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�ere are several centrality measures that have been introduced and studied for real-world networks.�ey account for the di�erent
vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is a measure
of the in	uence of a vertex over the 	ow of information between every pair of vertices under the assumption that information
primarily 	ows over the shortest paths between them. In this paper we present betweenness centrality of some important classes of
graphs.

1. Introduction

Betweenness centrality plays an important role in analysis of
social networks [1, 2], computer networks [3], andmany other
types of network data models [4–9].

In the case of communication networks the distance from
other units is not the only important property of a unit.
What is more important is which units lie on the shortest
paths (geodesics) among pairs of other units. Such units
have control over the 	ow of information in the network.
Betweenness centrality is useful as a measure of the potential
of a vertex for control of communication. Betweenness
centrality [10–14] indicates the betweenness of a vertex in a
network and it measures the extent to which a vertex lies on
the shortest paths between pairs of other vertices. In many
real-world situations it has quite a signi�cant role.

Determining betweenness is simple and straightforward
when only one geodesic connects each pair of vertices, where
the intermediate vertices can completely control communi-
cation between pairs of others. But when there are several
geodesics connecting a pair of vertices, the situation becomes
more complicated and the control of the intermediate vertices
gets fractionated.

2. Background

�e concept of betweenness centrality was �rst introduced
by Bavelas in 1948 [15]. �e importance of the concept of

vertex centrality is in the potential of a vertex for control
of information 	ow in the network. Positions are viewed
as structurally central to the degree to which they stand
between others and can therefore facilitate, impede, or bias
the transmission of messages. Freeman in his papers [5, 16]
classi�ed betweenness centrality into three measures. �e
three measures include two indexes of vertex centrality—one
based on counts and one on proportions—and one index of
overall network or graph centralization.

2.1. Betweenness Centrality of a Vertex. Betweenness central-
ity ��(V) for a vertex V is de�ned as

�� (V) = ∑
� ̸=V ̸=�

��� (V)��� , (1)

where ��� is the number of shortest paths with vertices �
and � as their end vertices, while ���(V) is the number of
those shortest paths that include vertex V [16]. High centrality
scores indicate that a vertex lies on a considerable fraction of
shortest paths connecting pairs of vertices.

(i) Every pair of vertices in a connected graph provides
a value lying in [0, 1] to the betweenness centrality of
all other vertices.

(ii) If there is only one geodesic joining a particular pair
of vertices, then that pair provides a betweenness
centrality 1 to each of its intermediate vertices and
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zero to all other vertices. For example, in a path graph,
a pair of vertices provides a betweenness centrality 1
to each of its interior vertices and zero to the exterior
vertices. A pair of adjacent vertices always provides
zero to all others.

(iii) If there are � geodesics of length 2 joining a pair
of vertices, then that pair of vertices provides a
betweenness centrality 1/� to each of the intermediate
vertices.

Freeman [16] proved that the maximum value taken by��(V) is achieved only by the central vertex in a star as the
central vertex lies on the geodesic (which is unique) joining
every pair of other vertices. In a star �� with 	 vertices, the
betweenness centrality of the central vertex is therefore the
number of such geodesics which is ( �−12 ). �e betweenness
centrality of each pendant vertex is zero since no pendant
vertex lies in between any geodesic. Again it can be seen that
the betweenness centrality of any vertex in a complete graph�� is zero since no vertex lies in between any geodesic as every
geodesic is of length 1.

2.2. Relative Betweenness Centrality. �e betweenness cen-
trality increases with the number of vertices in the network,
so a normalized version is o�en consideredwith the centrality
values scaled to between 0 and 1. Betweenness centrality
can be normalized by dividing ��(V) by its maximum value.
Among all graphs of 	 vertices the central vertex of a star
graph �� has the maximum value which is ( �−12 ). �e relative
betweenness centrality is therefore de�ned as

��� (V) = �� (V)
Max�� (V) = 2�� (V)(	 − 1) (	 − 2) 0 ≤ ��� (V) ≤ 1.

(2)

2.3. Betweenness Centrality of a Graph. �e betweenness
centrality of a graph measures the tendency of a single vertex
to be more central than all other vertices in the graph. It
is based on di�erences between the centrality of the most
central vertex and that of all others. Freeman [16] de�ned the
betweenness centrality of a graph as the average di�erence
between the measures of centrality of the most central vertex
and that of all other vertices.

�e betweenness centrality of a graph � is de�ned as

�� (�) = ∑��=1 [�� (V∗) − �� (V�)]
Max∑��=1 [�� (V∗) − �� (V�)] , (3)

where ��(V∗) is the largest value of ��(V�) for any vertex V�
in the given graph � and Max∑��=1[��(V∗) − ��(V�)] is the
maximum possible sum of di�erences in centrality for any
graph of 	 vertices which occur in star with the value 	 − 1
times ��(V) of the central vertex, that is, (	 − 1) ( �−12 ).

