
K. Pentikousis et al. (Eds.): MONAMI 2011, LNICST 97, pp. 375–385, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Between Simulator and Prototype:
Crossover Architecture for Testing

and Demonstrating Cyber-Physical Systems*

Tomasz Paczesny, Jarosław Domaszewicz,
Przemysław Konstańczuk, Jacek Milewski, and Aleksander Pruszkowski

Institute of Telecommunications, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

{t.paczesny,domaszew,apruszko}@tele.pw.edu.pl,
{p.konstanczuk,j.milewski}@stud.elka.pw.edu.pl

Abstract. Consider the development of a new middleware targeted at
cooperating smart objects. Each smart object should have an embedded node
connected to the object’s sensors and actuators. Building a prototype of such a
middleware is inherently labor-intensive, especially when it comes to crossing
the cyber-physical boundary, i.e., node-to-object interfacing. Also, soon one
needs to be able to validate the middleware’s emerging API. Consequently, two
separate “products” are usually developed: a programmer-oriented simulator
and an actual, node-based prototype. Both are less than perfect for testing and
demonstration purposes, and there is hardly any reuse of work invested in
producing them. We propose an architecture that enables intermediate,
crossover setups combining elements of the simulator and of the prototype. The
key idea is system-wide decoupling of the cyber domain from the physical
domain, by means of a dedicated entity. The architecture emphasizes
incremental formation of testing and demonstration setups, reusability of
elements needed to create them, and flexibility in combining those elements.
We validate our architecture with a proof-of-concept infrastructure and a
number of experimental setups.

Keywords: pervasive computing, cooperating smart objects, middleware,
simulation, demonstration techniques.

1 Introduction

Consider the generic problem of developing a new pervasive computing middleware
targeted at networked smart objects (e.g., home objects). The likely goal of the
middleware is to simplify making applications based on object cooperation. Each
participating object should be equipped with an embedded node, usually

* This work has been co-funded by the FP7/ICT Programme of the European Union, under

project POBICOS (Platform for Opportunistic Behaviour in Incompletely Specified,
Heterogeneous Object Communities), contract Nr. FP7-ICT-STREP-223984.

376 T. Paczesny et al.

microcontroller-based, connected to some object-related sensors and actuators and
able to wirelessly communicate with nodes embedded in other objects. The
middleware layer should reside on top of the system software of each node and
expose some middleware-specific facilities to the application layer. Importantly, the
objects are likely to differ from one another as to their functionality and available
sensors and actuators.

Efforts to develop such a cooperating object middleware may differ as to the
specifics of the middleware’s design goals, its programming model, and architecture.
In each case, however, building a proof-of-concept middleware prototype is an
inherently labor-intensive and difficult task. The main reasons for the difficulties is
that the system under development is distributed among multiple nodes, the nodes
communicate wirelessly (i.e., very unreliably), and the selected node platform, being
embedded, is usually quite difficult to program.

Additional reasons that make the development of the prototype labor-intensive
have to do with crossing the cyber-physical boundary, i.e., interfacing nodes (the
cyber domain) to objects (the physical domain). First, one should do the interfacing to
a number of different real objects, each with its specific functionality and a set of
sensors and actuators. The more different kinds of objects are interfaced to, the better
the prototype becomes for testing and demonstration purposes. Each interfacing,
however, is a small, non-trivial project of its own. Second, some objects may simply
not be available for interfacing, due to being, e.g., too costly or bulky.

A related complication in the overall middleware development process is that until
the prototype is built, there is hardly any way to validate the middleware’s emerging
programming model or API. There is a need for an environment enabling one to
experiment with the API, by debugging and running example applications. Without
such an environment, “paper-based” programming exercises remain as the only
programming model validation option.

