasks

be task relevant and implicated in mnemonic processing.

METHODS

Sample

The sample for this study came from participants who

completed the baseline visit for the Reference Ability

Neural Network study (n = 426; Stern et al., 2014). All

participants were native English speakers, right-handed,

free of MRI contraindications, and read at a fourth-grade

reading level or above. Screening was performed before

enrollment to ensure that no participants had any psycho-

logical or medical conditions that could affect cognitive
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function and that OAs did not meet criteria for dementia

or mild cognitive impairment at baseline. Age was tri-

chotomized to enable testing of moderation by age,

resulting in three age groups: young adults (YAs; age =

20–39 years, n = 118), middle-aged adults (MAs; age =

40–60 years,n=131), andOAs (age=61+years,n=177).

For the present analyses, the following additional in-

clusion criteria were established: completion of all 11

in-scanner tasks (n = 338; YA n = 96, MA n = 110, OA

n = 132) and less than 30% motion artifact data removal

(scrubbing; Parkes, Fulcher, Yücel, & Fornito, 2018; Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012) within each

of the four domain time series (n = 312; YA n = 96, MA

n = 103, OA n = 113). Furthermore, one additional in-

clusion criteria concerned appropriate fit of the planned

models and is detailed further alongside the analysis

methodology described below. As a result, the balanced

sample utilized in the analyses below was composed of

142 (YA n = 45, MA n = 49, OA n = 48) healthy adults

between the ages of 20 and 80 (M = 50.75, SD = 17.335)

who met all inclusion criteria.

In-scanner Cognitive Tasks

The cognitive variables included in this study are com-

posed of their performance on tasks completed during

the fMRI scan. The in-scanner tasks were designed to

measure performance within each of the four reference

abilities: vocabulary (VOCAB: synonyms and antonyms),

perceptual speed (SPEED: digit symbol, letter compari-

son, pattern comparison), fluid reasoning (FLUID: paper

folding, matrix reasoning, and letter sets), and episodic

memory (MEM: logical memory, word order, and paired

associates; for further information on tasks, please see

Razlighi, Habeck, Barulli, & Stern, 2017; Stern et al., 2014).

In the vocabulary domain, the synonyms and antonyms

tasks required participants to select a synonym/antonym

(respectively) for a selected word from among four dif-

ferent options displayed on the same screen (15 trials

per task). In the speed domain, the digit symbol task re-

quired participants to examine a digit symbol code table

and determine whether a digit symbol pair on the sample

screen was correct (90 trials), and the letter and pattern

comparison tasks required participants to view a pair of

strings of letters or figures composed of varying numbers

of lines (respectively) presented simultaneously and indi-

cate whether or not they were identical (60 trials per task).

In the fluid domain, the paper-folding task required par-

ticipants to select from five images one that represented

the pattern of holes that would result from a set of folds

in a piece of paper through which a hole is punched, the

matrix reasoning task required participants to recognize

a pattern from a series of pictures and identify the last

missing piece of the pattern from among eight options,

and the letter sets task required participants to identify

which of a series of five sets of letters violated a rule ex-

pressed by the other four sets (7–18 self-paced trials for

each FLUID task). In the memory domain, the logical

memory task required participants to read a story one or

two sentences at a time and then answer detailed four-

choice multiple-choice questions about the story (two

stories, 10 questions per story), the word order task

required participants to view a series of 12 words then

later indicate which of four words immediately followed

a probe word (10 probe trials), and the paired associates

task required participants to view six pairs of words then

indicate which of four options was originally paired with

the probe word (two lists of pairs, six probe trials per list).

One task, the picture-naming task from the VOCAB ref-

erence ability, was not included in the present analyses

due to excessive in-scanner motion from participants

speaking their responses aloud during the scanned task.

Performance on VOCAB, FLUID, and MEM tasks is

measured by the number of correct responses, whereas

performance on SPEED tasks is measured by the average

correct RT. To appropriately compare performance

across these four domains, behavioral data were z-scored

such that each domain score represents standardized

deviation from the mean domain score of the entire set

of participants—positive values represent behavioral

performance (accuracy or RT) values above the normal

mean, whereas negative values represent behavioral

performance values below the normal mean. As such, for

VOCAB, FLUID, and MEM tasks, positive z scores reflect

performance that is better (higher accuracy) than the

mean, whereas for SPEED tasks, negative z scores reflect

performance that is better (faster) than the mean.

fMRI Scan Parameters

This study collected fMRI scans during the in-scanner

tasks mentioned above. All participants completed these

scans on a 3.0-T Philips Achieva Magnet over the course

of two 2-hr MR imaging sessions. T1-weighted images

of the whole brain were acquired for each participant

with a magnetization prepared rapid gradient-echo

sequence with the following parameters: echo time/

repetition time = 3/6.5 msec, field of view = 256 mm,

flip angle = 8°, in-plane resolution = 256 × 256 voxels,

slice thickness/gap = 1/0 mm, slices = 180. fMRI BOLD

scans were collected during each of the 11 in-scanner

tasks mentioned above with the following parameters:

echo time/repetition time = 20/2000 msec; field of view =

240 mm; flip angle = 72°; in-plane resolution = 112 ×

112 voxels; slice thickness/gap = 3/0 mm; slices = 41.

fMRI Data Processing

Images were preprocessed using an in-house developed

native space method (Razlighi et al., 2014). Briefly, slice-

timing correction was performed using the FSL slice-

timer tool. We then usedMCFLIRT (motion correction tool

in the FSL package; Jenkinson, Beckmann, Behrens,

Woolrich, & Smith, 2012) to register all volumes to a
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reference image (Jenkinson, Bannister, Brady, & Smith,

2002). The reference image was generated by registering

(6 df, 256 bins mutual information, and sinc interpola-

tion) all volumes to the middle volume and averaging

them. We then used the method described in Power

et al. (2012) to calculate framewise displacement

(FWD) from the six motion parameters and root mean

square difference (RMSD) of the BOLD percentage signal

in the consecutive volumes for each participant. To be

conservative, we lowered the threshold of our RMSD

to 0.3% (it was originally suggested to be 0.5%). RMSD

was computed on the motion-corrected volumes before

temporal filtering. The contaminated volumes were de-

tected by the criteria FWD > 0.5 mm or RMSD > 0.3%.