�erefore the betweenness centrality of � is de�ned as

�� (�) = 2 ∑��=1 [�� (V∗) − �� (V�)](	 − 1)2 (	 − 2)
or �� (�) = ∑��=1 [��� (V∗) − ��� (V�)](	 − 1) .

(4)

�0

�1

�2

�4

�3 �5

�6

Figure 1: Wheel graph �7.

�e index, ��(�), determines the degree to which ��(V∗)
exceeds the centrality of all other vertices in �. Since ��(�)
is the ratio of an observed sum of di�erences to its maximum
value, it will vary between 0 and 1. ��(�) = 0 if and only if all��(V�) are equal, and ��(�) = 1 if and only if one vertex V∗

completely dominates the network with respect to centrality.
Freeman showed that all of these measures agree in assigning
the highest centrality index to the star graph and the lowest
to the complete graph (see Table 1).

In this paper we present the betweenness centrality
measures in some important classes of graphs which are the
basic components of larger complex networks.

3. Betweenness Centrality of
Some Classes of Graphs

3.1. Betweenness Centrality of Vertices in Wheels

Wheel Graph ��. A Wheel graph �� is obtained by joining
a new vertex to every vertex in a cycle ��−1. It was invented
by the eminent graph theorist W. T. Tutte. A wheel graph on
7 vertices is shown in Figure 1.

�eorem 1. �e betweenness centrality of a vertex V in a wheel
graph ��, 	 > 5, is given by

�� (V) = {{{{{
(	 − 1) (	 − 5)2 , �� V �� �ℎ� ��	��� V����!,12 , "�ℎ��#���.

(5)

Proof. In the wheel graph �� the central vertex is adjacent
to each vertex of the cycle ��−1. Consider the central vertex
of �� for 	 > 5. On ��−1 each pair of adjacent vertices con-
tributes centrality 0, each pair of alternate vertices contributes
centrality 1/2, and all other pairs contribute centrality 1 to
the central vertex. Since there are 	 − 1 vertices on ��−1,
there exist 	 − 1 adjacent pairs, 	 − 1 alternate pairs, and
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Table 1: Graphs showing extreme betweenness.

� ��(V) ���(V) ��(�)
��

{{{{{{{
(	 − 1

2 ) for central vertex

0 for other vertices

{{{
1 for central vertex

0 for other vertices
1

�� 0 0 0

( �−12 ) − 2(	 − 1) = (	 − 1)(	 − 6)/2 other pairs. �erefore
the betweenness centrality of the central vertex is given by(1/2)(	−1)+1((	−1)(	−6)/2) = (	−1)(	−5)/2. Now for any
vertex on ��−1, there are two geodesics joining its adjacent
vertices on ��−1, one of which passing through it. �erefore
the betweenness centrality of any vertex on ��−1 is 1/2.
Note. It can be seen easily that ��(V) = 0 for every vertex V in�4 and

�� (V) = {{{{{{{

23 , if V is the central vertex,

13 , otherwise

(6)

in �5.
�e relative centrality and graph centrality are as follows:

��� (V) = 2�� (V)(	 − 1) (	 − 2)
= {{{{{

(	 − 5)	 − 2 , if V is the central vertex,1(	 − 1) (	 − 2) , otherwise,
�� (��) = ∑��=1 [��� (V∗) − ��� (V�)](	 − 1) = 	2 − 6	 + 4(	 − 1) (	 − 2) .

(7)

3.2. Betweenness Centrality of Vertices in the Graph �� − �. A
complete graph on 6 vertices with one edge deleted is shown
in Figure 2.

�eorem 2. Let �� be a complete graph on 	 vertices and � =(V�, V
) an edge of it. �en the betweenness centrality of vertices
in �� − � is given by

�� (V) = {{{
1	 − 2 , �� V ̸= V�, V
,0, "�ℎ��#���. (8)

Proof. Suppose the edge (V�, V
) is removed from ��. Now
V� and V
 can be joined by means of any of the remaining	 − 2 vertices. �us there are 	 − 2 geodesics joining V� and
V
 each containing exactly one vertex as intermediary. �is
provides a betweenness centrality 1/(	−2) to each of the 	 − 2
vertices. Again V� and V
 do not lie in between any geodesics
and therefore their betweenness centralities are zero.

�1

�2

�4

�3 �5

�6

Figure 2: Complete graph �6 − (V1, V4).

�e relative centrality and graph centrality are as follows:

��� (V) = 2�� (V)(	 − 1) (	 − 2)
= {{{

2(	 − 1) (	 − 2)2 , V ̸= V�, V
,
0, otherwise,

�� (�) = ∑��=1 [��� (V∗) − ��� (V�)](	 − 1) = 4(	 − 1)2 (	 − 2)2 .