As a result of the above, the work typically proceeds in two complementary and
separate directions. The first one is to build a programmer-oriented system simulator.
Early in the project it is much easier to develop the simulator, a desktop software
artifact, than the actual, node-based prototype. On the other hand, the simulator, being
centralized, usually does not include any distributed middleware protocols, and, more
importantly, it takes care of objects only by software components that simulate them.
As such, it is not a very appealing testing and demonstration tool; the results obtained
from such a software-only simulator are inevitably perceived as “distant from reality.”

The other direction is to develop an actual prototype, based on a selected
embedded node platform. The difficulties of that work have been elaborated above.
Typically, a working version of the prototype is obtained much later in the project;
moreover, only a quite limited number of objects are interfaced to. Thus one ends up
with two separate “products”: a (software-only) simulator and a limited-scale
prototype (see Fig. 1). Both of them are much less than perfect when it comes to
testing and demonstration, and there is hardly any reuse of work invested in
producing them.

In this paper we propose an architectural approach which enables intermediate,
crossover setups that combine elements of the simulator and of the prototype. The

 Between Simulator and Prototype: Crossover Architecture 377

architecture emphasizes incremental formation of increasingly complex setups,
reusability of elements needed to create them, and flexibility in combining those
elements. As a result, interesting testing experiments and demonstrations can be had
much earlier in the middleware development process, when parts of the actual system
are still missing. We validate our architecture with a compliant proof-of-concept
infrastructure and a number of experimental setups.

b) system prototypea) system simulator

Fig. 1. Two separate, non-synergetic products of a cyber-physical system development

The structure of the paper is as follows. Section 2 presents the crossover
architecture. Section 3 focuses on our proof-of-concept implementation of the
architecture and related experimental setups. Related work is covered in Section 4,
and the paper is concluded in Section 5.

2 Simulator/Prototype Crossover Architectural Approach

We perceive a cyber-physical system as a collection of nodes and objects (Fig. 2). An
embedded node (a cyber artifact) is interfaced to an object (a physical artifact, e.g., a
lamp, heater, fan, etc.), by means of sensors and actuators provided by the object. A
node executes a program, controls the object’s sensors and actuators, and
communicates with other nodes. The sensors and actuators, which interact with the
surrounding environment, are accessed by nodes through a sensors/actuators
interface. The sensors/actuators interfaces of all nodes define a boundary between the
cyber domain and the physical domain. Making a clear distinction between these two
domains and identifying interfaces between them is essential to our approach.

To avoid misunderstandings, we note the obvious fact that the cyber domain has a
physical grounding as well. For example, the nodes consume energy to run and use a
physical medium to communicate. In our architecture, however, the physical domain
includes objects proper (i.e., without embedded nodes) and the surrounding
environment that can be probed or altered with sensors and actuators.

Recall the two canonical products of the middleware development process: the
simulator and the prototype. Both can be mapped onto the model presented in Fig. 2.
As for the simulator, components simulating nodes belong to the cyber domain, while
those simulating objects and the surrounding environment – to the physical domain.
For the prototype, nodes constitute the cyber domain, while interfaced objects belong
to the physical domain. In both systems, however, the two domains are rather tightly
coupled, through internal interfaces.

378 T. Paczesny et al.

object (sensors/actuators)

node

surrounding environment

sensors/actuators interface

CYBER DOMAIN

PHYSICAL DOMAIN

object (sensors/actuators)

node

sensors/actuators interface

inter-node communication

Fig. 2. A model of a cyber-physical system

The key point of our approach is to decouple the cyber domain from the physical
domain, by means of a dedicated, separate entity. Specifically, we postulate that one
of the first steps in the middleware development process should be to specify and
implement a Sensors/Actuators Abstraction Infrastructure (Fig. 3). The infrastructure
should fulfill the following requirements:

• It should offer node ports, used to connect to either simulated or real nodes.
Similarly, it should offer object ports, used to connect to simulated or real objects.
Both local and remote connections should be allowed.