Identified contaminated volumes were replaced with

new volumes generated by linear interpolation of adja-

cent volumes. Volume replacement was done before

bandpass filtering (Carp, 2013). The motion-corrected

signals were passed through a bandpass filter with the cut-

off frequencies of 0.01 and 0.09 Hz. We used flsmaths–

bptf to do the filtering in this study ( Jenkinson et al.,

2012). Finally, we residualized the motion-corrected,

scrubbed, and temporally filtered volumes by regressing

out the FWD, RMSD, left and right hemisphere white

matter, and lateral ventricular signals (Birn, Diamond,

Smith, & Bandettini, 2006).

T1 image segmentation was done using FreeSurfer

(Fischl et al., 2002, 2004; Dale, Fischl, & Sereno, 1999)

and visually checked for any inaccuracies. In the event

that we observed any inaccuracy in the FreeSurfer seg-

mentation, we made corrections using the FreeSurfer

provided guidelines for troubleshooting data. The coor-

dinates of the 264 putative functional nodes derived from

a brainwide graph described by Power and colleagues

(2011) were then transferred to each participant’s T1

space via nonlinear registration of the participant’s struc-

tural scan to the Montreal Neurological Institute template

using the ANTS software package. A spherical mask with

10-mm radius, centered at each transferred coordinate,

was generated and intersected with the FreeSurfer gray

matter mask to obtain the ROI mask for the 264 func-

tional nodes. An intermodal, intraparticipant, rigid body

registration of fMRI reference image and T1 scan was

performed with FLIRT with 6 df, normalized mutual infor-

mation as the cost function (Jenkinson & Smith, 2001),

and used to transfer all ROI masks from T1 space to

fMRI space. These transferred ROI masks were used to

average all the voxels within each mask to obtain a single

fMRI time series for each node.

Functional connectivity time-series data were then

extracted from each of the 264 coordinate-based ROIs

within each participant’s preprocessed fMRI task scans.

Six networks were preselected for analysis based on their

role in cognitive processes identified in previous studies

and as outlined by the Power et al. (2011) coordinate

system: FP network (25 ROIs), CO network (14 ROIs),

DAN (11 ROIs), memory network (MEM; 5 ROIs), SAL

network (18 ROIs), and DMN (58 ROIs). Time-series data

were then concatenated by domain, yielding four sets of

time-series data that were modeled separately as blocked

designs: VOCAB (concatenated synonyms and antonyms

data; 388 volumes), SPEED (concatenated digit symbol,

letter comparison, and pattern comparison data; 595 vol-

umes), FLUID (concatenated paper folding, matrix rea-

soning, and letter sets data; 1290 volumes), and MEM

(concatenated logical memory, word order, and paired

associates data; 517 volumes).

Analytic Methodology

To model network-level time-series interactions, a factor

analytic functional connectivity methodology was uti-

lized. Data were analyzed in R using a structural equation

modeling approach, model-implied instrumental variable

estimation (Bollen, 1996, 2001), appropriate for high-

dimensional data (MIIVsem; https://cran.r-project.org/

package=MIIVsem; Fisher, Bollen, Gates, & Rönkkö,

2017). This approach is designed for robust estimation of

high-dimensional structural equation models and has

recently been extended to handle individual-level multi-

variate time-series data (Fisher, Bollen, & Gates, in press).

Furthermore, this approach allows for the estimation of

variance and covariance parameters of network time

series along with bootstrap standard errors. Each indi-

vidual’s ROI-level time-series data from the 131 ROIs re-

flecting the networks selected above was loaded onto

the corresponding predefined network latent factors,

resulting in a six-factor model estimated at the par-

ticipant level, where the primary outcome measures

were correlations between the six network factors (see

Figure 1). This approach is not only a robust technique

for modeling repeated measures at the participant level

but also represents a more flexible method for model-

ing network-level time-series data in that it does not im-

pose group-level assumptions on the contributions of

each ROI with respect to network function. Thus, ROIs

are allowed to freely load on the latent network factors,

allowing participants to differ in the respective contribu-

tions of each ROI in the predefined networks and reduc-

ing the effect of any outliers on network time-series

estimation. This analysis was performed separately for

each cognitive domain of interest: VOCAB, SPEED,

FLUID, and MEM, resulting in four correlation matrices

of size 6 × 6 for each participant. Individual-level cor-

relation coefficients between latent network factors for

each of the four domains were then z-transformed and

exported to SPSS for MANOVA and correlational analy-

ses. The additional inclusion criterion referenced above

was valid estimation of the prespecified factor struc-

ture: To be included in the analyses, each participant

had to have valid data for the estimation of the factor

structure and correlations among factors. Although

variability in network architecture that deviates from

the prespecified criteria may be critical to examine, it
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was beyond the scope of the present analyses, and thus,

only participants whose network structure fit the struc-

ture that was prespecified based on empirically defined

network structures were included. Thus, after the data

were exported to SPSS, all participants who had errors

related to computation of latent factor variances during

factor structure estimation were removed to ensure that

only participants with valid estimation of the proposed

factor structure were included in the analyses.