(9)

3.3. Betweenness Centrality of Vertices in

Complete Bipartite Graphs

Complete Bipartite Graphs ��,�. A graph is complete bipartite
if its vertices can be partitioned into two disjoint nonempty
sets '1 and '2 such that two vertices ! and * are adjacent if
and only if ! ∈ '1 and * ∈ '2. If |'1| = 7 and |'2| = 	, such
a graph is denoted ��,�. For example, see �3,4 in Figure 3.

�eorem 3. �e betweenness centrality of a vertex in a
complete bipartite graph ��,� is given by

�� (V) =
{{{{{{{{{

17 (	2) , �� deg (V) = 	,
1	 (72 ) , �� deg (V) = 7. (10)
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�1 �2 �3 �4

u1 u2 u3

Figure 3: Complete bipartite graph �3,4.

Proof. Consider a complete bipartite graph ��,� with a
bipartition {:, �} where : = {;1, ;2, . . . , ;�} and � ={#1, #2, . . . , #�}. �e distance between any two vertices in :
(or in �) is 2. Consider a vertex ; ∈ :. Now any pair of
vertices in � contributes a betweenness centrality 1/7 to ;.
Since there are ( �2 ) pairs of vertices in�, ��(;) = (1/7) ( �2 ).
In a similar way it can be shown that, for any vertex # in �,��(#) = (1/	) (�2 ).

�e relative centrality and graph centrality are as follows:

��� (V) = 2�� (V)(7 + 	 − 1) (7 + 	 − 2)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

2(7 + 	 − 1) (7 + 	 − 2)
× 17 (	2) , if deg (V) = 	,

2(7 + 	 − 1) (7 + 	 − 2)
×1	 (72 ) , if deg (V) = 7,

�� (��,�) = ∑��=1 [��� (V∗) − ��� (V�)](7 + 	 − 1)

=
{{{{{{{{{{{

73 − 	3 − (72 − 	2)
	 (7 + 	 − 1)2 (7 + 	 − 2) , if 7 > 	,

	2 (	 − 1) − 72 (7 − 1)7 (7 + 	 − 1)2 (7 + 	 − 2) , if 	 > 7.
(11)

3.4. Betweenness Centrality of Vertices in Cocktail Party
Graphs. �e cocktail party graph CP(	) [17] is a unique
regular graph of degree 2	 − 2 on 2	 vertices. It is obtained
from �2� by deleting a perfect matching (see Figure 4).
�e cocktail party graph of order 	 is a complete 	-partite
graph with 2 vertices in each partition set. It is the graph
complement of the ladder rung graph @�� which is the graph
union of 	 copies of the path graph A2 and the dual graph of
the hypercube B� [18].

�1

�2

�4

�3 �5

�6

Figure 4: Cocktail party graph CP(3).

�eorem 4. �e betweenness centrality of each vertex of a
cocktail party graph of order 2	 is 1/2.
Proof. Let the cocktail party graph CP(	) be obtained
from the complete graph �2� with vertices {V1, . . . ,
V�, V�+1, . . . , V2�} by deleting a perfect matching {(V1, V�+1),(V2, V�+2), . . . , (V�, V2�)}. Now for each pair (V�, V�+�) there is a
geodesic of length 2 passing through each of the other 2	 − 2
vertices. �us for any particular vertex, there are 	 − 1 pairs
of vertices of the above matching not containing that vertex
giving a betweenness centrality 1/(2	 − 2) to that vertex.
�erefore the betweenness centrality of any vertex is given
by (	 − 1)/(2	 − 2) = 1/2.

�e relative centrality and graph centrality are as follows:

��� (V) = 2�� (V)(2	 − 1) (2	 − 2) = 1(2	 − 1) (2	 − 2) ,
�� (�) = 0. (12)

3.5. Betweenness Centrality of Vertices in Crown Graphs. �e
crown graph [18] is the unique 	 − 1 regular graph with 2	
vertices obtained from a complete bipartite graph ��,� by
deleting a perfect matching (see Figure 5). A crown graph on2	 vertices can be viewed as an undirected graphwith two sets
of vertices ;� and V� and with an edge from ;� to V
 whenever� ̸= C. It is the graph complement of the ladder graph @2�. �e
crown graph is a distance-transitive graph.

�eorem 5. �e betweenness centrality of each vertex of a
crown graph of order 2	 is (	 + 1)/2.
Proof. Let the crown graph be the complete bipartite graph��,� with vertices {;1, . . . , ;�, V1, . . . , V�} minus a perfect
matching {(;1, V1), (;2, V2), . . . , (;�, V�)}. Consider any vertex;
say ;1. Now for each pair (;�, V�) other than (;1, V1) there are	 − 2 paths of length 3 passing through ;1 out of (	 − 1)(	 − 2)
paths joining ;� and V�. Since there are 	 − 1 such pairs, they
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�1 �2 �3 �4

u1 u2 u3 u4

Figure 5: Crown graph with 8 vertices.

give V1 the betweenness centrality (	 − 1) × ((	 − 2)/(	 −1)(	 − 2)) = 1. Again for each pair from {V2, V3, V4, . . . , V�}
there exists exactly one path passing through V1 out of 	 −2 paths. Since there are ( �−12 ) such pairs, they give V1 the
betweenness centrality ( �−12 ) (1/(	−2)) = (	−1)/2.�erefore
the betweenness centrality of V1 is given by 1 + (	 − 1)/2 =(	+1)/2. Since the graph is vertex transitive, the betweenness
centrality of any vertex is given by (	 + 1)/2.

