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The purpose of the present study was to determine whether subjects who have learned
a complex motor skill exhibit similar neuromuscular control strategies. We studied a

population of experienced gymnasts during backward giant swings on the high bar.

This cyclic movement is interesting because it requires learning, as untrained subjects
are unable to perform this task. Nine gymnasts were tested. Both kinematics and

electromyographic (EMG) patterns of 12 upper-limb and trunk muscles were recorded.

Muscle synergies were extracted by non-negative matrix factorization (NMF), providing
two components: muscle synergy vectors and synergy activation coefficients. First,

the coefficient of correlation (r ) and circular cross-correlation (rmax) were calculated to
assess similarities in the mechanical patterns, EMG patterns, and muscle synergies

between gymnasts. We performed a further analysis to verify that the muscle synergies

(in terms of muscle synergy vectors or synergy activation coefficients) extracted for
one gymnast accounted for the EMG patterns of the other gymnasts. Three muscle

synergies explained 89.9 ± 2.0% of the variance accounted for (VAF). The coefficients

of correlation of the muscle synergy vectors among the participants were 0.83 ± 0.08,
0.86 ± 0.09, and 0.66 ± 0.28 for synergy #1, #2, and #3, respectively. By keeping the

muscle synergy vectors constant, we obtained an averaged VAF across all pairwise
comparisons of 79 ± 4%. For the synergy activation coefficients, rmax-values were

0.96 ± 0.03, 0.92 ± 0.03, and 0.95 ± 0.03, for synergy #1, #2, and #3, respectively. By

keeping the synergy activation coefficients constant, we obtained an averaged VAF
across all pairwise comparisons of 72 ± 5%. Although variability was found (especially

for synergy #3), the gymnasts exhibited gross similar neuromuscular strategies when

performing backward giant swings. This confirms that the muscle synergies are consistent
across participants, even during a skilled motor task that requires learning.

Keywords: motor modules, muscle coordination, nonegative matrix factorization, motor primitives,

electromyography, backward giant circle, gymnastics

INTRODUCTION

Understanding how the central nervous system controls move-

ment of the human body is a challenging question due to the

biomechanical redundancy of the neuromusculoskeletal system,

which is referred to as Bernstein’s degrees of freedom problem

(Bernstein, 1967). For example, at the neuromuscular level, the

same movement can be performed by different muscle coordi-

nation strategies across trials (Torres-Oviedo and Ting, 2007)

and/or between subjects (Ryan and Gregor, 1992; Hug et al.,

2004). Low-dimensional modules formed by muscles activated

in synchrony, referred to as muscle synergies, have been pro-

posed as building blocks that may simplify the construction of

motor behaviors (Ivanenko et al., 2003; d’Avella and Bizzi, 2005;

Ting and McKay, 2007; Torres-Oviedo and Ting, 2007; Ting

and Chvatal, 2010). The decomposition of multiple surface elec-

tromyographic (EMG) signals can be used to extract these syner-

gies. This decomposition algorithm is based on two components:

“muscle synergy vectors” which represent the relative weighting

of each muscle within each synergy; and a “synergy activation

coefficient” which represents the recruitment of the muscle syn-

ergy over time (Torres-Oviedo and Ting, 2007; Hug et al., 2011).

Some previous research has proposed that temporal recruitment

patterns are invariant while the weights can change across sub-

jects/test conditions (Ivanenko et al., 2004, 2005; Cappellini et al.,

2006; Dominici et al., 2011). Others have suggested that the

muscle synergies are spatially fixed (i.e., muscle weightings are

invariant) across subjects/test conditions while temporal recruit-

ment patterns can change (Saltiel et al., 2001; Hart and Giszter,

2004; Torres-Oviedo and Ting, 2007; Hug et al., 2011; Safavynia

and Ting, 2012). In line with this latter proposition, it has been

shown during both postural (Torres-Oviedo and Ting, 2010) and

locomotor tasks (Hug et al., 2011; Chvatal and Ting, 2012) that

muscle synergy vectors (i.e., muscle weightings) are robust across

various mechanical constraints allowing the temporal recruit-

ment to vary according to the task demand. Moreover, altering the

recruitment pattern of spatially fixed muscle synergies can pro-

duce different motor behaviors in animals (Cheung et al., 2005;

Kargo et al., 2010).
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As proposed by Safavynia et al. (2011), the acquisition of new

motor skills can encourage the development of new muscle syner-

gies, change the composition of existing synergies, and/or change

their temporal activation. Through the process of learning, the

modulation of the number and/or the composition of muscle syn-

ergies has been identified for postural tasks in humans (Asaka

et al., 2008; Danna-Dos-Santos et al., 2008) and for reach-to-

grasp tasks in rodents (Kargo and Nitz, 2003). Simultaneously

with improving performance, the composition of the muscle syn-

ergies modulates toward consistent patterns across the animals,

in terms of both synergy composition and temporal recruit-

ment (Kargo and Nitz, 2003). Hug et al. (2010) reported similar

muscle synergies among trained cyclists. However, one com-

mon feature of the movements studied in the aforementioned

studies is that they can be considered as fundamental or basic

movement skills (mainly locomotor and balance skills) and con-

sequently all healthy subjects would be able to perform them

with similar mechanical performance in terms of both kine-

matics and kinetics. As evidence, kinetic patterns in terms of

both effective force and mechanical effectiveness are very similar

between untrained subjects and trained cyclists (Sanderson, 1991;

Mornieux et al., 2008).

The purpose of the present study was to determine whether

experts exhibit similar neuromuscular control strategies during

a complex motor skill. In other words, did the learning pro-

cess necessary to perform this task led to similar muscle syn-

ergies or did each individual develop specific synergies related

to their personal anthropometric, anatomical, or muscular char-

acteristics? In order to answer these questions, we looked at

a homogeneous population of nine experienced gymnasts per-

forming giant swings on a high bar. This cyclic movement is

interesting because it requires learning, as untrained subjects

are unable to perform this task. As proposed by Wulf and Shea

(2002), motor tasks can be qualified as “complex” if they can-

not be mastered in a single session. Consequently, we consid-

ered the gymnastic backward giant swing on a high bar as a

complex motor skill that would provide a contrast to funda-

mental motor skills such as balance, walking, or pedaling. For

the purpose of this study, we used a non-negative matrix fac-

torization (NMF) algorithm to identify muscle synergies from

surface electromyographic recordings performed on 12 upper-

limb and trunk muscles of the right side. In light of recent studies

(Chvatal and Ting, 2012; Safavynia and Ting, 2012), we hypothe-

sized that performing a complex motor performance would result

from the recruitment of similar spatially fixed muscle synergies,

which would be flexibly recruited over the giant swings, across all

individuals.