To explore the effects of specific connection (within

participants: i.e., FP–DMN), cognitive domain (within

participants: VOCAB, SPEED, FLUID, and MEM), age

(between participants: YA, MA, and OA), and their inter-

actions on internetwork correlations, multivariate analyses

of variance were conducted. Follow-up Spearman correla-

tional analyses were then conducted to test for any rela-

tionship between internetwork connectivity and task

performance. Because of the exploratory nature of this

analysis, a Spearman correlational approach was utilized

over a Pearson correlational approach to test for robust

monotonic relationships between connectivity and task

performance without making any assumptions about the

linearity of this relationship (i.e., Geerligs et al., 2014,

2015). In the first set of correlational analyses, Spearman

correlational tests were conducted across the entire age

range. Next, similar to previous studies assessing the

relationship between functional connectivity and cog-

nitive/behavioral outcomes (Ferreira et al., 2016; Geerligs

et al., 2015; Chan et al., 2014), partial Spearman cor-

relational tests were conducted with respect to age to

remove any pure effect of age on both task performance

and functional connectivity. Finally, Spearman cor-

relational tests were conducted within each of the three

age groups to examine whether these relationships

remained stable across the three age groups.

RESULTS

Participants

Demographic characteristics of participants in this study

are summarized in Table 1. To test whether this sub-

sample of the data set was in any way biased, indepen-

dent sample t tests were performed, ensuring no group

differences between excluded and included participants

on age ( p = .091), education ( p = .311), sex ( p =

.820), race ( p = .168), ethnicity ( p = .716), National

Adult Reading Test (NART) IQ ( p = .070), and SPEED

( p= .124) and MEM ( p= .265) tasks; however, included

participants tended to have higher scores on VOCAB

( p = .040) and FLUID ( p = .008) tasks. Furthermore,

chi-square tests were run for each inclusion/exclusion

step to ensure that exclusion of participants was not

biased by age group. Chi-square tests for each exclusion

step showed that, at enrollment, there were more OAs

than MAs or YAs ( p = .001) and more OAs were ex-

cluded for not having balanced fMRI task data ( p =

.002) and greater than 30% scrubbing ( p < .001); how-

ever, there was no bias in the number of participants

excluded for improper estimation of factor structure

Figure 1. Factor analytic connectivity analysis pipeline.
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( p = .383). Thus, more OAs were excluded for not com-

pleting all 11 in-scanner tasks and for having more data

scrubbed; however, participant dropout was similar for

proper estimation of factor structure.

Furthermore, to examine this effect of age on scrub-

bing across all 338 participants with balanced fMRI task

data, a 3 (Age group: YA, MA, OA) × 4 (task Domain:

VOCAB, SPEED, FLUID, MEM) MANOVA was used to

probe the effects of age and domain on percent scrub-

bing. Results showed that there was a main effect of

Age, F(2, 335) = 14.081, p < .001, and a main effect of

Domain, F(3, 1005)= 18.595, p< .001, but no interaction

between Domain and Age, F(6, 1005) = 1.646, p = .131.

The main effect of Age showed that OAs (M = 9.530%)

had more data scrubbed than both younger (M = 3.741%,

p < .001) and middle-aged (M = 5.906%, p = .003) par-

ticipants. Furthermore, more older (n = 19) and middle-

aged (n = 7) adults were excluded for having greater

than 30% scrubbing on any given task domain than

younger adults (n= 0). Themain effect of Domain showed

that FLUID (M = 8.420%) tasks had more data scrubbed

than VOCAB (M = 5.762%, p < .001), SPEED (M =

5.990%, p < .001), or MEM (M = 6.655%, p < .001) tasks.

However, of note is that FLUID tasks were the longest

task scans of the two scan sessions, so this greater pro-

portional amount of motion during these tasks could be

partly due to longer acquisition times.

MANOVA Results

Internetwork z-transformed correlation values were ana-

lyzed in a MANOVA to assess the independent and interac-

tive effects of participant Age (between participants), task

Domain (within participants), and Network pairing (within

participants) on internetwork correlations during perfor-

mance of the in-scanner tasks. Thus, the primary interac-

tions of interest were between age and network pairing,

domain and network pairing, and the three-way interac-

tion, as these would suggest that between-network corre-

lations are affected by participant Age, task Domain, or

both. Means for each connection for the aforementioned

two-way interactions are depicted in Figures 2 (Age ×

Connection) and 3 (Domain × Connection) and repre-

sent summaries of the data used for the MANOVA analy-

ses reported below. The values depicted are the mean

z-transformed correlation between two specific networks

for each age group (Figure 2) or task domain (Figure 3).

A 3 (Age group: YA, MA, and OA) × 4 (Domain: VOCAB,

SPEED, FLUID, and MEM) × 15 (internetwork Con-

nection) MANOVA revealed a significant main effect of

Domain, F(3, 417) = 8.577, p < .001, a main effect of

Connection, F(14, 1946) = 84.563, p < .001, an interac-

tion between Connection and Age group, F(28, 1946) =

4.024, p < .001, and an interaction between Domain and

Connection, F(42, 5838) = 12.309, p< .001. The main ef-

fect of Age, F(2, 139) = 0.116, p = .891, and the interac-

tions between Domain and Age group, F(6, 417) = 0.626,

p = .710, and Domain, Connection, and Age group, F(84,

5754) = 1.185, p = .120, were not significant. Post hoc

analyses of the interactions between connection and

age (see Table 2; Figure 2), and connection and domain

(see Table 3; Figure 3) showed a significant effect of

age and domain on internetwork connection strength

across many internetwork connections. In the interaction

Table 1. Demographic Characteristics of the Sample by Age Group: YA (20–39 years), MA (40–60 years), and OA (61–80 years)

YA MA OA Overall Test Statistic (p)

n 45 49 48 142 n/a

Age (SD) 29.73 (5.127) 50.69 (5.864) 70.50 (4.524) 50.75 (17.335) F(2, 139) = 711.735 (<.001)a

Education (SD) 16.16 (1.731) 15.71 (1.947) 16.90 (2.769) 16.25 (2.242) F(2, 139) = 3.554 (.031)b

NART IQ (SD) 114.81 (8.279) 115.93 (8.301) 121.66 (6.222) 117.54 (8.165) F(2, 134) =10.598 (<.001)c

% Female 61.4 49.0 57.5 55.7 χ2
2 = 1.527 (.466)

