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Abstract. Consider the development of a new middleware targeted at 
cooperating smart objects. Each smart object should have an embedded node 
connected to the object’s sensors and actuators. Building a prototype of such a 
middleware is inherently labor-intensive, especially when it comes to crossing 
the cyber-physical boundary, i.e., node-to-object interfacing. Also, soon one 
needs to be able to validate the middleware’s emerging API. Consequently, two 
separate “products” are usually developed: a programmer-oriented simulator 
and an actual, node-based prototype. Both are less than perfect for testing and 
demonstration purposes, and there is hardly any reuse of work invested in 
producing them. We propose an architecture that enables intermediate, 
crossover setups combining elements of the simulator and of the prototype. The 
key idea is system-wide decoupling of the cyber domain from the physical 
domain, by means of a dedicated entity. The architecture emphasizes 
incremental formation of testing and demonstration setups, reusability of 
elements needed to create them, and flexibility in combining those elements. 
We validate our architecture with a proof-of-concept infrastructure and a 
number of experimental setups.  

Keywords: pervasive computing, cooperating smart objects, middleware, 
simulation, demonstration techniques.  

1 Introduction 

Consider the generic problem of developing a new pervasive computing middleware 
targeted at networked smart objects (e.g., home objects). The likely goal of the 
middleware is to simplify making applications based on object cooperation. Each 
participating object should be equipped with an embedded node, usually 
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microcontroller-based, connected to some object-related sensors and actuators and 
able to wirelessly communicate with nodes embedded in other objects. The 
middleware layer should reside on top of the system software of each node and 
expose some middleware-specific facilities to the application layer.  Importantly, the 
objects are likely to differ from one another as to their functionality and available 
sensors and actuators.  

Efforts to develop such a cooperating object middleware may differ as to the 
specifics of the middleware’s design goals, its programming model, and architecture. 
In each case, however, building a proof-of-concept middleware prototype is an 
inherently labor-intensive and difficult task. The main reasons for the difficulties is 
that the system under development is distributed among multiple nodes, the nodes 
communicate wirelessly (i.e., very unreliably), and the selected node platform, being 
embedded, is usually quite difficult to program.  

Additional reasons that make the development of the prototype labor-intensive 
have to do with crossing the cyber-physical boundary, i.e., interfacing nodes (the 
cyber domain) to objects (the physical domain). First, one should do the interfacing to 
a number of different real objects, each with its specific functionality and a set of 
sensors and actuators. The more different kinds of objects are interfaced to, the better 
the prototype becomes for testing and demonstration purposes. Each interfacing, 
however, is a small, non-trivial project of its own. Second, some objects may simply 
not be available for interfacing, due to being, e.g., too costly or bulky.  

A related complication in the overall middleware development process is that until 
the prototype is built, there is hardly any way to validate the middleware’s emerging 
programming model or API. There is a need for an environment enabling one to 
experiment with the API, by debugging and running example applications. Without 
such an environment, “paper-based” programming exercises remain as the only 
programming model validation option.   

As a result of the above, the work typically proceeds in two complementary and 
separate  directions. The first one is to build a programmer-oriented system simulator. 
Early in the project it is much easier to develop the simulator, a desktop software 
artifact, than the actual, node-based prototype. On the other hand, the simulator, being 
centralized, usually does not include any distributed middleware protocols, and, more 
importantly, it takes care of objects only by software components that simulate them. 
As such, it is not a very appealing testing and demonstration tool; the results obtained 
from such a software-only simulator are inevitably perceived as “distant from reality.” 

The other direction is to develop an actual prototype, based on a selected 
embedded node platform. The difficulties of that work have been elaborated above. 
Typically, a working version of the prototype is obtained much later in the project; 
moreover, only a quite limited number of objects are interfaced to. Thus one ends up 
with two separate “products”: a (software-only) simulator and a limited-scale 
prototype (see Fig. 1). Both of them are much less than perfect when it comes to 
testing and demonstration, and there is hardly any reuse of work invested in 
producing them.  