MATERIALS AND METHODS

PARTICIPANTS

Nine gymnasts performing at national level (age: 19.8 ± 2.5 years,

height: 171 ± 8 cm, body mass: 66 ± 8.1 kg) and with 14 ± 3

years of training experience participated in this study. They were

informed of the purpose of the study and methods used before

providing written consent. The local ethics committee (University

of Nantes) approved the study, and all the procedures conformed

to the Declaration of Helsinki (last modified in 2004).

PROTOCOL

Participants were asked to perform two sets of 11–12-linked

backward giant swings, with 3–5 min of rest period in-between.

A giant swing was defined as a complete rotation of the subject

around the high bar. In this study, we considered the begin-

ning and the end of a giant swing as when the gymnast was

in the vertical position under the bar (Figure 1). To manage

a complete rotation around the bar, the gymnasts can vary

their body length to account for the loss of velocity due to

the effect of friction between the hands and the bar. The gym-

nasts extend their body away from the bar to lengthen his

radius of gyration during the descent phase, and shorten their

body in the ascent phase (Sevrez et al., 2009). To do this and

in line with the recommendations from the point code of the

International Gymnastic Federation, the elbow and knee joints

should be maintained in extension and only flexion-extension of

the shoulder and hip joints are authorized for varying the body

length.

MATERIALS AND DATA COLLECTION

Motion analysis

The giant swings were recorded with a video camera (Casio

Exilim EX-ZR100, Casio Computer Co. Ltd., Tokyo, Japan) in

the main plane of movement (i.e., sagittal plane) with a sam-

pling frequency of 120 Hz. The camera was placed along the

longitudinal axis of the bar at a distance of 5 m and a height

of 2.60 m, equivalent to the height of the bar from the landing

mat. The placement of the video camera had to cover a suf-

ficient range to record the entire body of the gymnast during

the giant swing, with the high bar at the center of the field.

The calibration square was 1 × 1 m and the origin of the iner-

tial coordinate system was located at the center of the bar in

its neutral position. The x-axis was defined as the horizontal

axis in the main plane of movement. The y-axis was defined

as the vertical axis. The angular position of the gymnast from

the bar was defined as the angle formed by the axis link-

ing the femoral trochanter (hip marker) with the bar and the

y-axis of reference (below the bar). To reconstruct a multi-

segment model of the gymnast, adhesive strips were placed

on defined body locations for use as markers. The digitiza-

tion of body marks was performed using Skillspector© software

(Video4coach, Svendborg, Denmark) for the lower extremity

(ankle, knee, and hip joints) and the upper extremity (wrist,

elbow, and shoulder joints). The trunk was delineated by the

shoulder and the hip. Thus, the model was composed of five seg-

ments (Figure 2): the arm, forearm, trunk, thigh, and leg. The

masses and moments of inertia of different segments were cal-

culated using an anthropometric table (de Leva, 1996), which

was adjusted with consideration that the digitized model had

one upper and one lower limb. Position data was smoothed

using a 4th order low-pass Butterworth filter with a cut-off

frequency of 5 Hz.

Surface electromyography

From the assumption of symmetry in the actions of both upper

limbs during the execution of the elements on the high bar, and

to avoid electrocardiogram artifacts, the activity of 12 muscles
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FIGURE 1 | Angular position of the gymnast during a backward giant

swing. (A) The angular position of the gymnast from the bar was defined as

the angle formed by the axis linking the femoral trochanter (hip marker) with

the bar and the vertical axis of reference (below the bar); (B) Evolution of

the angular position of the gymnast as a function of the normalized time of the

backward giant swing. The black bold line represents the mean value of the

group while the thin color lines represent mean value among 9 successive

giant swings for each gymnast. The gymnasts performed their backward giant

swings in a very similar fashion (for more details see section “Mechanical

Data”). The relationship between the angular position and the normalized

time of the backward giant swing is not linear. The lower part (0–90◦ and

270–360◦ ) is shorter than the upper part (90–270◦ ) of the giant swing.

of the right side of the body was recorded: flexor digitorum

(FD), short head of the biceps brachii (BBsh), long head of the

biceps brachii (BBlh), lateral head of the triceps brachii (TB),

clavicular (anterior) and scapular (posterior) parts of the del-

toideus (DC and DS, respectively), upper part of the trapezius

(TZ), latissimus dorsi (LD), sternocostal part of the pectoralis

major (PM), rectus abdominis (RA), erector spinae at level of

L4 (ES), and rectus femoris (RF). The surface EMG recordings

were made using self-adhesive Ag/AgCl pairs of electrodes (Blue

sensor N, Ambu, Denmark) with an inter-electrode distance of

20 mm (center-to-center). The electrodes were placed longitudi-

nally with respect to the underlying muscle fiber arrangement

(de Luca, 1997) and were located according to the recommen-

dations of Surface EMG for Non-Invasive Assessment of Muscles

(SENIAM) (Hermens et al., 2000) when available. For back mus-

cles (TZ, LD, and ES), the electrodes position was according to

de Sèze and Cazalets (2008). Skin was shaved and cleaned with

alcohol and ether to minimize impedance before applying the

electrodes. The wires connected to the electrodes were secured

carefully with adhesive tape to avoid any movement-induced arti-

facts. Raw EMG signals were preamplified close to the electrodes

(gain 375, bandwidth 8–500 Hz) at a sampling rate of 1000 Hz

(ME6000, Mega Electronics Ltd., Kuopio, Finland). The EMG

device was firmly attached on a belt during execution of the

giant swings.

EMG-video synchronization

To synchronize the motion capture with the EMG recordings, per-

cutaneous muscular stimulation (model DS7A, Digitimer Ltd.,

Letchworth Garden City, UK) was performed on the forearm

muscles of the gymnast prior to and subsequent to each set of

12-linked giant swings. Both video and EMG were recorded when

the stimulation was applied, bringing a brief artifact on the EMG

signal of the FD muscle and lighting a LED in the field of the video

camera.