VOCAB (SD) −0.252 (0.846) 0.146 (0.122) 0.466 (0.792) 0.126 (0.875) F(2, 138) = 8.582 (<.001)d

SPEED (SD) −0.660 (0.690) −0.043 (0.712) 0.371 (0.748) −0.085 (0.825) F(2, 134) = 22.713 (<.001)a

FLUID (SD) 0.480 (0.740) 0.093 (0.748) −0.053 (0.740) 0.166 (0.770) F(2, 136) = 6.198 (.003)e

MEM (SD) 0.406 (0.667) 0.053 (0.594) −0.239 (0.631) 0.068 (0.678) F(2, 135) = 11.813 (<.001)e

Bolded test statistics indicate those that are significant, and bolded group level means highlight values that significantly differ by group.

aAll three groups significantly differ ( p < .05; Tukey Honestly Significant Difference [HSD]).

bOA > MA ( p < .05; Tukey HSD).

cOA > MA and YA ( p < .05; Tukey HSD).

dOA > YA.

eYA > MA and OA ( p < .05; Tukey HSD).
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between age and connection, OAs showed greater corre-

lations between MEM–FP and FP–SAL than YAs, whereas

YAs showed greater correlations between CO–SAL, MEM–

DMN, and SAL–DMN than OAs (see Table 2; Figure 2).

In the interaction between domain and connection, only

two connections did not show a significant effect of do-

main on the correlations between networks: MEM–SAL

and SAL–DMN. The 13 remaining connections showed

some alteration in correlation strength, depending on

the task domain—for example, the DAN–FP connection

Figure 3. Between-network

z-transformed correlation

coefficients for the interaction

between task domain and

connection. Asterisks

represent significance of

domain difference at each

connection.

Figure 2. Between-network

z-transformed correlation

coefficients for the interaction

between age and connection.

Asterisks represent significance

of age difference at each

connection.
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showed significantly greater connectivity during tasks of

fluid reasoning than tasks from any other domains (and

greater connectivity during memory tasks than vocabulary

tasks; see Table 3; Figure 3).

Task Performance Correlations

To assess any relationships between task perform-

ance and internetwork connectivity during the task,

Spearman correlational analyses were conducted. Full

correlation tables are presented for each of the three

correlational analyses presented here (see Tables 4–6);

however, only results that survive multiple comparisons

correction using the Benjamini–Hochberg procedure

across all correlations analyzed (60 per analysis—15 con-

nections × 4 domains) are discussed here. In the first set

of results, Spearman correlational tests were conducted

across the entire age range. Results showed that FLUID

task performance was negatively correlated with DAN–

MEM connectivity, such that better performance on

FLUID tasks was associated with a weaker correlation

between the latent factors reflecting the DAN and MEM

networks (see Table 4; r139 = −.312, p < .001). In the

second set of results, partial Spearman correlational tests

were conducted with respect to age to remove any pure

effect of age on both task performance and functional

connectivity. After removing the effect of age from these

relationships, the correlation between FLUID perfor-

mance and DAN–MEM connectivity remained significant

(see Table 5; r139 = −.285, p = .001). In the third set of

results, Spearman correlational tests were conducted

within each age group to examine whether these rela-

tionships remained stable across the three age groups.

Results from this analysis showed that, across the three

age groups, the only correlation that survived false discov-

ery rate correction was a negative relationship between

VOCAB task performance and FP–DMN connectivity in

YAs (see Table 6; r45 = −.483, p = .001).

DISCUSSION

Results from this study show that patterns of internet-

work connectivity during task performance are mod-

ulated by age and task domain. Specifically, age may

particularly affect connectivity directed from the memory

and SAL networks, such that OAs show greater connectiv-

ity between the memory network and a task-relevant net-

work (FP), altered connectivity directed from the SAL

network to task-relevant networks (CO and FP), and re-

duced connectivity from memory and SAL networks to

the DMN. However, the present set of results did not

replicate findings from previous studies showing reduced

anticorrelation between the DMN and the FP network in

OAs (Prakash et al., 2012; Miller et al., 2008)—in the in-

teraction between age and connection, there was no ef-

fect of age on connectivity between these two networks.

Table 2. MANOVA Results for Post hoc Analyses of the Interaction between Age Group (YA, MA, and OA) and Connection

(df between = 2, df within = 139 for All Statistics Reported)

Connection F p YA vs. MA YA vs. OA MA vs. OA

CO–DMN 0.202 .817 n/a n/a n/a

CO–MEM 2.635 .075 n/a n/a n/a

CO–FP 1.685 .189 n/a n/a n/a

CO–SAL 3.119 .047 0.131 (.277) 0.212 (.038) 0.081 (.597)

MEM–DMN 9.671 <.001 0.124 (.251) 0.337 (<.001) 0.214 (.016)

MEM–FP 7.351 .001 −0.044 (.764) −0.228 (.001) −0.184 (.010)

MEM–SAL 0.737 .481 n/a n/a n/a

FP–SAL 5.742 .004 −0.133 (.312) −0.309 (.003) −0.176 (.126)

FP–DMN 0.472 .625 n/a n/a n/a

SAL–DMN 5.914 .003 0.119 (.344) 0.292 (.002) 0.173 (.101)

DAN–CO 0.458 .634 n/a n/a n/a

DAN–MEM 0.798 .452 n/a n/a n/a

DAN–FP 1.767 .175 n/a n/a n/a

DAN–SAL 2.720 .069 n/a n/a n/a

DAN–DMN 1.201 .304 n/a n/a n/a

Contrasts are represented in columns 4–6 by the mean difference in z-transformed correlation coefficients between groups ( p value in parentheses).
Bolded values reflect mean differences that are statistically significant.
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Table 4. Correlation Table for Spearman Correlation Coefficient ( p Values in Parentheses) for the Relationship between Task

Performance in Each Domain and Each Internetwork Connection

VOCAB SPEED FLUID MEM

CO–DMN .033 (.701) .022 (.798) −.096 (.263) −.004 (.962)

CO–MEM .078 (.359) −.047 (.587) −.070 (.410) .024 (.781)