In this paper we propose an architectural approach which enables intermediate, 
crossover setups that combine elements of the simulator and of the prototype. The 
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architecture emphasizes incremental formation of increasingly complex setups,  
reusability of elements needed to create them, and flexibility in combining those 
elements. As a result, interesting testing experiments and demonstrations can be had 
much earlier in the middleware development process, when parts of the actual system 
are still missing. We validate our architecture with a compliant proof-of-concept 
infrastructure and a number of experimental setups.  

b)  system prototypea) system simulator

 

Fig. 1. Two separate, non-synergetic products of a cyber-physical system development 

The structure of the paper is as follows. Section 2 presents the crossover 
architecture. Section 3 focuses on our proof-of-concept implementation of the 
architecture and related experimental setups. Related work is covered in Section 4, 
and the paper is concluded in Section 5.  

2 Simulator/Prototype Crossover Architectural Approach 

We perceive a cyber-physical system as a collection of nodes and objects (Fig. 2). An 
embedded node (a cyber artifact) is interfaced to an object (a physical artifact, e.g., a 
lamp, heater, fan, etc.), by means of sensors and actuators provided by the object. A 
node executes a program, controls the object’s sensors and actuators, and 
communicates with other nodes. The sensors and actuators, which interact with the 
surrounding environment, are accessed by nodes through a sensors/actuators 
interface. The sensors/actuators interfaces of all nodes define a boundary between the 
cyber domain and the physical domain. Making a clear distinction between these two 
domains and identifying interfaces between them is essential to our approach. 

To avoid misunderstandings, we note the obvious fact that the cyber domain has a 
physical grounding as well. For example, the nodes consume energy to run and use a 
physical medium to communicate. In our architecture, however, the physical domain 
includes objects proper (i.e., without embedded nodes) and the surrounding 
environment that can be probed or altered with sensors and actuators. 

Recall the two canonical products of the middleware development process: the 
simulator and the prototype. Both can be mapped onto the model presented in Fig. 2. 
As for the simulator, components simulating nodes belong to the cyber domain, while 
those simulating objects and the surrounding environment – to the physical domain. 
For the prototype, nodes constitute the cyber domain, while interfaced objects belong 
to the physical domain. In both systems, however, the two domains are rather tightly 
coupled, through internal interfaces.  
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Fig. 2. A model of a cyber-physical system 

The key point of our approach is to decouple the cyber domain from the physical 
domain, by means of a dedicated, separate entity. Specifically, we postulate that one 
of the first steps in the middleware development process should be to specify and 
implement a Sensors/Actuators Abstraction Infrastructure (Fig. 3). The infrastructure 
should fulfill the following requirements: 

• It should offer node ports, used to connect to either simulated or real nodes. 
Similarly, it should offer object ports, used to connect to simulated or real objects. 
Both local and remote connections should be allowed. 

• It should support a protocol used to communicate with nodes and objects. At the 
test/demo setup time, the protocol should make it possible (a) to connect a node or 
object to a port, and (b) to pair a node with its object. At runtime, the protocol 
should make it possible for paired nodes and objects to exchange sensor and 
actuator data. 

• The sensor and actuator data exchanged between a node and a paired object should 
be based on a systematic, abstract representation of sensors and actuators that can 
be encountered in the domain in question (e.g., the home domain).  

Having the Sensors/Actuators Abstraction Infrastructure in place, one can develop 
compatible implementations of nodes and objects. On the cyber side one can have 
(a) a multi-node simulator or (b) a network of real nodes. In the latter case, a node 
proxy is usually needed to connect an actual node to the Sensors/Actuators 
Abstraction Infrastructure. On the physical side one can have simulated or real 
objects. Each simulated object may be implemented as a standalone, small 
application, which we call an object simulet. Alternatively, a set of simulated objects 
may be implemented within a single environment simulator, which, besides the 
objects themselves, models the surrounding environment in which the objects reside. 
To connect a real object to the infrastructure, one usually needs an object proxy.   