DATA ANALYSIS

Biomechanical profile of the giant swing

Kinematic and dynamic variables were extracted from the motion

capture such as the horizontal and vertical positions of the cen-

ter of gravity (CG) of each segment and of the gymnast’s model

(in m), the angular velocity of the gymnast (ωG, in ◦/s), and the

shoulder and hip flexion-extension angle (in degree). Herein a

flexion of the shoulder joint refers to a decrease in the trunk-

upper arm angle of the digitized model, which is in contrast to the

clinical frontal shoulder flexion that generally corresponds to an

increasing angle between the trunk and the arm. The moment of

inertia (IG, in kg.m2) around the gymnast’s CG and the gymnast’s

total body energy (ETot, in Joule/kg) were calculated. The moment

of inertia around the gymnast’s CG was computed as follows:

IG =

5
∑

i = 1

[

Ii + (M · mi) · d2
i

]

, (1)

where Ii was the moment of inertia of the ith segment, M the mass

of the gymnast, mi the mass of the ith segment, di the distance

between the CG of the ith segment and the CG of the whole gym-

nast’s body. According to de Leva (1996), the moment of inertia

of each segment i was equal to:

Ii = (M · mi) · (li · ri)
2, (2)

where li was the length of the ith segment and ri was the radius of

gyration of the ith segment about the transversal axis expressed as

a proportion of the segment length.
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FIGURE 2 | (A) Joint angles and body segments of the gymnast model; (B)

Horizontal and vertical positions of the gymnasts’ CG; (C) Flexion-extension

of the shoulder joint; (D) Flexion-extension of the hip joint; (E) Angular

velocity of the gymnast model (hip marker); (F) Moment of inertia, and (G)

Mechanical energy of the gymnast model. The black bold line represents the

mean value of the group while the thin color lines represent the mean value

among 9 successive giant swings for each gymnast (for the color legend, see

Figure 1). Except for the moment of inertia that exhibited a high

interindividual variability due to large time shifts, all the biomechanical

variables were similar among the participants.

According to Arampatzis and Brüggemann (2001), the gym-

nast’s total body energy was equal to:

ETot =

5
∑

i = 1

(1/2 · (M · mi)v2
i + 1/2 · Iiω

2
i + (M · mi)ghi), (3)

where vi was the linear velocity of the ith segment, ωi the angular

velocity of the ith segment, g the acceleration due to gravity, and

hi the height of the ith segment center of gravity. ETot was normal-

ized to the body mass of the gymnast for comparison purpose.

The examined variables (positions of the CG of the gymnast,

joint angles, angular velocity, moment of inertia, and mechanical

energy) were presented as a function of the body position angle,

from 0 to 360◦ with 0◦ corresponding to the vertical axis below

the high bar.

Extraction of muscle synergies

As inter-cycle variability contains important information for

identifying the muscle synergies (Clark et al., 2010; Ting et al.,

2012), they were extracted from a set of nine consecutive giant

swings, with the first and last giant swing being automati-

cally removed. EMG signals were band-pass filtered (20–450 Hz,

Butterworth filter, 2nd order), rectified, smoothed with a zero lag

low-pass filter (9 Hz, Butterworth filter, 2nd order), and time-

normalized in order to obtain 200 data points for each giant

swing. EMG was normalized to the maximum level of activ-

ity across all giant swings (Turpin et al., 2011a). Therefore, as
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is classically done in studies focusing on muscle synergies, the

degree of muscle activity was not taken into consideration.

NMF was performed from this dataset. For this purpose, we

implemented the Lee and Seung (2001) algorithm. Matrix factor-

ization minimizes the residual Frobenius norm between the initial

matrix and its decomposition, and is given as:

E = WC + e (4)

min
W ≥ 0
C ≥ 0

∥

∥E − WC‖FRO (5)

where E is a p-by-n initial matrix (p = number of muscles and

n = number of time points), W is a p-by-s matrix (s = num-

ber of synergies), C is a s-by-n matrix, and e is a p-by-n matrix.

‖•‖FRO establishes the Frobenius norm, W represents the mus-

cle synergy vectors matrix, C is the synergy activation coefficients

matrix, and e is the residual error matrix. The algorithm is based

on iterative updates of an initial random guess of W and C that

converge to a local optimal matrix factorization [see Lee and

Seung (2001) for more details]. To avoid local minima, the algo-

rithm was repeated 20 times for each subject. The lowest cost

solution was kept (i.e., minimized squared error between original

and reconstructed EMG patterns). The initial matrix E consisted

of 9 consecutives giant swings for the 12 muscles. As each giant

swing was interpolated to 200 time points, E was a 12-row and

1800-column matrix.

We iterated the analysis by varying the number of synergies

between 1 and 12 and then selected the least number of syner-

gies that accounted for >90% of variance accounted for (VAF)

(Torres-Oviedo et al., 2006) or until adding an additional synergy

did not increase VAF by >5% of VAF (Clark et al., 2010). Mean

total VAF was defined as (Torres-Oviedo et al., 2006):

VAF = 1 −

p
∑

i = 1

n
∑

j = 1

(ei, j)
2

p
∑

i = 1

n
∑

j = 1

(Ei, j)
2

(6)

As the determination of the correct number of muscle synergies

is not a trivial matter (Tresch et al., 2006), we further con-

firmed our results by using the best linear fit (BLF) method which

selected the smallest n such that a linear fit of the “VAF” vs.

“number of synergies” curve, from n to 12, had a residual mean

square error of less than 5 × 10−5 [i.e., the point at which the

VAF curve plateaus to a straight line; see Cheung et al. (2005);

Ajiboye and Weir (2009)]. Finally, we used a method reported

by Cheung et al. (2009), named “knee point (KP)” herein. Briefly,

the “VAF” vs. “number of synergies” curve was constructed from

both the original EMG dataset and an unstructured EMG dataset

generated by randomly shuffling the original dataset across time

and muscles. n was then defined as the point beyond which the

original-slope drops below 75% of the surrogate-slope. This cor-

responds to the number beyond which any further increase in the

number of extracted synergies yields a VAF increase smaller than

75% of that expected from chance.

We calculated VAF for each muscle (VAFmuscle) to ensure

that each muscle activity pattern was well accounted for by

the extracted muscle synergies [for further details, see Hug

et al. (2011)]. Finally, to further determine the subject-specific

dimensionality of the data we calculated, for each gymnast, VAF

for each of the extracted muscle synergies.

Cross-validation of the extracted muscle synergies

To verify the within-subject consistency of the extracted mus-

cle synergies, we used a cross-validation procedure as proposed

by previous research (e.g., Cheung et al., 2005, 2009; Ting and

Chvatal, 2010). For each participant, we checked that the mus-

cle synergy vectors extracted for one set of giant swings (first set)

accounted for the EMG patterns in the other set. To do this, the

muscle synergy matrix (muscle synergy vectors) was held fixed

in the algorithm and the coefficients matrix was free to vary [for

additional details, see Hug et al. (2011)].