CO–FP −.021 (.804) .086 (.319) −.096 (.259) .064 (.459)

CO–SAL .017 (.841) −.152 (.076) .073 (.395) −.018 (.835)

MEM–DMN .048 (.571) .070 (.419) .229 (.007) .212 (.013)

MEM–FP −.014 (.869) .063 (.465) −.171 (.044) −.165 (.053)

MEM–SAL .172 (.041) .090 (.293) −.004 (.963) .068 (.429)

FP–SAL −.139 (.099) .085 (.323) −.220 (.009) −.040 (.644)

FP–DMN −.151 (.074) .076 (.379) −.189 (.026) .056 (.516)

SAL–DMN .227 (.007) −.014 (.868) .156 (.067) .055 (.523)

DAN–CO .120 (.156) −.039 (.654) −.001 (.993) .019 (.822)

DAN–MEM .120 (.158) −.093 (.280) −.312 (<.001)* −.115 (.178)

DAN–FP .104 (.218) .086 (.319) .201 (.018) −.050 (.560)

DAN–SAL −.075 (.376) .042 (.629) −.219 (.010) .077 (.370)

DAN–DMN .062 (.468) −.015 (.862) −.177 (.037) .114 (.182)

Bolded correlation coefficients represent those that are significant at p < .05; correlation coefficients with an asterisk represent those that survive
multiple comparison correction. VOCAB = Vocabulary; SPEED = Perceptual Speed; FLUID = Fluid Reasoning; MEM = Episodic Memory.

Table 5. Correlation Table for Spearman Correlation Coefficient ( p Values in Parentheses) for the Relationship between Task

Performance in Each Domain and Each Internetwork Connection after Controlling for Participant Age

VOCAB SPEED FLUID MEM

CO–DMN .009 (.919) −.022 (.802) −.100 (.250) −.056 (.521)

CO–MEM .007 (.934) −.131 (.132) .004 (.962) .080 (.361)

CO–FP .004 (.961) .045 (.609) −.033 (.709) .110 (.206)

CO–SAL .078 (.374) −.113 (.194) −.003 (.975) −.094 (.282)

MEM–DMN .075 (.388) .175 (.044) .177 (.042) .102 (.242)

MEM–FP −.054 (.540) −.080 (.361) −.183 (.035) −.094 (.280)

MEM–SAL .127 (.146) .079 (.365) .069 (.431) .094 (.282)

FP–SAL −.164 (.059) −.081 (.352) −.163 (.060) .038 (.666)

FP–DMN −.148 (.088) −.036 (.684) −.162 (.062) .003 (.975)

SAL–DMN .251 (.004) .114 (.191) .124 (.153) −.056 (.523)

DAN–CO .131 (.132) .050 (.568) −.025 (.777) −.024 (.786)

DAN–MEM .102 (.244) −.069 (.431) −.285 (.001)* −.064 (.465)

DAN–FP −.031 (.726) .007 (.937) .251 (.004) −.036 (.680)

DAN–SAL −.086 (.327) .056 (.520) −.211 (.015) .155 (.075)

DAN–DMN .062 (.477) .052 (.555) −.156 (.073) .032 (.712)

Bolded correlation coefficients represent those that are significant at p < .05; correlation coefficients with an asterisk represent those that survive
multiple comparison correction. VOCAB = Vocabulary; SPEED = Perceptual Speed; FLUID = Fluid Reasoning; MEM = Episodic Memory.

616 Journal of Cognitive Neuroscience Volume 31, Number 4



T
a
b
le

6
.
C
o
rr
e
la
ti
o
n
T
ab
le
fo
r
S
p
e
ar
m
an

C
o
rr
e
la
ti
o
n
C
o
e
ff
ic
ie
n
t
(
p
V
al
u
e
s
in

P
ar
e
n
th
e
se
s)

fo
r
th
e
R
e
la
ti
o
n
sh
ip

b
e
tw

e
e
n
T
as
k
P
e
rf
o
rm

an
ce

in
E
ac
h
D
o
m
ai
n
an
d
E
ac
h
In
te
rn
e
tw

o
rk

C
o
n
n
e
ct
io
n
b
y
P
ar
ti
ci
p
an
t
A
g
e
G
ro
u
p

(
Y
A
,
M
A
,
an
d
O
A
)

V
O
C
A
B

SP
E
E
D

F
LU

ID
M
E
M

Y
A

M
A

O
A

Y
A

M
A

O
A

Y
A

M
A

O
A

Y
A

M
A

O
A

C
O
–
D
M
N

.2
6
9
(.
0
7
4
)

−
.0
2
9
(.
8
4
3
)
−
.1
6
8
(.
2
5
9
)

.1
2
8
(.
4
2
6
)

−
.0
3
9
(.
7
8
9
)

−
.0
7
2
(.
6
2
9
)

−
.2
5
4
(.
0
9
6
)

−
.1
8
9
(.
1
9
8
)

.0
2
6
(.
8
6
3
)

−
.2
3
1
(.
1
3
2
)
−
.1
2
8
(.
3
8
8
)

.1
8
4
(.
2
2
1
)

C
O
–
M
E
M

.0
4
7
(.
7
5
8
)

.0
0
2
(.
9
9
1
)
−
.0
8
6
(.
5
6
6
)

−
.0
0
6
(.
9
7
2
)

−
.3
6
9
(.
0
0
9
)

.0
6
3
(.
6
7
3
)

.0
0
5
(.
9
7
5
)

−
.0
7
5
(.
6
1
1
)

−
.0
3
3
(.
8
2
5
)

.0
4
4
(.
7
7
5
)

.3
4
9
(.
0
1
5
)

−
.0
9
2
(.
5
4
4
)

C
O
–
F
P

−
.1
9
3
(.
2
0
5
)

−
.1
1
6
(.
4
2
9
)

.2
6
1
(.
0
7
7
)
−
.0
8
5
(.
5
9
6
)

.1
7
1
(.
2
3
9
)

−
.0
0
9
(.
9
5
3
)

