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BEURLING’S THEOREMS
AND INVERSION FORMULAS

FOR CERTAIN INDEX TRANSFORMS

Abstract. The familiar Beurling theorem (an uncertainty principle), which is known for the
Fourier transform pairs, has recently been proved by the author for the Kontorovich-Lebedev
transform. In this paper analogs of the Beurling theorem are established for certain index
transforms with respect to a parameter of the modified Bessel functions. In particular, we
treat the generalized Lebedev-Skalskaya transforms, the Lebedev type transforms involving
products of the Macdonald functions of different arguments and an index transform with
the Nicholson kernel function. We also find inversion formulas for the Lebedev-Skalskaya
operators of an arbitrary index and the Nicholson kernel transform.
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1. INTRODUCTION

Let R+ = (0,∞) and the cosine Fourier transform of a Lebesgue integrable function
f(y) ∈ L1(R+; dy) be defined as usual by

(Fcf)(x) =

√
2
π

∫ ∞

0

f(y) cos xydy. (1)

Beurling’s theorem [3] says that if∫
R+

∫
R+

|f(y)(Fcf)(x)|exydxdy < ∞, (2)
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then f = 0. Recently (cf. [15]) we have proved an analog of Beurling’s theorem for
the Kontorovich-Lebedev transform [4,9, 10]

Kix[f ] =
∫ ∞

0

Kix(y)f(y)dy, x > 0, (3)

which is associated with the modified Bessel function Kµ(z) [2] as the kernel. The
latter function is a fundamental solution of the differential equation

z2 d2u

dz2
+ z

du

dz
− (z2 + µ2)u = 0

and can be represented by the integrals of the Fourier and Mellin types [7, Vol. I],
[9, 10], respectively:

Kµ(x) =
∫ ∞

0

e−x cosh u coshµu du, (4)

Kµ(x) =
1
2

(x

2

)µ
∫ ∞

0

e−t− x2
4t t−µ−1dt, (5)

The modified Bessel function reveals the following asymptotic behavior [2]

Kµ(z) =
( π

2z

)1/2

e−z[1 + O(1/z)], z →∞, (6)

and near the origin:

z|Reµ|Kµ(z) = 2µ−1Γ(µ) + o(1), z → 0, µ 6= 0, (7)

K0(z) = − log z + O(1), z → 0. (8)

So, if f(y) belongs to the weighted Lebesgue space L1(R+;K0(y)dy) of those measur-
able functions on R+ for which∫ ∞

0

|f(y)|K0(y)dy < ∞,

and ∫
R+

∫
R+

|f(y)Kix[f ]|Kx(y)dxdy < ∞, (9)

then f = 0.
In this paper, analogous theorems and inversion formulas will be established for

certain index transforms [9, 10]. Precisely, we will study the Lebedev-Skalskaya type
transforms [6,12], the Lebedev transform involving a square of the Macdonald function
as the kernel [5, 11], an index transform involving a product of the modified Bessel
functions of different arguments [14] and an index transform with the Nicholson func-
tion [13].
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2. THE LEBEDEV-SKALSKAYA TYPE TRANSFORMS

Let us consider the following integral operators

Re Kz[f ] =
∫ ∞

0

Re Kz(y)f(y)dy, z = α + iτ, τ ∈ R+, (10)

Im Kz[f ] =
∫ ∞

0

Im Kz(y)f(y)dy, z = α + iτ, τ ∈ R+, (11)

where α ∈ R is a fixed parameter and by

Re Kz(y) =
1
2

[Kz(y) + Kz̄(y)] , (12)

Im Kz(y) =
1
2i

[Kz(y)−Kz̄(y)] , (13)

we as usual denote the real and imaginary parts, respectively, of the modified Bessel
function Kz(y). We call these operators the Lebedev-Skalskaya type transforms of a
general complex index, which were introduced in [10, Chapter 6]. The case α = 0
in (10) evidently corresponds to the Kontorovich-Lebedev operator (3) and α = 1

2 in
(10), (11) leads us to the Lebedev-Skalskaya transforms [6]. Using (4), we easily find
integral representations of functions (12), (13):

Re Kz(y) =
∫ ∞

0

e−x cosh u coshαu cos τu du, (14)

Im Kz(y) =
∫ ∞

0

e−x cosh u sinhαu sin τu du. (15)

These kernels satisfy the following estimates (cf. [10, p.172]):

|Re Kα+iτ (y)| ≤ e−δτKα(y cos δ), (16)

|Im Kα+iτ (y)| ≤ e−δτKα(y cos δ), (17)

where δ is chosen in the interval
[
0, π

2

)
. Therefore, when f ∈ L1(R+;Kα(y)dy),

transforms (10), (11) are well defined and exist as Lebesgue integrals.
We are ready to prove the following Beurling theorem for the Lebedev-Skalskaya

type transforms (10), (11).