Between-subject similarity

The comparison of the shape (i.e., waveform) of mechanical

patterns, individual EMG patterns and synergy activation coeffi-

cients was assessed using two criterions: the Pearson’s correlation

coefficient (r) and the circular cross-correlation coefficient (rmax).

We also calculated the absolute lag times that assess differences

in the timing of the activations (i.e., the magnitude of the time

shift between mechanical patterns, EMG patterns or between syn-

ergy activation coefficients) as the lag time at the maximum of

the cross-correlation function. As we are aware of the fact that

r-values, rmax-values and lag times provide some redundant infor-

mation, we chose to report all of these indexes to increase our

ability to compare our results with other studies that did not

necessary report all these types of information. The index of

similarity corresponded to both the averaged r- and rmax-value

between each pair of participants.

We then determined the similarity of muscle synergy vectors

across participants by calculating a Pearson’s correlation coef-

ficient between each pair of participants. Based on the same

principle that was previously described by Safavynia and Ting

(2012), we considered a pair of muscle synergy vectors to be

similar if r = 0.71, which corresponds to the critical value of r

for 10 degrees of freedom (i.e., 12 − 2 muscles) at p = 0.01.

However, because the NMF algorithm constrains muscle weight-

ings to be non-negative, one would expect positive correla-

tion by chance (Safavynia and Ting, 2012). Therefore, for each

extracted synergy we generated 1000 random permutations of

the weightings obtained from the extraction of the muscle

synergy vectors. Then we calculated the r-value for each pair

(36 pairs × 1000 iterations = 3600 r-values) and for each syn-

ergy, yielding a distribution of r-values expected by chance. An

r-value of 0.71 corresponded to the 99th percentile of the dis-

tribution. Consequently, we considered a pair of muscle synergy

vectors with a r = 0.71 more similar than expected by chance,

and thus muscle synergy vectors with a r < 0.71 were considered

different.

To further assess the similarity of the muscle synergies between

the gymnasts, we checked that the muscle synergies extracted

from one gymnast accounted for the overall and individual EMG

patterns of each of the other gymnasts. The first step aimed at

identifying the robustness of the muscle synergy vectors across
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the subjects. To do this, the muscle synergy vectors matrix

extracted from one subject (i.e., control subject herein, Wcontrol)

was held fixed in the NMF algorithm while the activation coef-

ficient matrix of the compared subject (Csubject) was free to

vary (Torres-Oviedo et al., 2006; Hug et al., 2011). Csubject was

initialized with random values and iteratively updated until con-

vergence. The EMG data matrix of the compared subject (Esubject)

was provided to the algorithm with the following update rule

(Lee and Seung, 2001):

(Csubject)ij ← (Csubject)ij

(WcontrolEsubject)ij

(WcontrolWcontrolCsubject)ij
(7)

This process was performed for each of the 72 pairwise com-

parisons (nine gymnasts compared with the eight others). The

overall VAF and VAFmuscle were used to quantify the success of the

fixed muscle weightings and the newly computed synergy activa-

tion coefficients to reconstruct the EMG patterns. A VAFmuscle >

75% was considered satisfying (Torres-Oviedo and Ting, 2007).

The second step was similar to the first but aimed to determine

the robustness of the activation coefficients across the partici-

pants by fixing the activation coefficients matrix (Ccontrol) while

the muscle synergy vectors matrix (Wsubject) was free to vary.

Finally, a Two-Way ANOVA (factors: muscles and reconstruc-

tion methods, i.e., fixed muscle synergy vectors vs. fixed synergy

activation coefficients) was used to determine whether VAFmuscle

differed between the muscles and was influenced by the recon-

struction method (fixed vectors vs. fixed coefficients). Post-hoc

analyses were made with Scheffe’s tests. The level of significance

was p = 0.05.

RESULTS

MECHANICAL DATA

Figure 2 depicts the kinematic and dynamic data computed from

the motion capture of the giant swings. Due to the hip and the

shoulder flexion, the gymnasts managed to increase their angu-

lar velocity (on average from 230 to 275◦/s between 35 and 90◦

of the giant swing), which when associated with the decrease in

the moment of inertia of the gymnast, allowed an increase in

mechanical energy to a sufficient level to attain the handstand

position above the bar (i.e., 180◦ of the giant swing).

Relative to the horizontal and vertical positions of the CG

of each segment of the gymnast’s model, the indices of similar-

ity (i.e., r and rmax) were extremely high, ranging from 0.98 ±

0.02 to 1.00 ± 0.00. Regardless of the height of the participants,

the trajectory of the CG of the gymnast’s model was similar

among them (Figure 2) with an averaged r-value and rmax-value

of 1.00 ± 0.00. The averaged absolute lag time between each

pair of participants was below 1% of the giant swing for each

kinematic parameter (horizontal and vertical position of the seg-

ments’ and gymnast’s CG). The indices of similarity for the

shoulder and hip joint angles, the angular velocity, the moment

of inertia, and the mechanical energy of the gymnast are reported

in Table 1. Except for the moment of inertia that exhibited a

low averaged r-value (0.32 ± 0.55 and range: −0.81 to 0.97)

due to large time shifts (averaged lag time = 17.2 ± 17.3%;

range: 0.5–50.0% of the giant swing), all the biomechanical

Table 1 | Similarity of the kinematic and dynamic parameters across

participants.

r rmax Lag (%)

Shoulder angle 0.83 (0.36–0.96) 1.00 (1.00–1.00) 4.1 (0.0–11.5)

Hip angle 0.88 (0.62–0.98) 1.00 (1.00–1.00) 2.1 (0.0–5.5)

Angular velocity 0.97 (0.95–0.99) 1.00 (0.99–1.00) 0.9 (0.0–2.5)

Moment of inertia 0.32 (−0.81–0.97) 1.00 (0.99–1.00) 17.2 (0.5–50.0)

Mechanical energy 0.89 (0.77–0.97) 1.00 (0.99–1.00) 2.2 (0.0–4.5)

Values are mean (min-max). Lags were calculated as the lag times that maxi-

mized the cross-correlation function and correspond to the absolute time shift

between the two waveforms (% giant swing).