−
.1
1
3
(.
4
6
6
)

.0
3
0
(.
8
3
9
)

−
.0
2
8
(.
8
5
1
)

−
.1
2
4
(.
4
2
2
)

.2
9
8
(.
0
4
0
)

.0
8
1
(.
5
9
4
)

C
O
–
S
A
L

.0
1
4
(.
9
2
8
)

−
.0
9
3
(.
5
2
4
)

.1
7
6
(.
2
3
5
)

.1
1
9
(.
4
5
7
)

−
0
.2
1
5
(.
1
3
7
)

−
.0
7
1
(.
6
3
3
)

.0
1
7
(.
9
1
4
)

−
.1
3
5
(.
3
5
9
)

.1
3
2
(.
3
7
6
)

−
.2
7
5
(.
0
7
0
)

.0
7
3
(.
6
2
0
)

−
.0
4
2
(.
7
8
2
)

M
E
M
–
D
M
N

.2
5
8
(.
0
8
7
)

.2
2
2
(.
1
2
4
)
−
.2
1
9
(.
1
4
0
)

.3
9
3
(.
0
1
1
)

.0
8
0
(.
5
8
6
)

.1
0
8
(.
4
7
0
)

.1
7
0
(.
2
7
0
)

.3
0
5
(.
0
3
5
)

−
.0
9
8
(.
5
1
1
)

.1
4
9
(.
3
3
5
)

.1
8
1
(.
2
1
9
)

.0
3
1
(.
8
3
7
)

M
E
M
–
F
P

−
.2
2
9
(.
1
3
0
)

−
.1
6
5
(.
2
5
6
)

.1
3
9
(.
3
5
1
)

.0
0
1
(.
9
9
4
)

−
.1
1
7
(.
4
2
2
)

−
.0
6
9
(.
6
4
3
)

−
.2
3
1
(.
1
3
2
)

−
.2
9
7
(.
0
4
1
)

.2
2
5
(.
1
2
9
)

−
.0
9
4
(.
5
4
2
)

.0
9
1
(.
5
4
1
)

−
.1
1
3
(.
4
5
4
)

M
E
M
–
S
A
L

.2
3
6
(.
1
1
9
)

.2
1
3
(.
1
4
1
)

.0
1
4
(.
9
2
4
)

.1
9
0
(.
2
3
5
)

−
.0
6
5
(.
6
5
9
)

.0
9
9
(.
5
0
9
)

−
.0
4
6
(.
7
6
9
)

.0
0
8
(.
9
5
7
)

.1
5
8
(.
2
9
0
)

−
.1
0
7
(.
4
9
1
)

.1
9
1
(.
1
9
4
)

.2
4
5
(.
1
0
1
)

F
P
–
S
A
L

−
.2
1
8
(.
1
5
0
)

−
.2
0
5
(.
1
5
7
)
−
.1
4
7
(.
3
2
5
)

.1
6
5
(.
3
0
2
)

−
.0
9
6
(.
5
1
0
)

−
.1
6
7
(.
2
6
3
)

−
.0
2
9
(.
8
5
1
)

−
.3
1
1
(.
0
3
1
)

−
.1
5
3
(.
3
0
5
)

−
.1
2
1
(.
4
3
3
)

.1
0
5
(.
4
7
9
)

.1
3
0
(.
3
8
8
)

F
P
–
D
M
N

−
.4
8
3
(.
0
0
1
)*

−
.3
3
3
(.
0
1
9
)

.3
4
8
(.
0
1
7
)

.0
9
1
(.
5
7
1
)

−
.2
0
9
(.
1
5
0
)

.1
5
0
(.
3
1
4
)

−
.3
7
4
(.
0
1
2
)

−
.3
2
7
(.
0
2
3
)

.2
4
2
(.
1
0
1
)

−
.1
0
7
(.
4
8
9
)

.0
8
6
(.
5
6
3
)

.0
2
1
(.
8
9
0
)

S
A
L
–
D
M
N

.4
4
8
(.
0
0
2
)

.3
4
2
(.
0
1
6
)

.0
5
0
(.
7
4
)

.1
5
0
(.
3
4
9
)

−
.0
2
9
(.
8
4
3
)

.1
9
4
(.
1
9
1
)

.0
1
5
(.
9
2
3
)

.2
8
3
(.
0
5
1
)

−
.0
8
5
(.
5
7
2
)

−
.1
5
9
(.
3
0
4
)

.0
6
8
(.
6
4
5
)

−
.0
8
1
(.
5
9
1
)

D
A
N
–
C
O

−
.0
1
9
(.
9
0
1
)

.1
5
8
(.
2
8
0
)

.1
8
0
(.
2
2
6
)

−
.2
8
1
(.
0
7
5
)

.1
6
9
(.
2
4
6
)

.0
4
2
(.
7
7
7
)

−
.0
7
4
(.
6
3
4
)

−
.1
1
5
(.
4
3
5
)

.2
1
3
(.
1
5
0
)

−
.3
9
0
(.
0
0
9
)

.2
7
3
(.
0
6
1
)

−
.0
5
6
(.
7
1
1
)

D
A
N
–
M
E
M

.2
5
1
(.
0
9
6
)

−
.0
1
1
(.
9
3
9
)

.0
9
1
(.
5
4
2
)

.1
5
2
(.
3
4
4
)

−
.0
7
3
(.
6
1
9
)

−
.2
8
7
(.
0
5
0
)

−
.2
7
3
(.
0
7
3
)

−
.3
9
9
(.
0
0
5
)

−
.1
1
4
(.
4
4
4
)

−
.2
3
2
(.
1
3
0
)

.0
8
2
(.
5
7
9
)

.0
1
6
(.
9
1
4
)

D
A
N
–
F
P

−
.0
1
3
(.
9
3
1
)

−
.0
3
1
(.
8
3
4
)

.0
0
7
(.
9
6
1
)

−
.1
6
5
(.
3
0
2
)

.0
2
6
(.
8
5
7
)