Theorem 1. Let f ∈ L1(R+;Kα(y)dy), and let∫
R+

∫
R+

|f(y)Re Kα+ix[f ]|K|α|+x(y)dxdy < ∞, α ∈ R, (18)

∫
R+

∫
R+

|f(y)Im Kα+ix[f ]|K|α|+x(y)dxdy < ∞, α ∈ R \ {0}. (19)

Then f = 0.
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Proof. It is sufficient to prove the theorem for the Re-transform (10) under condition
(16) since for the Im-transform (11) the proof is quite similar. Evidently, we can
assume that f(y) 6= 0 on a set of positive measure Kα(y)dy, for otherwise there is
nothing to prove. Due to the inequality K|α|+x(y) ≥ Kα(y), condition (18) implies

∞ >

∫
R+

∫
R+

|f(y)Re Kα+ix[f ]|K|α|+x(y)dxdy ≥
∫

R+

|f(y)|Kα(y)dy

∫
R+

|Re Kα+ix[f ]| dx.

Therefore, Re Kα+ix[f ] ∈ L1(R+; dx). The latter condition guarantees the existence
of the cosine Fourier transform of Re Kα+ix[f ]. We will show that

(FcRe Kα+ix[f ])(λ) = coshαλ

√
π

2

∫ ∞

0

e−y cosh λf(y)dy. (20)

Indeed, denoting by h(λ) the right-hand side of (20), we find∫
R+

|h(λ)| dλ ≤
√

π

2

∫
R+

∫
R+

e−y cosh λ|f(y)| coshαλdydλ =
√

π

2

∫
R+

|f(y)|Kα(y)dy < ∞.

So h ∈ L1(R+; dλ) and (Fch)(x) can be now easily calculated by using (14) and
Fubini’s theorem. Thus we obtain

(Fch)(x) =
∫ ∞

0

cos xλ

∫ ∞

0

e−y cosh λf(y) cosh αλdydλ =

=
∫ ∞

0

Re Kα+ix(y)f(y)dy = Re Kα+ix[f ].

Since Re Kα+ix[f ] ∈ L1(R+; dx), the inversion theorem for the cosine Fourier trans-
form gives (FcRe Kα+ix[f ])(λ) = h(λ) and we establish equality (20).

Let us verify Beurling condition (2) for the pair Re Kα+ix[f ], (FcRe Kα+ix[f ])(λ).
There is∫

R+

∫
R+

|Re Kα+ix[f ](FcRe Kα+it[f ])(λ)|exλdx dλ ≤

≤
√

2π

∫
R+

∫
R+

|Re Kα+ix[f ]| coshxλ

∫ ∞

0

e−y cosh λ|f(y)| coshαλdy dx dλ ≤

≤
√

2π

∫
R+

∫
R+

|f(y)Re Kα+ix[f ]|K|α|+x(y)dxdy < ∞.

Thus Re Kα+ix[f ] = 0. Combined with (20), the latter condition yields∫ ∞

0

e−y cosh λf(y)dy = 0, λ ∈ R+ (21)
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for any f ∈ L1(R+;Kα(y)dy). We will show that in this case f = 0. In fact,
choosing any z0 > 1 we treat the left-hand side of equality (21) as the Laplace integral
(Lf)(coshλ), where

(Lf)(z) =
∫ ∞

0

e−yzf(y)dy, (22)

which is zero via (21) at least at the countable set of points satisfying the con-
dition zn = coshλn = z0 + jn, j > 0, n = 0, 1, 2, . . . . Moreover, since for
f ∈ L1(R+;Kα(y)dy) (see (6), (7)), there is∫ ∞

0

e−y cosh λn |f(y)|dy < ∞, n = 0, 1, 2, . . . ,

then by virtue of [1, Chapter I] we get f(y) = 0 for almost all y ∈ R+, i.e., f = 0 in
the Lebesgue sense. In the same manner, we can verify Beurling condition (2) for the
pair Im Kα+ix[f ], (FcIm Kα+ix[f ]) under condition (19). Theorem 1 is proved.

However, when conditions (18), (19) fail, integral equations (10), (11) may have
nonzero solutions. When α = 1

2 , these solutions were found in [6] as inversion formulas
of the Lebedev-Skalskaya transforms given by

f(x) =
4
π2

∫ ∞

0

coshπτRe K 1
2+iτ (x)Re K 1

2+iτ [f ]dτ, (23)

f(x) =
4
π2

∫ ∞

0

coshπτ Im K 1
2+iτ (x)Im K 1

2+iτ [f ]dτ, (24)

respectively. Here we will find analogs of (23), (24) for a general α by using Sneddon’s
operational method [8, Chapter 6] recently applied in [16] to solve integral equations
from a certain class, which generalize Kontorovich-Lebedev equation (3). Indeed, if
f ∈ L1(R+;Kα(y cos δ)dy) ⊆ L1(R+;Kα(y)dy), δ ∈

(
0, π

2

)
, then via (16) we deduce

the estimate of the Re-transform (10)

|Re Kα+iτ [f ]| ≤ e−δτ

∫ ∞

0

Kα(y cos δ)|f(y)|dy,

which gives Re Kα+iτ [f ] ∈ L1(R+; dτ). Taking into account (1), equality (20) imme-
diately implies