�e relative centrality and graph centrality are as follows:

��� (V) = 2�� (V)(2	 − 1) (2	 − 2) = 	 + 1(2	 − 1) (2	 − 2) ,
�� (�) = 0. (13)

3.6. Betweenness Centrality of Vertices in Paths

�eorem 6. �e betweenness centrality of any vertex in a path
graph is the product of the number of vertices on either side of
that vertex in the path.

Proof. Consider a path graph A� of 	 vertices {V1, V2, . . . , V�}
(see Figure 6). Take a vertex V� in A�. �en there are � − 1
vertices on one side and 	 − � vertices on the other side of V�.
Consequently there are (� − 1) × (	 − �) number of geodesics
containing V�. Hence ��(V�) = (� − 1)(	 − �).

Note that, by symmetry, vertices at equal distance away
from both ends of A� have the same centrality and it is
maximumat the central vertex (vertices) andminimumat the
end vertices. Consider

Max�� (V�) = {{{{{
	 (	 − 2)4 , when 	 is even,

(	 − 1)24 , when 	 is odd. (14)

Relative centrality of any vertex V� is given by

��� (V�) = 2�� (V�)(	 − 1) (	 − 2) = 2 (� − 1) (	 − �)(	 − 1) (	 − 2) . (15)

Corollary 7. Graph centrality of A� is given by

�� (A�) =
{{{{{{{{{

	 (	 + 1)6 (	 − 1) (	 − 2) , �� 	 �� "DD,
	 (	 + 2)6 (	 − 1)2 , �� 	 �� �V�	. (16)

Proof. When 	 is even, by de�nition

�� (A�) = 2(	 − 1)2 (	 − 2)
�∑
�=1

[�� (V∗) − �� (V�)]
= 4(	 − 1)2 (	 − 2)

× {[	 (	 − 2)4 − 0] + [	 (	 − 2)4 − 1 ⋅ (	 − 2)]
+ ⋅ ⋅ ⋅ + [	 (	 − 2)4 − (	 − 42 ) (	 − 	 − 22 )]}

= 4(	 − 1)2 (	 − 2)
× {[	 (	 − 2)4 × 	 − 22 ]

− [1 (	 − 2) + 2 (	 − 3)
+ ⋅ ⋅ ⋅ + (	 − 42 ) (	 − 	 − 22 )]}

= 4(	 − 1)2 (	 − 2)
× {	 (	 − 2)28 − 	(�−4)/2∑

�=1
� + (�−4)/2∑
�=1

� (� + 1)}
= 4(	 − 1)2 (	 − 2)

× {	 (	 − 2)28 − 	 (	 − 2) (	 − 4)8
+ (	 − 2) (	 − 4)8 + (	 − 2) (	 − 3) (	 − 4)24 }

= 1(	 − 1)2
× {	 (	 − 2)2 − 	 (	 − 4)2

+ (	 − 4)2 + (	 − 3) (	 − 4)6 }
= 	 (	 + 2)6 (	 − 1)2 .

(17)
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�1 �2 �3 �4 �k−1 �k �k+1 �n−1 �n

Figure 6: Path graph A�.

When 	 is odd, by de�nition

�� (A�) = 2(	 − 1)2 (	 − 2)
�∑
�=1

[�� (V∗) − �� (V�)]
= 4(	 − 1)2 (	 − 2)

× {[(	 − 1)24 − 0] + [(	 − 1)24 − 1 ⋅ (	 − 2)]
+ ⋅ ⋅ ⋅ + [(	 − 1)24 − (	 − 32 ) (	 − 	 − 12 )]}

= 4(	 − 1)2 (	 − 2)
× {[(	 − 1)24 × 	 − 12 ]

− [1 (	 − 2) + 2 (	 − 3)
+ ⋅ ⋅ ⋅ + (	 − 32 ) (	 − 	 − 12 )]}

= 4(	 − 1)2 (	 − 2)
× {(	 − 1)38 − 	(�−3)/2∑

�=1
� + (�−3)/2∑
�=1

� (� + 1)}
= 4(	 − 1)2 (	 − 2)

× {(	 − 1)38 − 	 (	 − 1) (	 − 3)8
+ (	 − 1) (	 + 1) (	 − 3)24 }

= 1(	 − 1) (	 − 2)
× {(	 − 1)22 − 	 (	 − 3)2 + (	 + 1) (	 − 3)6 }

= 	 (	 + 1)6 (	 − 1) (	 − 2) .
(18)

3.7. Betweenness Centrality of Vertices in Ladder Graphs. �e
ladder graph @� [19, 20] is de�ned as the Cartesian product

�1 �2 �3 �4 �5

�6 �7 �8 �9 �10

Figure 7: Ladder graph @5.