One can then freely combine node and object implementations to create test/demo 
setups. Owing to the protocol and the systematic sensors/actuators representation, the 
cyber part cannot tell a difference between a real and simulated physical part (and 
vice versa). Many useful combinations are possible; the most typical ones are shown 
in Fig. 4 and listed below in the order, in which they are most likely to occur in an 
actual middleware development process. In the figure we do not depict node and 
object proxies. A feature to be observed is reusability of constituent elements.  
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Fig. 3. Domain decoupling with Sensors/Actuators Abstraction Infrastructure 

d) CybReal-PhySimb) CybSim-PhyReala) CybSim-PhySim

f) CybReal-PhyHybrid

c) CybSim-PhyHybrid

e) CybReal-PhyReal g) CybReal-PhyHybrid++

 

Fig. 4. Typical usage scenarios for our architectural approach 

The CybSim:PhySim combination (Fig. 4a.) puts together a multi-node simulator 
and either an environment simulator or a set of object simulets. Note that this 
combination is functionally equivalent to an integrated simulator mentioned in the 
introduction, the differing factor being that an explicit decomposition has been 
introduced by means of the Sensors/Actuators Abstraction Infrastructure. 

The CybSim:PhyReal combination (Fig. 4b.) differs from the previous one in that  
real objects replace simulated ones. This way one can test/demo the system in a 
centralized and thus easily controllable way, while creating a very realistic user 
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experience through real objects. This can be achieved without having an actual 
middleware implementation or objects actually interfaced to nodes. 

The CybSim:PhyHybrid combination (Fig. 4c.) originates from the previous two. 
The multi-node simulator works with both real objects and object simulets, thus 
increasing the number and/or diversity of objects used in a test or demo. Note that 
elements from the previous two combinations can simply be reused in the present one; 
no extra implementation effort is required. 

The CybReal:PhySim combination (Fig. 4d.), puts together real, wirelessly 
communicating nodes with either an environment simulator or a set of object 
simulets. This setup allows one to test/demonstrate actual middleware software 
without complexities related to real object interfacing (or before any real objects are 
available). 

 The CybReal:PhyReal combination (Fig. 4e.) is functionally equivalent to the 
usual prototype setup, with nodes and objects being connected through the 
infrastructure rather than node-internal interfaces. While the indirect connection is 
suboptimal, it is easier to achieve than real, hardware integration. Moreover, this 
combination is obtained by reusing elements from the previous combinations. 

Merging the two preceding combinations leads to CybReal:PhyHybrid (Fig. 4f.), 
where a mix of real and simulated objects is used with real nodes. This may prove 
useful when one wants to enhance a setup with objects too bulky, complex, or 
expensive to actually interface to (e.g., a refrigerator). 

Finally, one should mention the CybReal:PhyHybrid++ combination (Fig. 4g.) 
There, real nodes using the Sensors/Actuators Abstraction Infrastructure coexist with 
real nodes already fully integrated with their objects (as exemplified by the node fully 
integrated with an iron). Interestingly, that combination features objects of three 
kinds: (a) fully integrated, (b) connected through the infrastructure, and (c) simulated. 

The only significant limitation in combining the above-described artifacts is that, 
on the cyber side, one cannot mix a multi-node simulator and real nodes, the main 
reason being that the multi-node simulator does not implement per-node middleware 
protocols (which is our assumption in this paper). 

Note, that to obtain a final, integrated, “traditional” prototype, node and object 
proxies need to be removed and “traditional” node-to-object interfacing still needs to 
be performed. Thus the development of the proxy applications is the main overhead 
of our architectural approach.  