2
π

∫ ∞

0

Re Kα+iτ [f ]
cos τu

coshαu
dτ =

∫ ∞

0

e−y cosh uf(y)dy. (25)

But the Re-transform (10) can be continued on R as an even function with respect
to τ . Moreover, assuming that α 6= 0, we apply the Fourier transform with respect
to u to both sides of (25), and we change the order of integration by Fubini’s theorem.
Taking into account (4) and calculating an elementary integral, we finally arrive at
the equality

1
2α

∫ ∞

−∞

Re Kα+iτ [f ]
cosh

(
π
2α (x− τ)

)dτ =
∫ ∞

0

Kix(y)f(y)dy. (26)
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If we show that the left-hand side of (26) belongs to L1(R; |x|eπ|x|/2dx), then by virtue
of the inversion theorem for the Kontorovich-Lebedev transform (3) (see [9, 15]), at
each Lebesgue point of f , we obtain

f(y) =
1

2π2αy

∫ ∞

−∞
xeπxKix(y)

∫ ∞

−∞

Re Kα+iτ [f ]
cosh

(
π
2α (x− τ)

)dτdx. (27)

The latter fact can be verified assuming that Re Kα+iτ [f ] ∈ L1(R; e
π

2|α| |τ |dτ),
α ∈ (−1, 1)\ {0}. So∫ ∞

−∞
|x|eπ|x|/2

∣∣∣∣∣
∫ ∞

−∞

Re Kα+iτ [f ]
cosh

(
π
2α (x− τ)

)dτ

∣∣∣∣∣ dx ≤

≤ 2
∫ ∞

−∞
|x|eπ|x|/2

∫ ∞

−∞
|Re Kα+iτ [f ]| e−

π
2|α| |x−τ |dτdx ≤

≤ 2
∫ ∞

−∞
|x|e

π
2 (1− 1

|α| )|x|dx

∫ ∞

−∞
|Re Kα+iτ [f ]| e

π
2|α| |τ |dτ < ∞.

Hence the left-hand side of (26) belongs to L1(R; |x|eπ|x|/2dx) and we get (27). Em-
ploying again Fubini’s theorem, due to the estimate (see inequality (1.100) from [10])∫ ∞

−∞
|x|eπx|Kix(y)|

∫ ∞

−∞

|Re Kα+iτ [f ]|
cosh

(
π
2α (x− τ)

)dτdx ≤

≤ K0(y cos δ)
∫ ∞

−∞
|x|e(π(1− 1

2|α| )−δ)|x|dx

∫ ∞

−∞
|Re Kα+iτ [f ]| e

π
2|α| |τ |dτ < ∞

when δ is taken from the interval
(
π
(
1− 1

2|α|

)
, π

2

)
, we finally arrive at the inversion

formula for the transform (10):

f(y) =
∫ ∞

−∞
Rα(y, τ)Re Kα+iτ [f ]dτ, (28)

where the kernel is given by

Rα(y, τ) =
1

2π2αy

∫ ∞

−∞

xeπxKix(y)
cosh

(
π
2α (x− τ)

)dx, α ∈ (−1, 1)\ {0}. (29)

We will now expand the value of kernel (29) on any real value of the parameter α
writing it in a different form. Employing the following representation (cf. [10, p. 125]):

1
cosh

(
π
2α (x− τ)

) =
2
π

∫ ∞

0

K i
α (τ−x)(t)dt, (30)

we substitute the integral into (29) and change the order of integration via Fubini’s
theorem. Thus we obtain

Rα(y, τ) =
eπτ

π3αy

∫ ∞

0

dt

∫ ∞

−∞
xe−π(τ−x)Kix(y)K i

α (τ−x)(t)dx. (31)
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The use of Fubini’s theorem here can be motivated as above by the estimate∫ ∞

0

dt

∫ ∞

−∞
eπx|xKix(y)K i

α (τ−x)(t)|dx ≤

≤ e
δ

|α| |τ |K0(y cos δ)
∫ ∞

0

K0(t cos δ)dt

∫ ∞

−∞
|x|e(π−δ(1+ 1

|α| ))|x|dx < ∞,

for all y > 0, τ ∈ R and δ ∈
(

π|α|
|α|+1 , π

2

)
, α ∈ (−1, 1)\ {0}. The inner integral in (31)

can be treated as a Fourier convolution. Using the formula

xKix(y) =
y

2i

∫ ∞

−∞
e−y cosh u sinhu eixudu, (32)

as a consequence of (4), the inverse Fourier transform and a differentiation under
integral sign, we substitute its right-hand side into (31) and change the order of
integration due to the absolute and uniform convergence of the corresponding iterated
integral at least for |α| < 1

2 . Calculating the inner integral with respect to x (cf. [7,
Vol. 2]), we get

Rα(y, τ) =
eπτ

2π2i

∫ ∞

0

dt

∫ ∞

−∞
e−y cosh u−t cosh(α(u−iπ)) sinhu eiτudu. (33)

Hence an integration with respect to t and simple manipulations finally give the
expression of the kernel Rα(y, τ)

Rα(y, τ) =
eπτ

π2

∫ ∞

0

e−y cosh u sinhu

cos2 απ + sinh2 αu
×

× [cos απ coshαu sinuτ + sinαπ sinhαu cos uτ ] du,

(34)

where the latter integral in (11)) is absolutely and uniformly convergent on any com-
pact set of real values of α. Since the integral in (29) is a continuous function with
respect to α ∈ (−1, 1)\ {0}, by (34) we obtain an extension of the kernel Rα(y, τ) on
all real values of α.