.0
1
4
(.
9
2
8
)

.2
7
9
(.
0
6
6
)

.4
2
9
(.
0
0
2
)

−
.0
3
0
(.
8
3
9
)

−
.0
3
3
(.
8
3
2
)

.0
6
2
(.
6
7
6
)

−
.0
1
1
(.
9
4
0
)

D
A
N
–
S
A
L

−
.2
3
9
(.
1
1
4
)

.0
4
2
(.
7
7
2
)
−
.0
8
2
(.
5
8
4
)

−
.0
3
0
(.
8
5
2
)

.0
7
0
(.
6
3
2
)

.0
3
5
(.
8
1
6
)

−
.0
4
7
(.
7
6
3
)

−
.3
6
1
(.
0
1
2
)

−
.1
4
5
(.
3
3
0
)

−
.0
1
6
(.
9
1
7
)

.2
9
5
(.
0
4
2
)

.1
6
5
(.
2
7
4
)

D
A
N
–
D
M
N

.1
9
5
(.
2
0
0
)

−
.0
4
0
(.
7
8
5
)

.0
1
3
(.
9
3
2
)

.3
7
0
(.
0
1
7
)

−
.1
3
5
(.
3
5
6
)

.0
3
7
(.
8
0
4
)

−
.3
4
0
(.
0
2
4
)

−
.3
4
9
(.
0
1
5
)

.1
6
4
(.
2
7
0
)

−
.0
8
6
(.
5
7
7
)
−
.0
1
4
(.
9
2
7
)

.1
5
3
(.
3
1
2
)

B
o
ld
e
d
co
rr
e
la
ti
o
n
co
e
ff
ic
ie
n
ts

re
p
re
se
n
t
th
o
se

th
at

ar
e
si
g
n
if
ic
an
t
at

p
<

.0
5
;
co
rr
e
la
ti
o
n
co
e
ff
ic
ie
n
ts

w
it
h
an

as
te
ri
sk

re
p
re
se
n
t
th
o
se

th
at

su
rv
iv
e
m
u
lt
ip
le

co
m
p
ar
is
o
n
co
rr
e
ct
io
n
.
V
O
C
A
B
=

V
o
ca
b
u
la
ry
;
S
P
E
E
D

=

P
e
rc
e
p
tu
al

S
p
e
e
d
;
F
L
U
ID

=
F
lu
id

R
e
as
o
n
in
g
;
M
E
M

=
E
p
is
o
d
ic

M
e
m
o
ry
.

Varangis et al. 617



That being said, when examining means for the connec-

tion by domain interaction within each age group, some

interesting trends emerged, which may suggest that the

effect of age on FP–DMN connectivity only exists during

specific types of tasks (specifically, speed tasks).

Although this three-way interaction was not significant,

its p value of .120 in the MANOVA analyses could sug-

gest that we were simply underpowered to detect this

complex effect (see Figure 4). Thus, although we failed

to replicate that result here, it could be due to our in-

clusion of tasks tapping into multiple cognitive domains,

rather than focusing on connectivity during one specific

cognitive task. Specifically, if only the SPEED domain is

modeled, there is a significant difference between older

and younger adults in FP–DMN connectivity; however,

given the scope of analyses in this study, we were unable

to detect this small of an effect (see Figure 4, SPEED). As

such, although this connection may be implicated in

working memory, executive function, or processing speed

tasks, it may not be a critically age-sensitive connection

across all cognitive domains.

Furthermore, this study also did not provide evidence

for a generally more connected brain in the context of

aging. Specifically, the main effect of age was not sig-

nificant, suggesting that, within this sample and during

these tasks, OAs do not show overall greater connectivity

across these networks relative to younger adults. Several

past studies examining functional connectivity in the

context of aging found that, generally speaking, OAs

show more between-network connections than younger

adults (King et al., 2018; Chan et al., 2014; Geerligs et al.,

2014), a more positively connected brain graph (Ferreira

et al., 2016), and reduced segregation/modularity of

brain systems (Geerligs et al., 2015; Song et al., 2014).

However, all but one (Geerligs et al., 2014) of these

studies utilized resting-state fMRI data to probe such

effects, and one of the studies similarly found patterns

of internetwork connectivity that either increased or de-

creased with age (Geerligs et al., 2015). Thus, this study

may not lie in contrast to these findings but may instead

represent a novel approach for modeling and investigat-

ing the effect of age on internetwork connectivity.

We also found that connection strength between

networks differed by the type of task being performed

during the scan. From a broader perspective, these con-

nectivity patterns appear to cluster such that certain tasks

have more similar connectivity patterns between net-

works (i.e., vocabulary and speed, vocabulary and mem-

ory, and fluid and memory), whereas other tasks have

largely dissimilar connectivity patterns between networks

Figure 4. Between-network correlation coefficients for the nonsignificant interaction between age and connection within each domain.
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(i.e., speed and memory, speed and fluid, and vocabu-

lary and fluid). This finding suggests that cognitive net-

works do modulate their connections to other networks

based on cognitive task domain. Past studies on resting-

state connectivity suggest its utility in revealing age-

related differences in network function, structure, and

organization (Esposito et al., 2018; Damoiseaux, 2017;

Hedden et al., 2016; Spreng et al., 2016; Dennis &

Thompson, 2014; Damoiseaux et al., 2008), although they

may not fully represent how connectivity might change in

the presence of a cognitive challenge. Although changes in

network structure or activation were outside the scope of

the present analyses, our results show how predefined,

cognitively relevant networks may alter their relationships

to each other in response to the demands of the task.