Except for the moment of inertia that exhibited a low averaged r-value due to

large time shifts (about 17% of the giant swing), all the biomechanical variables

were similar among the participants.

variables were similar among the participants. The lag that leads

to differences in moment of inertia was mainly attributable to

participant #7 who exhibited a moment of inertia in anti-phase

relative to the other participants. This confirms that our pop-

ulation of gymnasts was homogeneous as they performed their

backward giant swings similarly in terms of kinematics as well

as dynamics.

INDIVIDUAL EMG PATTERNS

For each participant, the EMG patterns for the 12 muscles inves-

tigated are depicted in Figure 3. The inter-subject indices of

similarity (i.e., r and rmax) are reported in Table 2. The aver-

aged r-value between each pair of participants was 0.70 ± 0.20,

and ranged from 0.26 (DC) to 0.89 (FD). The averaged rmax-

value was 0.90 ± 0.05, and ranged from 0.83 (DC) to 0.96 ± 0.02

(FD and RA). While the pattern of activity of some muscles exhib-

ited high similarity between participants (e.g., FD, BBlh, LD, RA,

ES, and RF), others were more variable (e.g., BBsh, TB, DC, DS,

and TZ). The higher rmax-values compared with r-values showed

that the variability between participants can be partly explained

by time shifts of the EMG patterns. Indeed, we found an abso-

lute lag time ranging from 1.5% (ES) to 18.5% (DC) in the giant

swing (Table 2). The largest time shifts were observed for BBsh,

DC, and TB muscles and were mainly attributable to participant

#6 and #7 (Figure 3).

NUMBER OF EXTRACTED MUSCLE SYNERGIES

Figure 4A depicts the cumulative percentage of variance

explained by each number of muscle synergies. Using the crite-

rion previously described (i.e., VAF > 90% or until adding an

additional synergy did not increase VAF by >5%), three syner-

gies were identified for all the participants. When applying the

BLF method, 6 out of 9 participants exhibited 3 muscle syner-

gies (Figure 4B). When applying the KP method describing by

Cheung et al. (2009), 8 out of 9 participants exhibited 4 muscle

synergies (Figure 4B). These three analyses reveal that all (or most

of) the participants exhibited the same number of muscle syn-

ergies (100% for the threshold method, 66% for BLF, and 89%

for KP). Because it has not been demonstrated that one of this

methods is more accurate than another to determine the correct
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FIGURE 3 | Electromyographic (EMG) envelope for 12 muscles obtained

in nine gymnasts during linked backward giant swings. Each profile

represents an individual EMG pattern averaged across 9 consecutive giant

swings and is expressed as a function of the percentage of the giant swing

(0 and 100% correspond to the vertical position of the gymnast under

the bar). The black bold line indicates the mean profile across the nine

gymnasts while the thin color lines represent the individual data (for the

color legend, see Figure 1). EMG was normalized to the maximum level

of activity across all giant swings. While the pattern of activity of some

muscles exhibited high similarity between participants (e.g., FD, BBlh, LD,

RA, ES, and RF), others were more variable (e.g., BBsh, TB, DC, DS,

and TZ). Variability between participants can be partly explained by time

shifts of the EMG patterns. FD, flexor digitorum; BBsh, short head of the

biceps brachii; BBlh, long head of the biceps brachii; TB, lateral head of the

triceps brachii; DC, clavicular part of the deltoideus; DS, scapular part of the

deltoideus; TZ, upper part of the trapezius; LD, latissimus dorsi, PM,

sternocostal part of the pectoralis major; RA, rectus abdominis; ES, erector

spinae at level of L4; RF, rectus femoris.

number of muscle synergies and because three muscle synergies

were found to characterize the data in 2 out of the 3 methods, we

decided to use three muscle synergies for all the participants for

the subsequent analysis.

Three muscle synergies accounted for a mean VAF of

89.9 ± 2.0% (range: 86.1–92.5%) and the VAFmuscle ranged from

70.9 ± 8.5 to 92.8 ± 4.3% (Figure 4C). While VAFmuscle of BBsh,

DC, and TZ was lower than 75% for some participants (1–2,

depending on the muscle), VAFmuscle consistently dropped below

75% for RF. The VAF explained by each of the three extracted

muscle synergies is depicted in Figure 5 for each gymnast.

We observed between-subject variability, especially for synergy

#2 and #3 (coefficient of variation = 6.3, 34.7, and 53.9% for syn-

ergy #1, #2, and #3, respectively). This variability can be explained

mainly by the fact that VAF was higher for synergy #3 compared to

synergy #2 for participant #1 and #2, while it was to the contrary

for all the other participants (Figure 5).

WITHIN-SUBJECT CONSISTENCY OF THE EXTRACTED MUSCLE

SYNERGIES

An individual example (participant #6) of the three muscle syner-

gies extracted during both the first and the second set is depicted

in Figure 6. The cross-validation procedure showed that the

muscle synergy vectors extracted for the first set of linked back-

ward giant swings explained 87.9 ± 2.7% (range: 83.5–91.7%)

of the variability of the dataset obtained during the second set.

To further assess the repeatability of the extracted muscle syner-

gies, we compared the two sets of giant swings. Both the synergy

activation coefficients and the muscle synergy vectors exhibited

good repeatability. The averaged r-value over the three mus-

cle synergies was 0.93 ± 0.05 (range: 0.88–0.98) for the synergy

activation coefficients and 0.93 ± 0.06 (range: 0.87–0.98) for the

muscle synergy vectors.

Overall, these results clearly show that the muscle synergies

were robust for a given participant allowing us to interpret a dif-

ference between participants as different motor control strategies

rather than as methodological issues.

BETWEEN-SUBJECT VARIABILITY OF THE EXTRACTED MUSCLE

SYNERGIES

The three extracted muscle synergies are depicting in Figure 7.

The temporal activation of muscle synergies (i.e., synergy acti-

vation coefficients) was consistent across participants [r-value

of 0.87 (range: 0.53–0.98), 0.76 (range: 0.50–0.87), and 0.72

(range: −0.03–0.98) for synergy #1, #2, and #3, respectively;

rmax-value of 0.96 (range: 0.87–0.99), 0.92 (range: 0.86–0.98), and

0.95 (range: 0.85–0.99) for synergy #1, #2, and #3, respectively].