3 Proof-of-concept Implementation and Experiments 

The main technical choice in our proof-of-concept implementation is the definition of 
a sensors/actuators representation. We adopt a bi-directional command/event model 
(Fig. 5), used, e.g., in the nesC programming language. In this model, sensors and 
actuators are represented by commands that can be executed on them (e.g., 
SwitchOn() executed on an on/off switch actuator) and events they can deliver (e.g., 
FireDetected() invoked by a fire detecting sensor). Consequently, every object 
can be described with a list of commands and events it supports. Both commands and 



 Between Simulator and Prototype: Crossover Architecture 381 

events are modeled as typical functions, i.e. they may have an argument list and may 
return a value. We do not make any assumptions about possible commands and 
events, their semantics, nor how they are processed.  

commands

e.g. y = SwitchOn()

e.g. FireDetected()

events

object
(sensors and 

actuators)
node

 

Fig. 5. Sensors/actuators representation 

The presented representation is adopted in our Sensors/Actuators Abstraction 
Protocol (SAAP), used by nodes and objects to communicate with a 
Sensors/Actuators Abstraction Infrastructure (see Fig. 3). The design goals of the 
protocol were simplicity and platform-independence; these were achieved with seven 
text-based message types outlined in Table 1. 

Table 1. Messages of the SAAP protocol used by nodes and objects to communicate with  
a Sensors/Actuators Abstraction Infrastructure 

Message type Arguments 
CONNECT {NODE | OBJECT} client_label resources_list 
DISCONNECT  
EVENT request_id request_label parameters 
EVENT_RETURN request_id return_value 
COMMAND request_id request_label parameters 
COMMAND_RETURN request_id return_value 
LINK_STATUS {ON | OFF} 

 
An example of a SAAP message exchange is illustrated in Fig. 6. CONNECT is used 

by clients to register themselves with the infrastructure, providing a unique client 
label and a list of supported commands and events. DISCONNECT removes a client 
from the infrastructure’s registry. Once two clients (a node and an object) are paired 
by the infrastructure, the LINK_STATUS ON message is sent to them. From that 
moment, until receiving LINK_STATUS OFF, nodes may issue COMMAND messages 
(which are forwarded by the infrastructure to the paired object), and objects may issue 
EVENT messages (which are forwarded to the paired node). Clients receiving such 
messages may respond with COMMAND_RETURN or EVENT_RETURN, respectively, to 
pass the returned value. The returned value is linked to a command or event message 
by means of a request ID (request_id). 

The Sensors/Actuators Abstraction Infrastructure has been implemented [1] as an 
application called Management Server (MServer), written in JAVA and running on 
top of TCP/IP. MServer accepts SAAP protocol messages, creating a separate TCP 
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socket for every client. Notably, nodes and objects connecting (locally or remotely) to 
MServer are not necessarily separate applications or hardware entities. It is perfectly 
possible for one application (e.g., a multi-node simulator) to represent multiple nodes, 
as long as there is one connection with MServer per node; the same applies to objects. 

node Sensors/Actuators Abstraction Infrastructure object

CONNECT NODE mote1 Switch ObjectSwitched

CONNECT OBJECT lamp1 Switch ObjectSwitched

LINK_STATUS ON
LINK_STATUS ON

COMMAND 0 Switch 1
COMMAND 0 Switch 1

COMMAND_RETURN 0 1
COMMAND_RETURN 0 1

EVENT 0 ObjectSwitched 1
EVENT 0 ObjectSwitched 1

DISCONNECT

LINK_STATUS OFFLINK_STATUS OFF

…… (mote1:lamp1 pairing)

… … …

… … …

 

Fig. 6. An example of SAAP message exchange 

It is in the responsibility of the user of MServer to set up an experiment by pairing 
nodes with objects, in such a way that events generated by an object are supported by 
its node, and commands invoked by a node are supported by its object. The pairing is 
done through a command console provided by MServer. For the user, clients are 
distinguished by the labels they supply when connecting to MServer (client_label 
from Table 1.) Auxiliary features of MServer include browsing through connected 
clients and monitoring SAAP traffic ongoing between them. 

For the experiments with SAAP and MServer, we developed a number of 
compatible clients. The node clients include (a) a simple multi-node simulator 
representing two nodes, with an integrated application logic (see below), and (b) an 
iMote2-based [2] real node featuring a cooperating object middleware, called 
POBICOS [3]. The object clients include (a) a light sensor simulet, (b) a lamp 
simulet, and (c) a real lamp controlled with a smart plug. For the real node (iMote2) 
and real object (the lamp), tiny proxy applications are used. The proxies communicate 
with actual devices over RS232 connections. 