We summarize our results in the following

Theorem 2. Let f(y) ∈ L1(R+;Kα(y cos δ)dy), where α ∈ (−1, 1)\ {0} and δ ∈(
π
(
1− 1

2|α|

)
, π

2

)
. If Re Kα+iτ [f ] ∈ L1(R; e

π
2|α| |τ |dτ), then at each Lebesgue point

y ∈ R+ of f , inversion formula (28) of the Re-transform (10) holds with kernel (29),
which can be calculated by formula (34) being valid for all α ∈ R.

Some interesting examples of kernel (34) and inversion formula (28) can be
obtained directly. For instance, let α = 0. Then (10) coincides with the
Kontorovich-Lebedev operator (3). Meanwhile from (34) we find with (32)
that R0(y, τ) = τeπτ

yπ2 Kiτ (y), which leads us to the inversion formula for the
Kontorovich-Lebedev transform [4,9, 10]:

f(y) =
1

yπ2

∫ ∞

−∞
τeπτKiτ (y)Kiτ [f ]dτ. (35)
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It is easily seen that Rα(y, τ) is even with respect to α. If α = 1
2 , we get R 1

2
(y, τ) =

2eπτ

π2 Re K 1
2+iτ (y) and easily again come to inversion formula (23) for the Lebedev

-Skalskaya Re-transform. We can derive a new pair of reciprocal formulas putting
α = 1

4 . In this case, we recall (14), (15) to deduce

R 1
4
(y, τ) =

√
2eπτ

π2

[
Re
(

K 3
4+iτ (y)−K 1

4+iτ (y)
)

+ Im
(

K 3
4+iτ (y) + K 1

4+iτ (y)
)]

,

and we find the following pair of direct and inverse integral transforms

Re K 1
4+iτ [f ] =

∫ ∞

0

Re K 1
4+iτ (y)f(y)dy,

f(y) =
2
√

2
π2

∫ ∞

0

[
coshπτ Re

(
K 3

4+iτ (y)−K 1
4+iτ (y)

)
+

+ sinhπτ Im
(

K 3
4+iτ (y) + K 1

4+iτ (y)
)]

Re K 1
4+iτ [f ]dτ.

The limit case of |α| = 1 in (29) can be added to our consideration via the uniform
convergence of the integral. In this case, the kernel Re K1+iτ (y) in (10) is equal to
− d

dy Kiτ (y) (see [2]). Hence from (34), (15) we deduce:

R1(y, τ) = −eπτ

π2

∫ ∞

y

Im K1+iτ (y)dy = −τeπτ

π2

∫ ∞

y

Kiτ (y)
y

dy.

Consequently, under additional conditions on f , integrating by parts and differenti-
ating under the integral sign, we again come to the Kontorovich-Lebedev reciprocal
formulas (3), (35).

Finally, in this section we consider an inversion of the general Im -transform (11).
In the same manner, we establish an analog of equation (25), which becomes

2
π

∫ ∞

0

Im Kα+iτ [f ]
sin τu

sinhαu
dτ =

∫ ∞

0

e−y cosh uf(y)dy. (36)

Taking the cosine Fourier transform (1) from both sides of (36), changing the order
of integration and calculating the inner integrals with (4) and relation (2.5.46.9) in
[7, Vol. 1], we end up for α 6= 0 with the equation

1
α

∫ ∞

0

Im Kα+iτ [f ]
sinh(πτ/α)

cosh(πx/α) + cosh(πτ/α)
dτ =

∫ ∞

0

Kix(y)f(y)dy. (37)

Reasoning as above for the Re-case, we invert the Kontorovich-Lebedev transform in
(37) and we arrive at the following inversion formula for the Im-transform (11)

f(y) =
∫ ∞

0

Iα(y, τ)Im Kα+iτ [f ]dτ, (38)

where

Iα(y, τ) =
2 sinh(πτ/α)

π2αy

∫ ∞

0

x sinhπx Kix(y)
cosh(πx/α) + cosh(πτ/α)

dx, |α| ≤ 1, α 6= 0. (39)
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Making use of (32), we substitute it in (39) and change the order of integration by
Fubini’s theorem. The inner integral can then be calculated for |α| < 1 employing
relation (2.5.49.3) in [7, Vol. 1]. As a result it becomes

Iα(y, τ) = − 2
π2

∫ ∞

0

e−y cosh u sinhu Im
[

sin τ(u + iπ)
sinhα(u + iπ)

]
du.