The higher rmax-values compared with r-values suggest that vari-

ability between participants is partly explained by time shifts. The

mean absolute lag time was 4.3 ± 2.1% of the giant swing and

ranged from 2.7 ± 1.9% (synergy #1) to 6.7 ± 9.9% (synergy #3)

of the giant swing. The larger time shift observed in synergy #3

Frontiers in Computational Neuroscience www.frontiersin.org December 2012 | Volume 6 | Article 99 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Frère and Hug Muscle synergies during giant swings

Table 2 | Between-subject variability of the EMG profiles.

r rmax Lag (%)

Flexor digitorum 0.89 (0.75–0.96) 0.96 (0.92–0.99) 2.1 (0.0–6.0)

Biceps brachii

(short head)

0.55 (0.03–0.96) 0.85 (0.67–0.98) 13.3 (0.0–40.5)

Biceps brachii

(long head)

0.80 (0.44–0.98) 0.93 (0.83–0.99) 3.2 (0.0–8.5)

Triceps brachii 0.52 (0.04–0.90) 0.86 (0.71–0.97) 9.0 (0.0–46.0)

Deltoideus

(anterior part)

0.26 (−0.37–0.81) 0.83 (0.71–0.94) 18.5 (0.0–48.0)

Deltoideus

(posterior part)

0.58 (0.02–0.83) 0.84 (0.66–0.94) 5.4 (0.0–46.0)

Trapezius 0.59 (0.14–0.91) 0.86 (0.67–0.96) 5.8 (0.0–24.0)

Latissimus dorsi 0.82 (0.49–0.96) 0.92 (0.81–0.99) 2.9 (0.0–12.0)

Pectoralis major 0.74 (0.49–0.98) 0.90 (0.73–0.99) 4.1 (0.0–10.0)

Rectus abdominis 0.86 (0.51–0.99) 0.96 (0.89–0.99) 2.4 (0.0–7.5)

Erector spinae 0.87 (0.58–0.98) 0.95 (0.89–0.99) 1.5 (0.0–4.0)

Rectus femoris 0.86 (0.46–0.97) 0.94 (0.85–1.00) 1.6 (0.0–4.5)

Values are mean (min-max). Lags were calculated as the lag times that maxi-

mized the cross-correlation function and correspond to the absolute time shift

between the two waveforms (% giant swing).

While the pattern of activity of some muscles exhibited high similarity between

participants (e.g., FD, BBlh, LD, RA, ES, and RF), others were more variable (e.g.,

BBsh, TB, DC, DS, and TZ). As rmax -values are very high, variability between

participants can be partly explained by time shifts of the EMG patterns.

compared to synergy #1 and #2 was mainly attributable to partic-

ipant #5. Indeed, its peak of activation occurred during the first

half of the swing (<50% of the total swing), while the other par-

ticipants had their peak of activation coefficients in the second

half of the swing (Figure 7).

Concerning the muscle synergy vectors, we found an averaged

r-value of 0.83 (range: 0.62–0.97), 0.86 (range: 0.64–0.98), and

0.66 (range: 0.03–0.97) for synergy #1, #2, and #3, respectively.

Considering the critical r-value of 0.71 (see methods), four pair-

wise comparisons (out of 36 possibilities, i.e., 11%) were different

for synergy #1, two (6%) were different for synergy #2, and 13

were different for synergy #3 (36%). This clearly shows that the

composition of synergy #1 and #2 was consistent across partici-

pants while the composition of synergy #3 was more variable, as

highlighted by Figure 7.

As explained in the Methods, two additional analyses have been

performed to test the similarity of the muscle synergies between

participants. First, by keeping the muscle synergy vectors con-

stant, we obtained an averaged VAF across all pairs of 79.3 ± 3.7%

(range: 70.6–87.5%). The VAFmuscle ranged between 48.2 ± 9.9%

(DC) and 86.8 ± 2.4% (RA). Relative to the preset threshold of

VAFmuscle >75%, the EMG patterns of the BBsh, DC, and RF

muscles were not correctly reconstructed (Figure 8). By keeping

the synergy activation coefficients constant, the averaged VAF

was 72.4 ± 4.8% (range: 60.2–82.9%). The VAFmuscle ranged

between 56.1 ± 3.8% (DC) and 83.0 ± 5.4% (FD). Relative to

the preset threshold of VAFmuscle >75%, the EMG pattern of

the BBsh, TB, DC, DS, TZ, PM, ES, and RF muscles were

not correctly reconstructed (Figure 8). The Two-Way ANOVA

FIGURE 4 | Variance accounted for (VAF) and number of extracted

muscle synergies. (A) The percentage of variance accounted for is

depicted for each participant as a function of the number of extracted

synergies. Error bars indicate the 95% bootstrap confidence interval across

the participants for both the VAF calculated from the original data set

(black bold line) and the VAF calculated from the unstructured EMG dataset

generated by randomly shuffling the original dataset across time and

muscles (gray bold line). (B) Number of extracted muscle synergies based

on the VAF threshold method (VAF), the best linear fit method (BLF, Cheung

et al., 2005) and the knee point method (KP, Cheung et al., 2009). (C)

VAFmuscle is depicted for each participant and each muscle. For both Panels

(A and C), the black bold line indicates the mean profile across the nine

gymnasts. Abbreviations for individual muscles are described in the legend

of Figure 3. For the color legend, see Figure 1.

showed a significant main effect for both “muscle” and “recon-

struction method” (p < 0.01). More precisely, VAFmuscle was

significantly lower when the synergy activation coefficients were

fixed than when muscle synergy vectors were fixed (70.2 ± 10.5%
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FIGURE 5 | Variance Explained For (VAF) for each of the three extracted

muscle synergies. For each gymnast, VAF explained by each of the three

extracted muscle synergies was calculated (Left panel). The temporal

activation of each muscle synergy is depicted as a function of the mean

angular position (Right panel). For all the gymnasts, it clearly appears that

the dimensionality in their EMG data was mainly explained by the first muscle

synergy. Gymnasts #1 and #2 exhibited a higher VAF by the third synergy

than the second one. This strategy differs from the seven other gymnasts.

FIGURE 6 | Within-subject consistency of the muscle synergies

extracted during the two sets of linked backward giant swings. This

figure depicts an individual example (Participant #6). On the left panel, the

thin lines correspond to the synergy activation coefficient extracted for

each giant swing and the bold lines correspond to the averaged profile

over the 9 consecutive giant swings. Red stands for the set #1 and

blue stands for the set #2. The corresponding muscle synergy vectors are

depicted on the right panel. This figure clearly shows that the muscle

synergies were robust for a given participant. Indeed, the cross-validation

procedure showed that the muscle synergy vectors extracted for the

first set of linked backward giant swings explained 87.9 ± 2.7% (range:

83.5–91.7%) of the variability of the dataset obtained during the second

set. Abbreviations for individual muscles are described in the legend of

Figure 3.

vs. 75.4 ± 14.1%, respectively). VAFmuscle was significantly lower

for BBsh, DC, DS, TZ, and RF muscles than for the others.