The SAAP clients were then easily combined in different setups. All the setups 
were used to run a simple home automation application, TwilightSwitch. The 
application turns the lamp on when it is dark and switches it off when it is bright. The 
setups are presented in Fig. 7. The first setup (Fig. 7a) represents CybSim:PhySim 
combination. In the second setup (Fig. 7b), we have replaced the lamp simulet with 
the real lamp, thus obtaining the CybSim:PhyHybrid combination. The third setup 
(Fig. 7c), realizing the CybReal:PhyHybrid++ combination, included two iMote2 
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nodes with a TwilightSwitch application running on top of the POBICOS middleware. 
One of the nodes was directly interfaced to a real brightness sensor, while the other 
one used the lamp simulet. Finally, in the fourth setup, representing the 
CybReal:PhyReal combination (Fig. 7d), both real brightness sensor and real lamp 
were used. For all the setups, we observed correct system behavior.  

MServer

lamp proxy

MServer

a) b) c)

iMote2 proxy

MServer MServer

d)

iMote2 proxy

lamp proxy

lamp simulet

multi-node simulator

real lamp

real nodes

light sensor 
simulet real light sensor  

Fig. 7. Proof-of-concept experimental setups 

4 Related Work 

DiaSim [4] and eHomeSimulator [5] are examples of elaborate pervasive computing 
simulators. Similarly to our approach, they clearly separate the environment and the 
application logic, by means of a well-defined API. They allow one to use the same 
application logic with both simulated and real devices. However, both solutions 
support only centralized application logic and are not as general as our approach; they 
work in the context of a specific pervasive computing system and application 
development methodology. 

UbiWise [6] uses a game engine to provide an interactive 3D environment, in 
which the user can freely move and interact with a variety of devices. Some of the 
devices are simulated, and some may be real. However, the separation between the 
cyber and physical domains is not clear, as each device is a self-contained entity that 
includes both application logic and sensors/actuators. 

An approach similar to our object simulets is used in the ATLAS platform [7]. The 
Sensor/Actuator Emulator [8] provides a set of lightweight applications equipped with 
a GUI imitating an actual device. Such simulated devices can be then used in ATLAS 
applications together with real devices. Nevertheless, the approach considers only the 
specific case of the ATLAS platform, in which the application logic is centralized. 

Huebscher and McCann in [9] consider an architecture where data from simulated 
sensors and actuators is provided to distributed nodes simulated with TOSSIM [10]. 
This resembles our CybSim:PhySim combination, because of a clear interface between 
the multi-node simulator (TOSSIM) and a sensor/actuator simulator (Context-Aware 
Simulator). However, no further combinations are considered in [9]. 
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The PoSim simulator [11] of the POBICOS middleware clearly separates a 
simulated node and its sensor/actuator resources. This makes it possible to have the  
CybSim:PhySim and CybSim:PhyReal combinations, which were both exercised in 
the POBICOS project [12]. However, in that solution, the cyber domain cannot be 
easily populated with real nodes. 

It appears that a number of existing pervasive computing systems and/or their 
simulators make attempts at supporting combinations of real and simulated elements 
in crossover setups. However, to the best of our knowledge, no existing work 
proposes an approach as general and flexible as the one presented in this paper. In 
particular, the possibility of connecting real nodes with object simulets appears to be a 
unique feature of our approach. 

5 Conclusion  

Using the nodes and objects introduced above, we have easily obtained four different 
crossover setups for running an example application. The experiments confirmed 
usability of our infrastructure, as well as the possibility to flexibly combine real and 
simulated elements of the system. The approach should easily scale to bigger and 
more sophisticated setups. We believe that many existing pervasive computing 
systems could benefit from adopting our architecture, especially if they have already 
introduced a clear interface between the cyber and physical domains. 
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