A2 × A� (see Figure 7). It is a planar undirected graph with 2	
vertices and 	 + 2(	 − 1) edges.
�eorem 8. �e betweenness centrality of a vertex in a ladder
graph @� is given by

�� (V�) = (� − 1) (	 − �) + �−1∑

=0

�−�∑
�=1

� − C� − C + �
+ �−2∑

=0

�−�∑
�=0

� + 1� − C + � , 1 ≤ � ≤ 	.
(19)

Proof. By symmetry, let V� be any vertex such that 1 ≤ � ≤(	 + 1)/2. Consider the paths (in Figure 8) from upper le�
vertices {V1, . . . , V�−1} to upper right vertices {V�+1, . . . , V�}
which give the betweenness centrality

(� − 1) (	 − �) . (20)

Now consider the paths from lower le� vertices {V�+1,. . . , V�+�} to the upper right vertices {V�+1, . . . , V�} of V� which
give the betweenness centrality

� { 1� + 1 + 1� + 2 + ⋅ ⋅ ⋅ + 1	}
(� − 1) {1� + 1� + 1 + ⋅ ⋅ ⋅ + 1	 − 1}...

{12 + 13 + ⋅ ⋅ ⋅ + 1	 − (� − 1)}

}}}}}}}}}}}}}}}}}}}}}

= �−1∑

=0

�−�∑
�=1

� − C� − C + � .

(21)
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�1 �2 �3 �k−1 �k �k+1 �n−2 �n−1 �n

�n+1 �n+2 �n+3 �n+k−1 �n+k �n+k+1 �2n−2 �2n−1 �2n

Figure 8: Ladder graph @�.

�1

�2 �3 �4 �5 �k−3 �k−2 �k−1 �k

�k+1

�2k �2k−1 �2k−2 �2k−3 �k+5 �k+4 �k+3 �k+2

Figure 9: Even cycle with 2� vertices.

Again consider the paths from upper le� vertices{V1, . . . , V�−1} to the lower right vertices {V�+�, . . . , V2�} of V�
which give the betweenness centrality

{1� + 2� + 1 + ⋅ ⋅ ⋅ + 	 − (� − 1)	 }
{ 1� − 1 + 2� + ⋅ ⋅ ⋅ + 	 − (� − 1)	 − 1 }

...
{12 + 23 + ⋅ ⋅ ⋅ + 	 − (� − 1)	 − (� − 2)}

}}}}}}}}}}}}}}}}}}}}}

= �−2∑

=0

�−�∑
�=0

� + 1� − C + � .

(22)

�e above three equations when combined get the result.

3.8. Betweenness Centrality of Vertices in Cycles

�eorem 9. �e betweenness centrality of a vertex in a cycle�� is given by

�� (V) = {{{{{{{
(	 − 2)28 , �� 	 �� �V�	,
(	 − 1) (	 − 3)8 , �� 	 �� "DD. (23)

Proof.

Case 1 (when 	 is even). Let 	 = 2�, � ∈ Z
+, and let�� = (V1, V2, . . . , V2�) be the given cycle. Consider a vertex

V1 (see Figure 9).�en V�+1 is its antipodal vertex and there is
no geodesic from V�+1 to any other vertex passing through
V1. Hence we omit the pair (V1, V�+1). Consider other pairs
of antipodal vertices (V�, V�+�) for � = 2, 3, . . . , �. For each
pair of these antipodal vertices there exist two paths of the
same length � and one of them contains V1. �us each pair
contributes 1/2 to the centrality of V1 which gives a total of(1/2)(� − 1). Now consider all paths of length less than �
containing V1. �ere are � − � paths joining V� to vertices from

V2� to V�+1+� passing through V1 for � = 2, 3, . . . , � − 1 and

each contributes centrality 1 to V1 giving a total ∑�−1�=2 (� − �) =(� − 1)(� − 2)/2. �erefore the betweenness centrality of V1 is(1/2)(� − 1) + (� − 1)(� − 2)/2 = (1/2)(� − 1)2 = (1/8)(	 − 2)2.
Since�� is vertex transitive, the betweenness centrality of any
vertex is given by (1/8)(	 − 2)2.
Case 2 (when 	 is odd). Let 	 = 2� + 1, � ∈ Z

+, and let�� = (V1, V2, . . . , V2�+1) be the given cycle. Consider a vertex
V1 (see Figure 10).�en V�+1 and V�+2 are its antipodal vertices
at a distance � from V1 and there is no geodesic path from
the vertexes V�+1 and V�+2 to any other vertex passing through
V1. Hence we omit V1 and the pair (V�+1, V�+2). Now consider
paths of length≤ � passing through V1.�ere are �+1−� paths
joining V� to vertices from V2�+1 to V�+1+� passing through
V1 for � = 2, 3, . . . , � and each contributes a betweenness

centrality 1 to V1 giving a total of∑��=2(�+1− �) = �(�−1)/2 =(	 − 1)(	 − 3)/8. Since �� is vertex transitive, the betweenness
centrality of any vertex is given by (	 − 1)(	 − 3)/8.