Overall, these results suggested that the muscle synergy vec-

tors were more consistent across the gymnasts than the synergy

activation coefficients.

DISCUSSION

The results of the present study outlined three muscle synergies

that accounted for the EMG patterns during giant swings on

a high bar. The relative consistency of muscle synergies across

trained gymnasts confirms that muscle synergies are consistent

across participants (Torres-Oviedo and Ting, 2007; Cheung et al.,

2009; Hug et al., 2011; Turpin et al., 2011b; Chvatal and Ting,

2012), even during a skilled motor task requiring learning.

METHODOLOGICAL CONSIDERATIONS

As done in previous research (Turpin et al., 2011a), EMG activ-

ity from each muscle was normalized to its peak value from all

of the cycles. Note that this normalization procedure only pro-

vides information about the level of muscle activity in relation
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FIGURE 7 | Synergy activation coefficients (C) and muscle synergy

vectors (W ) across the nine gymnasts. (A) The synergy activation

coefficients are shown at the top of the figure for all the participants and for

the three extracted synergies (solid lines in different colors). The synergy

activation coefficients are expressed as a function of the percentage of

the giant swing (0 and 100% correspond to the vertical position of the

gymnast under the bar). The mean synergy activation coefficient over all

the participants is represented by the black bold line. (B) The muscle

synergy vectors are shown at the bottom of the figure for all the participants.

Individual muscle weightings are depicted for each muscle within each

synergy. r- and/or rmax-values correspond to the averaged value between

each pair of participants. Synergy #1 mainly involved trunk and hip flexor

muscles (e.g., LD, PM, RA, RF) at the beginning of the ascendant phase of

the swing. Synergy #2 mainly involved arm (TB) and shoulder muscles

(DC, DS, TZ) and was activated during the upper part of the giant swing.

Finally, synergy #3 mainly involved FD, ES, and LD and is activated to ensure

the grip on the bar and the hip extension of the gymnast. For muscle

abbreviations, see the Figure 3 legend. For the color legend, see Figure 1.

to this peak value (i.e., waveform of the EMG patterns). In other

words, while interindividual variability in terms of degree of mus-

cle activity can exist, the present study only focuses on the EMG

waveform variability. This choice was motivated by the fact than

an ideal normalization method to quantify the degree of muscle

solicitation does not exist (Burden, 2010). Whatever the normal-

ization method, a part of the observed variability would have been

attributable to methodological considerations. Consequently, we

considered a muscle synergy as a covariation of muscle activa-

tion where the output level of this activation was not taken into

consideration.

By quantifying the interindividual variability using r-values,

rmax-values, and lag times, our goal was to compare our results

with those of the literature. However, it should be kept in mind

that the smoothing of both the EMG patterns and the synergy

activation coefficients, can influence the r-values (Hug, 2011).

As a wide variety of low-pass filters have been used in the lit-

erature aimed at extracting muscle synergies during locomotor

tasks, e.g., from 4 Hz in Clark et al. (2010) to 40 Hz (Chvatal and

Ting, 2012), caution must be taken when comparing the results of

interindividual variability from studies that used different cut-off

frequencies.

FUNCTIONAL ROLES OF MUSCLE SYNERGIES

The extracted muscle synergies were well related to the mechan-

ics of the giant swing. Synergy #1 mainly involved the trunk and

hip flexor muscles (e.g., LD, PM, RA, RF) at the beginning of

the ascendant phase of the swing that would allow the gymnast

to decrease his moment of inertia, and gain some mechanical

energy and angular velocity to attain the handstand position.
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FIGURE 8 | VAFmuscle obtained by keeping either the muscle synergy

vectors constant or the synergy activation coefficients. Two additional

analyses have been performed to test the similarity of the muscle

synergies between participants (see “Materials and Methods” section).

First, by keeping the muscle synergy vectors constant, we obtained on

averaged a VAFmuscle ranging between 48.2 ± 9.9% (DC) and 86.8 ± 2.4%

(RA). Relative to the preset threshold of VAFmuscle > 75%, the EMG

patterns of BBsh, DC, and RF muscles were not correctly reconstructed. By

keeping the synergy activation coefficients constant, the VAFmuscle ranged

between 56.1 ± 3.8% (DC) and 83.0 ± 5.4% (FD). Relative to the preset

threshold of VAFmuscle > 75%, the EMG pattern of BBsh, TB, DC, DS, TZ,

PM, ES, and RF muscles were not correctly reconstructed. For muscle

abbreviations, see Figure 3 legend.

The forearm muscle (FD) was also involved in synergy #1 to

firmly grip the bar [which was highly in tension in that phase of

the swing (Cagran et al., 2010)] while arm (BBsh, BBlh) muscles

were solicited to stiffen elbow and glenohumeral joints, respec-

tively. Synergy #2 mainly involved the arm (TB) and shoulder

muscles (DC, DS, TZ) and was activated during the upper part

of the giant swing. In light of the inverse dynamic model of a

ground handstand (Kerwin and Trewartha, 2001), synergy #2 was

activated to support the body weight. The activation profile of

synergy #2 also showed a second lower peak near the end of

the descendant phase of the giant swing, simultaneously with

the peak in activity for synergy #3 and with the peak in angu-

lar velocity. The angular velocity of the gymnast increased due to

the gravitational acceleration up to this peak, which might coin-

cide with the end of the “fall-like” part of the giant swing and

with the highest tensile load on the high bar (Cagran et al., 2010).

Therefore, the arm and shoulder muscles of synergy #2 (TB, DC,

DS, TZ), plus the trunk muscles of synergy #3 (LD) were activated

to limit the extension and the tensile load within the shoulder

joint. Finally, the other muscles of synergy #3 ensured the grip on

the bar (FD) and hip extension (ES) of the gymnast’s body. This

arch-like position of the body would set the tension in the flexor

chain muscles and favor the subsequent shoulder flexion during

the ascending section (Frère et al., 2012).

INTERINDIVIDUAL VARIABILITY OF THE NEUROMUSCULAR CONTROL

STRATEGIES

Interindividual variability in EMG patterns has often been

reported at the level of individual muscles (Ryan and Gregor,

1992; Guidetti et al., 1996; Hug and Dorel, 2009; Hug et al., 2011).