• It should support a protocol used to communicate with nodes and objects. At the
test/demo setup time, the protocol should make it possible (a) to connect a node or
object to a port, and (b) to pair a node with its object. At runtime, the protocol
should make it possible for paired nodes and objects to exchange sensor and
actuator data.

• The sensor and actuator data exchanged between a node and a paired object should
be based on a systematic, abstract representation of sensors and actuators that can
be encountered in the domain in question (e.g., the home domain).

Having the Sensors/Actuators Abstraction Infrastructure in place, one can develop
compatible implementations of nodes and objects. On the cyber side one can have
(a) a multi-node simulator or (b) a network of real nodes. In the latter case, a node
proxy is usually needed to connect an actual node to the Sensors/Actuators
Abstraction Infrastructure. On the physical side one can have simulated or real
objects. Each simulated object may be implemented as a standalone, small
application, which we call an object simulet. Alternatively, a set of simulated objects
may be implemented within a single environment simulator, which, besides the
objects themselves, models the surrounding environment in which the objects reside.
To connect a real object to the infrastructure, one usually needs an object proxy.

One can then freely combine node and object implementations to create test/demo
setups. Owing to the protocol and the systematic sensors/actuators representation, the
cyber part cannot tell a difference between a real and simulated physical part (and
vice versa). Many useful combinations are possible; the most typical ones are shown
in Fig. 4 and listed below in the order, in which they are most likely to occur in an
actual middleware development process. In the figure we do not depict node and
object proxies. A feature to be observed is reusability of constituent elements.

 Between Simulator and Prototype: Crossover Architecture 379

object

node

CYBER DOMAIN

PHYSICAL DOMAIN

object

node

object

node

Sensors/Actuators Abstraction Infrastructure

Fig. 3. Domain decoupling with Sensors/Actuators Abstraction Infrastructure

d) CybReal-PhySimb) CybSim-PhyReala) CybSim-PhySim

f) CybReal-PhyHybrid

c) CybSim-PhyHybrid

e) CybReal-PhyReal g) CybReal-PhyHybrid++

Fig. 4. Typical usage scenarios for our architectural approach

The CybSim:PhySim combination (Fig. 4a.) puts together a multi-node simulator
and either an environment simulator or a set of object simulets. Note that this
combination is functionally equivalent to an integrated simulator mentioned in the
introduction, the differing factor being that an explicit decomposition has been
introduced by means of the Sensors/Actuators Abstraction Infrastructure.

The CybSim:PhyReal combination (Fig. 4b.) differs from the previous one in that
real objects replace simulated ones. This way one can test/demo the system in a
centralized and thus easily controllable way, while creating a very realistic user

380 T. Paczesny et al.

experience through real objects. This can be achieved without having an actual
middleware implementation or objects actually interfaced to nodes.

The CybSim:PhyHybrid combination (Fig. 4c.) originates from the previous two.
The multi-node simulator works with both real objects and object simulets, thus
increasing the number and/or diversity of objects used in a test or demo. Note that
elements from the previous two combinations can simply be reused in the present one;
no extra implementation effort is required.

The CybReal:PhySim combination (Fig. 4d.), puts together real, wirelessly
communicating nodes with either an environment simulator or a set of object
simulets. This setup allows one to test/demonstrate actual middleware software
without complexities related to real object interfacing (or before any real objects are
available).

 The CybReal:PhyReal combination (Fig. 4e.) is functionally equivalent to the
usual prototype setup, with nodes and objects being connected through the
infrastructure rather than node-internal interfaces. While the indirect connection is
suboptimal, it is easier to achieve than real, hardware integration. Moreover, this
combination is obtained by reusing elements from the previous combinations.

Merging the two preceding combinations leads to CybReal:PhyHybrid (Fig. 4f.),
where a mix of real and simulated objects is used with real nodes. This may prove
useful when one wants to enhance a setup with objects too bulky, complex, or
expensive to actually interface to (e.g., a refrigerator).