�e relative centrality and graph centrality are as follows:

��� (V) = �� (V)
Max�� (V) = 2�� (V)(	 − 1) (	 − 2)

= {{{{{
	 − 24 (	 − 1) , if 	 is even,	 − 34 (	 − 2) , if 	 is odd,
�� (��) = 0.

(24)

3.9. Betweenness Centrality of Vertices in Circular Ladder
Graphs �@�. �e circular ladder graph CL� consists of two
concentric 	-cycles in which each pair of the 	 corresponding
vertices is joined by an edge (see Figure 11). It is a 3-regular
simple graph isomorphic to the Cartesian product �2 × ��.
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�1

�2 �3 �4 �5 �k−2 �k−1 �k �k+1

�2k �2k−1 �2k−2�2k+1 �k+5 �k+4 �k+3 �k+2

Figure 10: Odd cycle with 2� + 1 vertices.

Figure 11: Circular ladder.

�eorem 10. �e betweenness centrality of a vertex in a
circular ladder �@� is given by

�� (V) = {{{{{{{
(	 − 1)2 + 14 , #ℎ�	 	 �� �V�	,
(	 − 1)24 , #ℎ�	 	 �� "DD. (25)

Proof.

Case 1 (when 	 is even). Let 	 = 2�, � ∈ Z
+. Let �2� =(;1, ;2, . . . , ;2�) be the outer cycle and ��2� = (V1, V2, . . . , V2�)

the inner cycle. Consider any vertex; say ;1 in �2�. �en

its betweenness centrality as a vertex in �2� is (� − 1)2/2.
Now the geodesics from outer vertices ;� to the inner vertices
V1, V2�, . . . , V�+� for � = 2, . . . , � (see Figure 12) and from;2�+2−� to V1, V2, . . . , V�+2−� for � = 2, . . . , � by symmetry
contribute to ;1 the betweenness centrality

2 �∑
�=2

(1� + 2� + 1 + ⋅ ⋅ ⋅ + � + 1 − �� + � + 2 − �2� + 2 )
= 2 (12 + 1 + 23 + ⋅ ⋅ ⋅ + 1 + 2 + ⋅ ⋅ ⋅ + � − 1�

+ 2 + 3 + ⋅ ⋅ ⋅ + �2� + 2 )
= 2 �∑
=2

(1 + 2 + ⋅ ⋅ ⋅ + \ − 1)\ + � (� + 1) − 22 (� + 1)
= 2 �∑
=2

\ − 12 + � (� + 1) − 22 (� + 1) = �22 − 1� + 1 .

(26)

Again the pair (;�+1, V1) contributes to ;1 the betweenness
centrality 2/(2� + 2). �erefore the betweenness centrality of;1 is given as

�� (;1) = (� − 1)22 + �22 − 1� + 1 + 1� + 1
= (� − 1)22 + �22 = (2� − 1)2 + 14
= (	 − 1)2 + 14 .

(27)

Case 2 (when 	 is odd). Let 	 = 2� + 1, � ∈ Z
+. Let�2�+1 = (;1, ;2, . . . , ;2�+1) be the outer cycle and ��2�+1 =(V1, V2, . . . , V2�+1) the inner cycle. Consider any vertex; say ;1

in�2�+1.�en its betweenness centrality as a vertex in�2�+1 is�(� − 1)/2. Now consider the geodesics from outer vertices ;�
to the inner vertices V1, V2�+1, . . . , V�+�+1 for � = 2, . . . , � + 1
(see Figure 13) and from ;2�+3−� to V1, V2, . . . , V�+2−� for � =2, 3, . . . , � + 1 which give a betweenness centrality

2 �∑
�=2

(1� + 2� + 1 + ⋅ ⋅ ⋅ + � + 2 − �� + 1 )
= 2 (12 + 1 + 23 + ⋅ ⋅ ⋅ + 1 + 2 + ⋅ ⋅ ⋅ + �� + 1 )
= 2�+1∑
=2

(1 + 2 + ⋅ ⋅ ⋅ + \ − 1)\
= 2�+1∑
=2

\ − 12 = � (� + 1)2 .