Taking the imaginary part in the latter integrand, we write kernel (39) in the final
form, which is valid for all α ∈ R\{0}:

Iα(y, τ) =
2
π2

∫ ∞

0

e−y cosh u sinhu

sin2 απ + sinh2 αu
(sinαπ coshαu coshπτ sinuτ−

− cos απ sinhαu sinhπτ cos uτ) du, α 6= 0. (40)

Therefore, the following theorem for the Im-transform (11) holds true.

Theorem 3. Let f(y) ∈ L1(R+;Kα(y cos δ)dy), where α ∈ [−1, 1]\ {0} and δ ∈(
π
(
1− 1

|α|

)
, π

2

)
. If Im Kα+iτ [f ] ∈ L1(R+; e

π
|α| τdτ), then at each Lebesgue point

y ∈ R+ of f inversion formula (38) of the Im-transform (11) takes place with the
kernel (39), which can be calculated by formula (40) being valid for all α ∈ R\{0}.

Concerning examples of the Im-transforms and their kernels, we first note that
Iα(y, τ) is odd with respect to α. Letting α = 1, from (40) we get I1(y, τ) =
2

π2 sinhπτKiτ (y), which again leads us to Kontorovich-Lebedev operator (3) and
its inversion formula (35). If α = 1

2 , by (40) via (15) we easily confirm that
I 1

2
(y, τ) = 4

π2 coshπτ Im K 1
2+iτ (y), which leads to inversion formula (24) of the

Lebedev-Skalskaya Im-transform. And finally putting α = 1
4 in (40) we calculate

the corresponding integral using (14), (15) and end up with a new pair of the
Lebedev-Skalskaya type transforms

Im K 1
4+iτ [f ] =

∫ ∞

0

Im K 1
4+iτ (y)f(y)dy,

f(y) =
2
√

2
π2

∫ ∞

0

[
coshπτ Im

(
K 3

4+iτ (y) + K 1
4+iτ (y)

)
−

− sinhπτ Re
(

K 3
4+iτ (y)−K 1

4+iτ (y)
)]

Im K 1
4+iτ [f ]dτ.

Remark 1. The case of α = 0 in (40) is naturally excluded, since the direct kernel
Im Kiτ (y) ≡ 0 and (11) yield the null-operator.

3. OTHER INDEX TRANSFORMS

In this section we will prove analogs of Beurling’s theorem for the following index
transforms: the Lebedev transform with the square of the modified Bessel function
[5, 11]

K2
ix[f ] =

∫ ∞

0

K2
ix(y)f(y)dy, (41)
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index transform with the Nicholson function as the kernel [13]

JYix[f ] =
∫ ∞

0

[
J2

ix/2(y) + Y 2
ix/2(y)

]
f(y)dy, (42)

where Jν(y), Yν(y) are Bessel functions of the first and second kind [2], and an
index transform involving a product of the modified Bessel functions of different
arguments [14]

KKiτ [f ] =
∫ ∞

0

∫ ∞

0

Kiτ

(√
x2 + y2 − y

)
Kiτ

(√
x2 + y2 + y

)
f(x, y)

dxdy

x
. (43)

The following holds true.

Theorem 4. Let f ∈ L1(R+;K2
0 (y)dy) and∫

R+

∫
R+

∣∣f(y)K2
ix[f ]

∣∣K2
x(y)dxdy < ∞. (44)

Then f = 0.

Proof. Assuming as in Theorem 1 that f(y) 6= 0 on a set of positive measure K2
0 (y)dy,

we get the estimate

∞ >

∫
R+

∫
R+

∣∣f(y)K2
ix[f ]

∣∣K2
x(y)dxdy ≥

∫
R+

|f(y)|K2
0 (y)dy

∫
R+

∣∣K2
ix[f ]

∣∣ dx.

Therefore K2
ix[f ] ∈ L1(R+; dx). Hence using integral representations (see relation

(2.16.51.6) in [7, Vol. 2])∫ ∞

0

K2
ix(y) cos λx dx =

π

2
K0

(
2y cosh

λ

2

)
, (45)

K2
ix(y) =

∫ ∞

0

K0

(
2y cosh

λ

2

)
cos λx dλ, (46)

we calculate the composition of Lebedev operator (41) and the cosine Fourier trans-
form (1) showing that

(Fc K2
ix[f ])(λ) =

√
π

2

∫ ∞

0

K0

(
2y cosh

λ

2

)
f(y)dy. (47)

Indeed, the right-hand side of (47) is Lebesgue integrable with respect to λ ∈ R+,
because the function K0

(
2y cosh λ

2

)
f(y) is Lebesgue integrable as a function in two

variables (cf. (46))∫
R+

∫
R+

K0

(
2y cosh

λ

2

)
|f(y)|dydλ =

∫
R+

K2
0 (y) |f(y)|dy < ∞.
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Thus taking the cosine Fourier transform (1) of the right-hand side of (47) and chang-
ing the order of integration via Fubini’s theorem, we calculate the inner integral with
the use of (46) and we obtain K2

ix[f ]. Since it belongs to L1(R+; dx), the inversion
theorem for the cosine Fourier transform yields (47).