Finally, one should mention the CybReal:PhyHybrid++ combination (Fig. 4g.)
There, real nodes using the Sensors/Actuators Abstraction Infrastructure coexist with
real nodes already fully integrated with their objects (as exemplified by the node fully
integrated with an iron). Interestingly, that combination features objects of three
kinds: (a) fully integrated, (b) connected through the infrastructure, and (c) simulated.

The only significant limitation in combining the above-described artifacts is that,
on the cyber side, one cannot mix a multi-node simulator and real nodes, the main
reason being that the multi-node simulator does not implement per-node middleware
protocols (which is our assumption in this paper).

Note, that to obtain a final, integrated, “traditional” prototype, node and object
proxies need to be removed and “traditional” node-to-object interfacing still needs to
be performed. Thus the development of the proxy applications is the main overhead
of our architectural approach.

3 Proof-of-concept Implementation and Experiments

The main technical choice in our proof-of-concept implementation is the definition of
a sensors/actuators representation. We adopt a bi-directional command/event model
(Fig. 5), used, e.g., in the nesC programming language. In this model, sensors and
actuators are represented by commands that can be executed on them (e.g.,
SwitchOn() executed on an on/off switch actuator) and events they can deliver (e.g.,
FireDetected() invoked by a fire detecting sensor). Consequently, every object
can be described with a list of commands and events it supports. Both commands and

 Between Simulator and Prototype: Crossover Architecture 381

events are modeled as typical functions, i.e. they may have an argument list and may
return a value. We do not make any assumptions about possible commands and
events, their semantics, nor how they are processed.

commands

e.g. y = SwitchOn()

e.g. FireDetected()

events

object
(sensors and

actuators)
node

Fig. 5. Sensors/actuators representation

The presented representation is adopted in our Sensors/Actuators Abstraction
Protocol (SAAP), used by nodes and objects to communicate with a
Sensors/Actuators Abstraction Infrastructure (see Fig. 3). The design goals of the
protocol were simplicity and platform-independence; these were achieved with seven
text-based message types outlined in Table 1.

Table 1. Messages of the SAAP protocol used by nodes and objects to communicate with
a Sensors/Actuators Abstraction Infrastructure

Message type Arguments
CONNECT {NODE | OBJECT} client_label resources_list
DISCONNECT
EVENT request_id request_label parameters
EVENT_RETURN request_id return_value
COMMAND request_id request_label parameters
COMMAND_RETURN request_id return_value
LINK_STATUS {ON | OFF}

An example of a SAAP message exchange is illustrated in Fig. 6. CONNECT is used

by clients to register themselves with the infrastructure, providing a unique client
label and a list of supported commands and events. DISCONNECT removes a client
from the infrastructure’s registry. Once two clients (a node and an object) are paired
by the infrastructure, the LINK_STATUS ON message is sent to them. From that
moment, until receiving LINK_STATUS OFF, nodes may issue COMMAND messages
(which are forwarded by the infrastructure to the paired object), and objects may issue
EVENT messages (which are forwarded to the paired node). Clients receiving such
messages may respond with COMMAND_RETURN or EVENT_RETURN, respectively, to
pass the returned value. The returned value is linked to a command or event message
by means of a request ID (request_id).

The Sensors/Actuators Abstraction Infrastructure has been implemented [1] as an
application called Management Server (MServer), written in JAVA and running on
top of TCP/IP. MServer accepts SAAP protocol messages, creating a separate TCP

382 T. Paczesny et al.

socket for every client. Notably, nodes and objects connecting (locally or remotely) to
MServer are not necessarily separate applications or hardware entities. It is perfectly
possible for one application (e.g., a multi-node simulator) to represent multiple nodes,
as long as there is one connection with MServer per node; the same applies to objects.