(28)

�erefore the betweenness centrality of ;1 is given as

�� (;1) = � (� − 1)2 + � (� + 1)2 = �2 = (	 − 1)24 . (29)

�e relative centrality and graph centrality are as follows:

��� (V) = 2�� (V)(2	 − 1) (2	 − 2)
= {{{{{{{

(	 − 1)2 + 12 (2	 − 1) (2	 − 2) , when 	 is even,

(	 − 1)4 (2	 − 1) , when 	 is odd,
�� (�) = 0.

(30)
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�1

�2 �3 �4 �5 �k−2�k−3 �k−1 �k

�k+1

�2k �2k−1 �2k−2 �2k−3 �k+5 �k+4 �k+3 �k+2

u1

u2 u3 u4 u5 uk−3 uk−2 uk−1 uk

uk+1

u2k u2k−1 u2k−2 u2k−3 uk+5 uk+4 uk+3 uk+2

Figure 12: Circular ladder CL2�.

�1

�2 �3 �4 �5 �k−2 �k−1 �k �k+1

�2k �2k−1 �2k−2�2k+1 �k+5 �k+4 �k+3 �k+2

u1

u2 u3 u4 u5 uk−2 uk−1 uk

u2k u2k−1u2k+1 u2k−2 uk+5 uk+4 uk+3 uk+2

uk+1

Figure 13: Circular ladder CL2�+1.

3.10. Betweenness Centrality of Vertices in Trees. In a tree,
there is exactly one path between any two vertices. �erefore
the betweenness centrality of a vertex is the number of paths
passing through that vertex. A branch at a vertex V of a tree^ is a maximal subtree containing V as an end vertex. �e
number of branches at V is deg(V).
�eorem 11. �e betweenness centrality ��(V) of a vertex V in
a tree ^ is given by

C (	1, 	2, . . . , 	�) = ∑
�<


	�	
, (31)

where the arguments 	� denote the number of vertices of the
branches at V excluding V, taken in any order.

Proof. Consider a vertex V in a tree ^. Let there be �
branches with number of vertices 	1, 	2, . . . , 	� excluding V.
�e betweenness centrality of V in ^ is the total number of
paths passing through V. Since all the branches have only one
vertex V in common, excluding V, every path joining a pair of
vertices of di�erent branches passes through V. �us the total
number of such pairs gives the betweenness centrality of V.
HenceC = ∑�<
 	�	
.
Example 12. Consider the tree given in Figure 14.

Here

�� (V1) = �� (V4) = �� (V6) = �� (V7) = C (6) = 0,
�� (V2) = C (1, 3, 2) = 11,

�� (V3) = C (5, 1) = 5,
�� (V5) = C (1, 1, 4) = 9.

(32)

Example 13. Table 2 gives the possible values for the
betweenness centrality of a vertex in a tree of 9 vertices.

We consider the di�erent possible combinations of the
arguments inC so that the sum of arguments is 8.
3.11. Betweenness Centrality of Vertices in Hypercubes. �e 	-
cube or 	-dimensional hypercube B� is de�ned recursively
by B1 = �2 and B� = �2 × B�−1. �at is, B� = (�2)�
Harary [21]. B� is an 	-regular graph containing 2� vertices
and 	2�−1 edges. Each vertex can be labeled as a string of 	
bits 0 and 1. Two vertices of B� are adjacent if their binary
representations di�er at exactly one place (see Figure 15).�e2� vertices are labeled by the 2� binary numbers from 0 to2�−1. By de�nition, the length of a path between two vertices; and V is the number of edges of the path. Tomove from ; to
V it su�ces to cross successively the vertices whose labels are
those obtained by changing the bits of ; one by one in order to
transform ; into V. If ; and V di�er only in � bits, the distance
(hamming distance) between ; and V denoted by D(;, V) is �
[22, 23]. For example, if ; = (101010) and V = (110011), thenD(;, V) = 3.

�ere exists a path of length at most 	 between any two
vertices of B�. In other words an 	-cube is a connected graph
of diameter 	. �e number of geodesics between ; and V is
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�1 �2 �3 �4

�5

�6 �7

Figure 14: A tree with 7 vertices.
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Figure 15: Hypercubes.

given by the number of permutations D(;, V)!. A hypercube
is bipartite and interval regular. For any two vertices ; and V,
the interval a(;, V) induces a hypercube of dimension D(;, V)
[24]. Another important property of 	-cube is that it can be
constructed recursively from lower dimensional cubes (see
Figure 15). Consider two identical (	−1)-cubes. Each (	−1)-
cube has 2�−1 vertices and each vertex has a labeling of (	−1)-
bits. Join all identical pairs of vertices of the two cubes. Now
increase the number of bits in the labels of all vertices by
placing 0 in the �th place of the �rst cube and 1 in the �th place
of second cube. �us we get an 	-cube with 2� vertices, each
vertex having a label of 	-bits and the corresponding vertices
of the two (	−1)-cubes di�er only in the �th bit.�is 	-cube so
constructed can be seen as the union of 	 pairs of (	−1)-cubes
di�ering in exactly one position of bits. �us the number of(	 − 1)-cubes in an 	-cube is 2	. �e operation of splitting an	-cube into two disjoint (	 − 1)-cubes so that the vertices of
the two (	−1)-cubes are in a one-to-one correspondence will
be referred to as tearing [23]. Since there are 	 bits, there are	 directions for tearing. In general there are ( �� ) 2�−� number
of �-subcubes associated with an 	-cube.