Beurling condition (2) for the pair K2
ix[f ], (FcK

2
ix[f ])(λ) implies∫

R+

∫
R+

|K2
ix[f ](FcK

2
ix[f ])(λ)|exλdxdλ <

<
√

2π

∫
R+

∫
R+

|K2
ix[f ]| coshxλ

∫ ∞

0

K0

(
2y cosh

λ

2

)
|f(y)|dydxdλ =

=
√

2π

∫
R+

∫
R+

|f(y)K2
ix[f ]|K2

x(y)dydx < ∞.

Therefore, K2
ix[f ] = 0 for all x ∈ R+ as a continuous function under the condition

f ∈ L1(R+;K2
0 (y)dy). In fact, integral (41) is absolutely and uniformly convergent,

since ∫ ∞

0

K2
ix(y)|f(y)|dy ≤

∫ ∞

0

K2
0 (y)|f(y)|dy < ∞.

However, the kernel K2
ix(y) can be represented by the integral (cf. [7, Vol. 2], relation

(2.16.9.1))

K2
ix(y) =

1
2

∫ ∞

0

e−t− y2

2t Kix(t)
dt

t
. (48)

Substituting integral (48) into (41) and changing the order of integration by Fubini’s
theorem, because of the estimate∫ ∞

0

∫ ∞

0

e−t− y2

2t |Kix(t)f(y)| dtdy

t
≤
∫ ∞

0

∫ ∞

0

e−t− y2

2t K0(t) |f(y)| dtdy

t
=

=
∫ ∞

0

K2
0 (y)|f(y)|dy < ∞,

(49)

we find that K2
ix[f ] = Kix[h] = 0 (see (3)), where

h(t) =
e−t

2t

∫ ∞

0

e−
y2

2t f(y)dy. (50)

Further, relations (49) guarantee the condition h(t) ∈ L1(R+;K0(t)dt) and the exis-
tence of the composition(

Fc

√
π

2
(Lf)(coshu)

)
(x) = Kix[h] = 0,

where Laplace operator (22) is an integrable function, i.e., (Lf)(coshu) ∈ L1(R+; du).
Thus h = 0 a.e. and we arrive at the equation∫ ∞

0

e−
y2

2t f(y)dy = 0 (51)
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for almost all t > 0. To end the proof, we make an elementary substitution in (51)
and come out with the equation∫ ∞

0

e−pyf(
√

y)
dy
√

y
= 0, p =

1
2t

, t > 0,

treating its left-hand side as a Laplace transform (Lg)(p − p0), p > p0 > 0 of the
integrable function g(y) = e−p0y f(

√
y)√

y , since (see (6), (8)),∫ ∞

0

e−p0y|f(
√

y)| dy
√

y
= 2

∫ ∞

0

e−p0y2
|f(y)|dy < ∞.

By (51) (Lg)(p − p0) is zero at at least the countable set of points pn = p0 + jn,
j > 0, n = 1, 2, . . . . Hence, as in the proof of Theorem 1, we conclude that f = 0 a.e.
Theorem 4 is proved.

Index transform (42) is based on the following Nicholson formula for the sum of
squares of Bessel functions [2, p. 54]

J2
x/2(y) + Y 2

x/2(y) =
8
π2

∫ ∞

0

K0(2y sinhλ) cosh xλ dλ, y > 0. (52)

This transform was introduced for the first time in [13] as an adjoint operator to
(42), where the integration was performed with respect to the pure imaginary index
of Nicholson function (52). Here we will prove an analog of Beurling’s theorem for
operator (42) and will find its inversion by the Sneddon operational method [8].

Theorem 5. Let f ∈ L1

(
R+;

[
J2

0 (y) + Y 2
0 (y)

]
dy
)

and∫
R+

∫
R+

|f(y)JYix[f ]|
[
J2

x/2(y) + Y 2
x/2(y)

]
dxdy < ∞. (53)

Then f = 0.

Proof. Assuming again that f(y) 6= 0 on a set of positive measure K2
0 (y)dy, from (52)

we deduce:

∞ >

∫
R+

∫
R+

|f(y)JYix[f ]|
[
J2

x/2(y) + Y 2
x/2(y)

]
dxdy ≥

≥
∫

R+

|f(y)|
[
J2

0 (y) + Y 2
0 (y)

]
dy

∫
R+

|JYix[f ]| dx.