It is also the case in the present study where some individual EMG

patterns (e.g., BBsh, TB, DC, DS, and TZ) exhibited interindi-

vidual variability that seems to be higher than the variability

reported during pedaling (Hug et al., 2010). This difference may

be explained by several factors, such as the number of degrees of

freedom (closed vs. open kinematic chain for pedaling and giant

swing, respectively) and the higher smoothing of the EMG pro-

files in the study by Hug et al. (2010), which may increase the

similarity of the waveform (Hug et al., 2012).

It is unclear whether this variance in muscle activation across

subjects would arise from variance in the motor program itself.

In some cases, different muscle synergies have been identified in

subpopulations (Torres-Oviedo and Ting, 2007). For instance,

Torres-Oviedo and Ting (2007) extracted in some participants

a muscle synergy specific to a knee-bending strategy during

balance control. In contrast, despite a relatively high interindi-

vidual variability of some individual muscles, Hug et al. (2010)

reported similar modular organization of muscle coordination

(in terms of number of extracted muscle synergies, compo-

sition, and temporal activation) across trained cyclists during

pedaling. In the present study, three consistent muscle syner-

gies accounted for the EMG patterns in trained gymnasts during

a giant swing, as reported in other cyclic tasks such as pedal-

ing and rowing (Hug et al., 2010; Turpin et al., 2011b). Despite

the overall similarity of both muscle synergy vectors and syn-

ergy activation coefficients across gymnasts, some differences

occurred (36% of the pairwise comparisons of muscle synergy

vectors), mainly for synergy #3. As this synergy is activated at

the end of the descendant phase, the variability of the muscle

synergy vectors may be explained by a lower muscular demand.

Indeed, during the descendant phase of the giant swing, mus-

cular torque accounted for less than gravitational and inertial

torques to enable the arch-like position of the gymnast (Sevrez

et al., 2012). According to previous studies demonstrating that

the spatial components of the muscle synergies are related to

biomechanical functions (Ting and Macpherson, 2005; Torres-

Oviedo and Ting, 2007; McKay and Ting, 2008), this low muscu-

lar demand might involve subtle subject-specific muscle synergy

compositions. High tensile load was determined at the end of

the descending phase of the giant swing (Cagran et al., 2010). To

counteract this tensile load, gymnasts stiffened the shoulder joint

likely by the second peak of activity visible in synergy #2 rather

than by synergy #3. This may confirm the relationship between

muscle synergy composition and functional demand. This also

confirms previous observations that although some muscle syn-

ergies are very robust across subjects, others are more variable

(Hug et al., 2010).

A key bit of information provided by the synergy analysis

regards the number of extracted muscle synergies that have been

proposed to reflect the complexity of motor control (Clark et al.,

2010). As justified in the Methods section, we extracted the same

number of muscle synergies for all the participants. However, the

determination of the correct number of muscle synergies is not

a trivial matter (Tresch et al., 2006) and despite the use of differ-

ent criterion, we cannot affirm that all the participants exhibit the

same number of muscle synergies and thus that they exhibit the
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same complexity of motor control. However, the low coefficient

of variations (mean/SD × 100) in VAF values (ranging from 0%

for 12 muscles synergies to 7% for 1 muscle synergies; 2.2% for 3

muscle synergies) highly suggests that the gymnasts possess a very

similar dimensionality in their EMG data.

NEUROPHYSIOLOGICAL INTERPRETATIONS

The present results showed a strong similarity in neuromuscu-

lar control strategies across the experts during a skilled motor

task (Figure 7). This consistency in muscle synergies might reflect

the existence of lower-level neural control structures that can be

flexibly modulated to result in complex, learned movements as

previously suggested (Cheung et al., 2005; Ting and McKay, 2007;

Torres-Oviedo and Ting, 2007; Hug et al., 2011; Chvatal and Ting,

2012). During skill learning, it has been shown that the modula-

tion of muscles synergy composition emerged up to a stable state

allowing a subsequent change in the temporal profile of the mus-

cle synergies (Kargo and Nitz, 2003). This suggests that muscle

synergies may be formed by adaptive processes in relationship to

the experiences of each individual. Consequently, the relatively

good similarity of muscle synergies observed between the gym-

nasts could be explained by their similar training experience. It

should also be noted, however, that instead of constructing new

muscle synergies during the learning process, it is also possible

that the extracted muscle synergies have been adapted from exist-

ing synergies (Safavynia et al., 2011). Although numerous studies

have suggested that the central nervous system produces move-

ment through a flexible combination of muscle synergies (Ting

and McKay, 2007), it should be kept in mind that other research

has suggested that the synergies better reflect task constraints

(Kutch et al., 2008; Valero-Cuevas et al., 2009). Therefore, the

consistency observed in the present study might also be explained

by the mechanical requirements demanded by the task and would

only signify that the observed synergies are compatible with the

execution of a backward giant swing. As we studied only one con-

dition (without varying constraints), we were not able to test this

hypothesis. However, although mechanical constraints were simi-

lar across individuals, high interindividual variability was evident

for some EMG patterns (e.g., DS, TZ, TB, Figure 3), confirm-

ing that different muscle activity patterns may lead to similar

mechanical patterns, or task performance (Chvatal et al., 2011).

The higher VAF and VAFmuscle values obtained when muscle

synergy vectors were fixed compared to fixed coefficients of acti-

vation further suggest that muscles synergies are spatially fixed

while their temporal patterns of recruitment can vary (Chvatal

and Ting, 2012; Safavynia and Ting, 2012). This spatial consis-

tency of the nervous control of motor behavior might support the

notion that descending cortical signals represent neuronal drives

that select, activate, and flexibly combine muscle synergies spec-

ified to networks in the spinal cord and/or brainstem (Hart and

Giszter, 2004; Cheung et al., 2005). In this way, it has been shown

that only the temporal activation of muscle synergies (and not the

spatial structure) is altered by deafferentation or cortical stroke in

humans (Cheung et al., 2005, 2009).

CONCLUSION

Although variability was found (especially for synergy #3), the

gymnasts exhibited gross similar neuromuscular strategies when

performing several consecutive giant swings. This confirms that

muscle synergies are consistent across participants, even during

a skilled motor task requiring learning. Further investigations

are necessary to both confirm that these muscle synergies reflect

lower-level neural control rather than biomechanical constraints

and to understand whether they are constructed during the learn-

ing process or whether they have been adapted from existing

synergies.
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