node Sensors/Actuators Abstraction Infrastructure object

CONNECT NODE mote1 Switch ObjectSwitched

CONNECT OBJECT lamp1 Switch ObjectSwitched

LINK_STATUS ON
LINK_STATUS ON

COMMAND 0 Switch 1
COMMAND 0 Switch 1

COMMAND_RETURN 0 1
COMMAND_RETURN 0 1

EVENT 0 ObjectSwitched 1
EVENT 0 ObjectSwitched 1

DISCONNECT

LINK_STATUS OFFLINK_STATUS OFF

…… (mote1:lamp1 pairing)

… … …

… … …

Fig. 6. An example of SAAP message exchange

It is in the responsibility of the user of MServer to set up an experiment by pairing
nodes with objects, in such a way that events generated by an object are supported by
its node, and commands invoked by a node are supported by its object. The pairing is
done through a command console provided by MServer. For the user, clients are
distinguished by the labels they supply when connecting to MServer (client_label
from Table 1.) Auxiliary features of MServer include browsing through connected
clients and monitoring SAAP traffic ongoing between them.

For the experiments with SAAP and MServer, we developed a number of
compatible clients. The node clients include (a) a simple multi-node simulator
representing two nodes, with an integrated application logic (see below), and (b) an
iMote2-based [2] real node featuring a cooperating object middleware, called
POBICOS [3]. The object clients include (a) a light sensor simulet, (b) a lamp
simulet, and (c) a real lamp controlled with a smart plug. For the real node (iMote2)
and real object (the lamp), tiny proxy applications are used. The proxies communicate
with actual devices over RS232 connections.

The SAAP clients were then easily combined in different setups. All the setups
were used to run a simple home automation application, TwilightSwitch. The
application turns the lamp on when it is dark and switches it off when it is bright. The
setups are presented in Fig. 7. The first setup (Fig. 7a) represents CybSim:PhySim
combination. In the second setup (Fig. 7b), we have replaced the lamp simulet with
the real lamp, thus obtaining the CybSim:PhyHybrid combination. The third setup
(Fig. 7c), realizing the CybReal:PhyHybrid++ combination, included two iMote2

 Between Simulator and Prototype: Crossover Architecture 383

nodes with a TwilightSwitch application running on top of the POBICOS middleware.
One of the nodes was directly interfaced to a real brightness sensor, while the other
one used the lamp simulet. Finally, in the fourth setup, representing the
CybReal:PhyReal combination (Fig. 7d), both real brightness sensor and real lamp
were used. For all the setups, we observed correct system behavior.

MServer

lamp proxy

MServer

a) b) c)

iMote2 proxy

MServer MServer

d)

iMote2 proxy

lamp proxy

lamp simulet

multi-node simulator

real lamp

real nodes

light sensor
simulet real light sensor

Fig. 7. Proof-of-concept experimental setups

4 Related Work

DiaSim [4] and eHomeSimulator [5] are examples of elaborate pervasive computing
simulators. Similarly to our approach, they clearly separate the environment and the
application logic, by means of a well-defined API. They allow one to use the same
application logic with both simulated and real devices. However, both solutions
support only centralized application logic and are not as general as our approach; they
work in the context of a specific pervasive computing system and application
development methodology.

UbiWise [6] uses a game engine to provide an interactive 3D environment, in
which the user can freely move and interact with a variety of devices. Some of the
devices are simulated, and some may be real. However, the separation between the
cyber and physical domains is not clear, as each device is a self-contained entity that
includes both application logic and sensors/actuators.

An approach similar to our object simulets is used in the ATLAS platform [7]. The
Sensor/Actuator Emulator [8] provides a set of lightweight applications equipped with
a GUI imitating an actual device. Such simulated devices can be then used in ATLAS
applications together with real devices. Nevertheless, the approach considers only the
specific case of the ATLAS platform, in which the application logic is centralized.