Therefore, JYix[f ] ∈ L1(R+; dx). Reasoning as in the proofs of Theorems 1, 4 we
establish the equality

(Fc JYix[f ])(λ) =
4
π

√
2
π

∫ ∞

0

K0 (2y sinhλ) f(y)dy, (54)
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where the right-hand side is integrable with respect to λ due to the estimate (see (52)):∫ ∞

0

dλ

∣∣∣∣∫ ∞

0

K0 (2y sinhλ) f(y)dy

∣∣∣∣ ≤ ∫ ∞

0

dλ

∫ ∞

0

K0 (2y sinhλ) |f(y)|dy =

=
π2

8

∫ ∞

0

[
J2

0 (y) + Y 2
0 (y)

]
|f(y)|dy < ∞.

Further, Beurling condition (2) for the pair JYix[f ], (FcJYix[f ])(λ) gives∫
R+

∫
R+

|JYix[f ](FcJYix[f ])(λ)|exλdxdλ <

<
8
π

√
2
π

∫
R+

∫
R+

|JYix[f ]| coshxλ

∫ ∞

0

K0 (2y sinhλ) |f(y)|dydxdλ =

=
√

2π

∫
R+

∫
R+

|f(y)JYix[f ]|
[
J2

x/2(y) + Y 2
x/2(y)

]
dydx < ∞.

Therefore, JYix[f ] = 0. Consequently, equation (54) yields∫ ∞

0

K0 (2y sinhλ) f(y)dy = 0 (55)

for all λ > 0. Taking p = 2 sinhλ and the representation (see (4)) of the modified
Bessel function:

K0(py) =
∫ ∞

0

e−py cosh udu =
∫ ∞

y

e−pt dt√
t2 − y2

,

we substitute it into (55) and inverting the order of integration by Fubini’s theo-
rem, it becomes a composition of Laplace transform (22) and a simple Erdélyi-Kober
fractional integration operator [9]∫ ∞

0

e−ptdt

∫ t

0

f(y)√
t2 − y2

dy = 0, p > 0.

It is convergent and equal to 0 at at least a countable set of points. Thus, for all
t > 0: ∫ t

0

f(y)√
t2 − y2

dy = 0. (56)

Via asymptotic of Bessel functions [2], we observe that the condition

f ∈ L1

(
R+;

[
J2

0 (y) + Y 2
0 (y)

]
dy
)

means f ∈ L1((0, 1); (1 + log2 y)dy) ∩ L1((1,∞); y−1dy). Hence it follows that f is
locally integrable on R+. Making elementary change of variables, we write (56) in the
form of Abel’s homogeneous equation∫ t

0

f(
√

y)
√

t− y

dy
√

y
= 0. (57)
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It has a trivial solution, which can easily be checked by taking Laplace’s transform of
the both sides of (57) and treating its left-hand side as a Laplace convolution [9]. So
f = 0 a.e. and we conclude the proof of Theorem 5.

An inversion formula for Nicholson kernel transform (42) can be proved with

Theorem 6. Let f(y) ∈ L1((0, 1); (1 + log2 y)dy) ∩ L1((1,∞); y1−γdy), 1/2 < γ < 1
and JYix[f ] ∈ L1(R+;xeπxdx). Then for almost all y > 0 the following inversion
formula holds for operator (42)

f(y) = −π

4
d

dy

∫ ∞

0

x ImJ2
ix/2(y) JYix[f ] dx. (58)

Proof. In fact, it is easily seen that

L1((0, 1); (1 + log2 y)dy) ⊂ L1

(
(0, 1); y1−γdy

)
,

1
2

< γ < 1,

L1((1,∞); y1−γdy) ⊂ L1

(
(1,∞);

[
J2

0 (y) + Y 2
0 (y)

]
dy
)
,

1
2

< γ < 1,

and JYix[f ] is continuous on R+ via the estimate

|JYix[f ]| ≤
∫ ∞

0

[
J2

0 (y) + Y 2
0 (y)

]
|f(y)|dy < ∞.

Differentiating (54) with respect to λ, taking into account the condition JYix[f ] ∈
L1(R+;xeπxdx) and the formula (see [2]) K ′

0(z) = −K1(z), we obtain∫ ∞

0

JYix[f ]x sinxλdx =
8
π

coshλ

∫ ∞

0

yK1 (2y sinhλ) f(y)dy.

Hence, the simple change of variable p = sinhλ gives

∫ ∞

0

xJYix[f ]
sin
(
x log(p +

√
p2 + 1)

)
√

p2 + 1
dx =

8
π

∫ ∞

0

yK1 (2yp) f(y)dy. (59)

The right-hand side of (59) can be treated as the Mellin convolution transform [9].
Therefore, invoking the generalized Parseval equality for the Mellin transform and
relation (2.16.2.2) in [7, Vol. 2], it can be written in the form

8
π

∫ ∞

0

yK1 (2yp) f(y)dy = − 4
π

1
2πi

∫ γ+i∞

γ−i∞
Γ2

(
1 + s

2

)
(Mf)(2− s)

1− s
p−sds, (60)

where we choose γ ∈ (1/2, 1), Γ(z) is the Euler gamma-function [7] and (Mf)(2−s)
1−s is

the Mellin transform of the integration operator

(Mf)(2− s)
1− s

=
1

1− s

∫ ∞

0

f(y)y1−sdy =
∫ ∞

0

v−s

∫ ∞

v

f(y)dy dv. (61)
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On the other hand, via relation (2.5.46.15) in [7, Vol. 1], we find

sin
(
x log(p +

√
p2 + 1)