�eorem 14. �e betweenness centrality of a vertex in a

hypercube B� is given by 2�−2(	 − 2) + 1/2.
Proof. �e hypercube B� of dimension 	 is a vertex transitive	-regular graph containing 2� vertices. Each vertex can be
written as an 	 tuple of binary digits 0 and 1 with adjacent
vertices di�ering in exactly one coordinate. �e distance
between two vertices ! and * denoted by (!, *) is the number
of places in which the corresponding coordinates of ! and *
di�er and the number of distinct geodesics between ! and *
is D(!, *)! [22]. Let 0 = (0, 0, . . . , 0) be a vertex in B� whose
betweenness centrality has to be determined. Consider all �-
subcubes containing the vertex 0 for 2 ≤ � ≤ 	. Each �-
subcube has vertices with 	 − � zeros in their labels. Since
each �-subcube can be distinguished by � coordinates, the
number of �-subcubes containing the vertex 0 is ( �� ). �e
vertex 0 lies on a geodesic joining a pair of vertices if and
only if the pair of vertices forms a pair of antipodal vertices
of some subcube containing 0 [24]. So we consider all pairs
of antipodal vertices excluding the vertex 0 and its antipodal
vertex in each �-subcube containing 0. If a vertex of a �-
subcube has � ones, then its antipodal vertex has � − � ones.



International Journal of Combinatorics 11

Table 2: Possible values for betweenness centrality in a tree of 9
vertices.

Number of args. Possible combinations Values

8 C(1, 1, 1, 1, 1, 1, 1, 1) 28

7 C(2, 1, 1, 1, 1, 1, 1) 27

6
C(2, 2, 1, 1, 1, 1) 26

C(3, 1, 1, 1, 1, 1) 25

5

C(2, 2, 2, 1, 1) 25

C(3, 2, 1, 1, 1) 24

C(4, 1, 1, 1, 1) 22

4

C(2, 2, 2, 2) 24

C(3, 2, 2, 1) 23

C(3, 3, 1, 1) 22

C(5, 1, 1, 1) 18

C(4, 2, 1, 1) 21

3

C(3, 3, 2) 21

C(4, 2, 2) 20

C(4, 3, 1) 19

C(5, 2, 1) 17

C(6, 1, 1) 13

2

C(4, 4) 16

C(5, 3) 15

C(6, 2) 12

C(7, 1) 7

1 C(8) 0

For any pair of such antipodal vertices there are �! geodesics
joining them and of that �!(� − �)! paths are passing through
0. �us each pair contributes �!(� − �)!/�!, that is, 1/ ( �� ), to
the betweenness centrality of 0.

By symmetry, when � is even the number of distinct pairs
of required antipodal vertices are given by ( �� ) for 1 ≤ � < �/2
and (1/2) ( �� ) for � = �/2. When � is odd, the number of
distinct pairs of required antipodal vertices is given by ( �� ) for1 ≤ � ≤ (�−1)/2. Taking all such pairs of antipodal vertices in
a �-subcubewe get the contribution of betweenness centrality
as ∑�/2−1�=1 ( �� ) (1/ ( �� )) + (1/2) ( ��/2 ) (1/ ( ��/2 )) = (� − 1)/2,
when � is even, and ∑(�−1)/2�=1 ( �� ) (1/ ( �� )) = (� − 1)/2, when� is odd. �erefore considering all �-subcubes for 2 ≤ � ≤ 	,
we get the betweenness centrality of 0 as

�� (0) = �∑
�=2

(� − 12 ) (	�)
= 12 [ �∑

�=2
� (	�) − �∑

�=2
(	�)]

= 2�−2 (	 − 2) + 12 .
(33)

�erefore, for any vertex V,

�� (V) = 2�−2 (	 − 2) + 12 . (34)

�e relative centrality and graph centrality are as follows:

��� (V) = 2�� (V)(2� − 1) (2� − 2)
= 2�−1 (	 − 2) + 1(2� − 1) (2� − 2) , �� (�) = 0.

(35)

4. Conclusion

Betweenness centrality is a useful metric for analyzing graph
structures. When compared to other centrality measures,
computation of betweenness centrality is rather di�cult as
it involves calculation of the shortest paths between all
pairs of vertices in a graph. We have derived expressions
for betweenness centrality of graphs which are the basic
components of larger and complex networks. �is study is
therefore helpful for analysing larger classes of graphs.
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