We also found that two internetwork connections

showed a direct correlation with behavior: Greater con-

nectivity between the DAN and the memory network

was associated with poorer FLUID performance across

the whole sample (and after controlling for participant

age), and greater connectivity between the FP network

and DMN was associated with poorer performance on

VOCAB tasks. Although implicating different networks

and tasks, these results somewhat mirror findings from

previous studies showing differential connectivity pat-

terns between older and younger adults that can be

linked to differences in task performance (Prakash

et al., 2012; Miller et al., 2008). Furthermore, one inter-

esting trend evident in the correlational analyses con-

ducted separately within each age group is the difference

in the relationship between FP–DMN and VOCAB AND

FLUID task performance based on age group. Although

the negative relationship between FP–DMN connectivity

and task performance was only significant for the VOCAB

task in younger adults in the sample after correcting for

multiple comparisons, the fact that this connection is pos-

itively related to VOCAB performance in OAs is a novel and

unexpected finding (see Table 6). Although previous stud-

ies found that FP–DMN connectivity was consistently asso-

ciated with poorer performance on executive function

tasks (Damoiseaux, 2017; Prakash et al., 2012; Grady

et al., 2010; Uddin et al., 2009), this study found a similar

relationship with VOCAB task performance in younger

adults (and marginally so with FLUID task performance)

but found the opposite relationship with task perfor-

mance in OAs. One potential effect that might influence

this relationship is the superior performance on VOCAB

tasks by OAs—it could be that these tasks are easier

for OAs than they are for younger adults, and thus, this

relationship between FP–DMN connectivity and task

performance (frequently found to be a negative relation-

ship in executive function tasks) simply reflects process-

ing difficulty during the task. However, this finding of a

positive relationship between FP–DMN connectivity and

task performance in OAs was an unexpected finding in

this study, and thus, interpretation of its meaning is

purely speculative. By linking these connectivity patterns

to task performance, this study adds to existing literature

in identifying brain-based metrics that are directly linked

to cognitive outcomes.

Limitations and Future Directions

One limitation of this study is the number of participants

whose data were not usable in the context of the present

analyses. Although the balanced design, stringent scrub-

bing criteria, and appropriateness of factor structure fit

allowed for a robust set of data for analysis, they also re-

sulted in significant data loss. That being said, one advan-

tage of this method is that errors are produced if the

predefined network structure is not an appropriate fit

for the data. Although past studies have conducted anal-

yses by parcellating correlation matrices based on prede-

fined network organization, there is no validation as to

whether these ROI network memberships are appro-

priate for each individual included in the analyses. This

study, therefore, excluded roughly 54% of all valid data

(sample size after scrubbing exclusion criteria = 312;

sample size of final analyses = 142); however, the data

that were included are data that we know fit the pre-

defined network parcellation scheme. Had the analysis

included these individuals (as it would have if we had ex-

amined connectivity using a standard correlational/graph

theoretical approach), it would have included partici-

pants whose connectivity patterns may not have been

appropriately modeled based on the predefined net-

works, thus potentially weakening the results. However,

excluding these individuals also considerably reduced

the power of the current study, which in turn might limit

the generalizability of the findings presented here.

Although this may somewhat limit the strength of the

conclusions of this study, the within-participant design

of the analyses somewhat assuages concerns about the

strength of the effect of task domain on the observed

connectivity patterns.

One additional aspect of the study that may have lim-

ited the strength of the results is the fact that an externally

derived network parcellation scheme was utilized for de-

fining network membership of ROIs in the present analy-

ses (Power et al., 2011). This parcellation scheme was

based on network organization at rest; however, the au-

thors of the original study cross-validated its networks

with task activation-based data to determine cognitive rel-

evance of networks and to validate spatial distributions. As

such, one strength of utilizing this parcellation system is

that it was not derived based on the present data, and

thus, the present results are not simply an artifact of

double-dipping (Kriegeskorte, Simmons, Bellgowan, &

Baker, 2009). However, it is also possible that this net-

work parcellation scheme may not represent an ideal fit

for task-based connectivity data because it was derived

during rest in an external sample or that it may not be

appropriate for participants in this study as evidenced

by the number of participants excluded for not exhibiting

Varangis et al. 619



good model fit. Given that this study examined connectiv-

ity across a wide range of ages (20–80 years) and across

four cognitive domains (VOCAB, SPEED, FLUID, and

MEM), using an external network parcellation in the pres-

ent analyses was crucial to avoid using a network par-

cellation that was biased by participant age or cognitive

domain. Although it would have been possible to derive

separate network parcellations for each cognitive domain

in younger adults and then utilize these across all par-

ticipants, this would have resulted in differential network

structure for each cognitive domain (and, by definition,

poorer fit for OAs), which would have made network-

based comparisons across the four domains inappro-

priate. Thus, although the results may have been slightly

weakened by using this external network parcellation, it

was necessary to appropriately test the hypotheses of

this study.

Furthermore, a difference was found in VOCAB and

FLUID task performance between those participants

who were included and those who were excluded from

the present analyses. Although task performance was

not included as inclusion/exclusion criteria for these

analyses, the subsample of individuals who met eligi-

bility for these analyses tended to do better on these

tasks. However, given that these included and excluded

participants did not differ based on age, education,

and NART IQ, this difference may not be representa-

tive of a systematic bias in the subsample of included

participants.

Another limitation is the difference in NART IQ be-

tween older and younger/middle-aged participants.

Although sampling was conducted in an unbiased, ran-

domized way, this unequal distribution emerged, such

that OAs tended to have higher verbal IQ than younger

adults. This is consistent with previous studies reporting

preserved or improved vocabulary/semantic memory

in the context of healthy aging (Verhaeghen, 2003),

which may be reflective of accrued verbal experience

over adulthood, a cohort effect, or participation bias

in that OAs with better cognitive functioning or more

educational experience may be more likely to want to

participate in cognitive aging studies, or some com-

bination of these factors. Although these sources of

bias are impossible to disentangle in this study, this

may be a general limitation of most cross-sectional

studies of cognitive aging.

Conclusions

Results from this study suggest that, in the context of

aging, internetwork connectivity among a set of cognitive

networks may be modulated by both age and cognitive

process being employed. Furthermore, some of the dif-

ferences in connectivity patterns based on age may also

represent inefficient patterns of network recruitment,

resulting in poorer behavioral performance as a result

of this network inefficiency.
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