Huebscher and McCann in [9] consider an architecture where data from simulated
sensors and actuators is provided to distributed nodes simulated with TOSSIM [10].
This resembles our CybSim:PhySim combination, because of a clear interface between
the multi-node simulator (TOSSIM) and a sensor/actuator simulator (Context-Aware
Simulator). However, no further combinations are considered in [9].

384 T. Paczesny et al.

The PoSim simulator [11] of the POBICOS middleware clearly separates a
simulated node and its sensor/actuator resources. This makes it possible to have the
CybSim:PhySim and CybSim:PhyReal combinations, which were both exercised in
the POBICOS project [12]. However, in that solution, the cyber domain cannot be
easily populated with real nodes.

It appears that a number of existing pervasive computing systems and/or their
simulators make attempts at supporting combinations of real and simulated elements
in crossover setups. However, to the best of our knowledge, no existing work
proposes an approach as general and flexible as the one presented in this paper. In
particular, the possibility of connecting real nodes with object simulets appears to be a
unique feature of our approach.

5 Conclusion

Using the nodes and objects introduced above, we have easily obtained four different
crossover setups for running an example application. The experiments confirmed
usability of our infrastructure, as well as the possibility to flexibly combine real and
simulated elements of the system. The approach should easily scale to bigger and
more sophisticated setups. We believe that many existing pervasive computing
systems could benefit from adopting our architecture, especially if they have already
introduced a clear interface between the cyber and physical domains.

References

1. Konstańczuk, P., Milewski, J.: Home environment modeling for POBICOS platform
simulator. BSc thesis, Warsaw University of Technology (2010)

2. Memsic Corporation, http://www.memsic.com/
3. STREP/FP7-ICT: Platform for Opportunistic Behaviour in Incompletely Specified,

Heterogeneous Object Communities (POBICOS), http://www.ict-pobicos.eu
4. Bruneau, J., Jouve, W., Consel, C.: DiaSim: A parameterized simulator for pervasive

computing applications. In: Mobile and Ubiquitous Systems: Networking & Services,
MobiQuitous (2009)

5. Armac, I., Retkowitz, D.: Simulation of Smart Environments. In: IEEE International
Conference on Pervasive Services, pp. 322–331 (2007)

6. Barton, J., Vijayaraghavan, V.: Ubiwise: A Ubiquitous Wireless Infrastructure Simulation
Environment. Technical report, HPL-2002-303, HP Labs (2002),
http://www.hpl.hp.com/techreports/2002/HPL-2002-303.pdf

7. King, J., Bose, R., Yang, H.-I., Pickles, S., Helal, A.: Atlas: A Service-Oriented Sensor
Platform: Hardware and Middleware to Enable Programmable Pervasive Spaces. In:
Proceedings of 31st IEEE Conference on Local Computer Networks (2006)

8. Sensor/Actuator Emulator for the Atlas Platform,
http://www.icta.ufl.edu/atlas/emulator/
AtlasSensorEmulatorProgrammersManualv1.1.pdf

 Between Simulator and Prototype: Crossover Architecture 385

9. Huebscher, M.C., McCann, J.A.: Simulation model for self-adaptive applications in
pervasive computing. In: Proceedings of 15th International Workshop on Database and
Expert Systems Applications, pp. 694–698 (2004)

10. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In: Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems, SenSys (2003)

11. Georgakoudis, G., Koutsoumbelias, M., Lalis, S., Lampsas, P.: D4.2.3 Final System
Simulator. STREP/FP7-ICT POBICOS project deliverable (2011)

12. Palacka, V., Prekop, J., Koyš, J., Chabada, J., Bujna, M.: D5.1.3 Application development
report. STREP/FP7-ICT POBICOS project deliverable (2011)

	Between Simulator and Prototype: Crossover Architecture for Testing and Demonstrating Cyber-Physical Systems*
	Introduction
	Simulator/Prototype Crossover Architectural Approach
	Proof-of-concept Implementation and Experiments
	Related Work
	Conclusion
	References