)
√

p2 + 1
=

=
1

2
√

π

sinh(πx/2)
2πi

∫ γ+i∞

γ−i∞

Γ
(

1+s
2

)
Γ
(
1− s

2

)Γ(1− s

2
+

ix

2

)
Γ
(

1− s

2
− ix

2

)
p−sds,

(62)

with the same γ = Re s ∈ (1/2, 1). Substituting (62) into (59), we change the order of
integration by Fubini’s theorem, which is motivated by the following estimate (see the
asymptotic behavior of the gamma-function on the vertical line in a complex plane
and elementary inequality for the Euler beta-function |B(a, b)| ≤ B(Re a,Re b) [9]):

∞∫
0

x sinh
(πx

2

)
|JYix[f ]|

γ+i∞∫
γ−i∞

∣∣∣∣∣ Γ
(

1+s
2

)
Γ
(
1− s

2

)Γ(1− s

2
+

ix

2

)
Γ
(

1− s

2
− ix

2

)
p−sds

∣∣∣∣∣ dx ≤

≤ (2p)−γB((1− γ)/2, (1− γ)/2)√
π

∫ ∞

0

x sinh(πx/2)|JYix[f ]|dx×

×
∫ γ+i∞

γ−i∞

∣∣∣∣Γ(1 + s

2

)
Γ
(

1− s

2

)
ds

∣∣∣∣ < ∞.

Thus equating (59) with (60), taking into account (61) and cancelling the inverse
Mellin transform [9] by the uniqueness property via the summability of the integrands,
we come out with the equality

1
2
√

π

∫ ∞

0

x sinh(πx/2) JYix[f ]
Γ
(

1−s
2 + ix

2

)
Γ
(

1−s
2 − ix

2

)
Γ
(
1− s

2

)
Γ
(

1+s
2

) dx =

= − 4
π

∫ ∞

0

v−s

∫ ∞

v

f(y)dy dv.

(63)

Now making use of the representation of the gamma-ratio in (63) as a reciprocal
Mellin transform of relation (1.11) in [13]:

Γ
(

1−s
2 + ix

2

)
Γ
(

1−s
2 − ix

2

)
Γ
(
1− s

2

)
Γ
(

1+s
2

) = − 2
√

π

sinh(πx/2)

∫ ∞

0

Im J2
ix/2 (y) y−sdy,

we substitute it in the left-hand side of (63) and it becomes∫ ∞

0

x JYix[f ]
∫ ∞

0

ImJ2
ix/2(y) y−sdy dx =

=
4
π

∫ ∞

0

v−s

∫ ∞

v

f(y)dy dv, Re s ∈
(

1
2
, 1
)

.

(64)
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It is known [2] that |ImJ2
ix/2(y)| is bounded for all x, y > 0 and satisfies the inequality

|ImJ2
ix/2(y)| < C

eπx

y
,

where C > 0 is an absolute constant. Consequently, under conditions of the theorem,

x JYix[f ]ImJ2
ix/2(y) y−s ∈ L1(R+ × R+; eπxy−γdydx), γ ∈

(
1
2
, 1
)

and the change of the order of integration is indeed possible in the left-hand side (64)
by Fubini’s theorem. Furthermore,∫ ∞

0

∣∣∣∣v−s

∫ ∞

v

f(y)dy

∣∣∣∣ dv ≤
∫ ∞

0

v−γ

∫ ∞

v

|f(y)|dydv =

=
1

1− γ

∫ ∞

0

|f(y)|y1−γdy < ∞.

Therefore, changing the order of integration in the left-hand side of (64) and then
omitting the Mellin transform on the both sides via the uniqueness theorem for func-
tions integrable with respect to the measure y−γdy, we find∫ ∞

0

x ImJ2
ix/2(y) JYix[f ] dx =

4
π

∫ ∞

y

f(v) dv.

Differentiating this equality with respect to y, we get for almost all y > 0 inversion
formula (58). Theorem 6 is proved.

Finally, we prove an analog of Beurling’s theorem for index transform (43). We
note that the corresponding Plancherel theory and adjoint operator have been con-
sidered in [14].

Theorem 7. Let

f(x, y) ∈ L1

(
R+ × R+;K2

0

(√
x2 + y2 − y

)
x−1dxdy

)
∩ L2

(
R+ × R+;x−1dxdy

)
and ∫

R+

∫
R+

∫
R+

|f(x, y)KKiτ [f ]|K2
τ

(√
x2 + y2 − y

)
x−1dxdydτ < ∞.

Then f(x, y) = 0.

Proof. Suppose that f(x, y) 6= 0 on a set of the positive measure in R+ × R+. We
have

∞ >

∫
R+

∫
R+

∫
R+

|f(x, y)KKiτ [f ]|K2
τ

(√
x2 + y2 − y

)
x−1dxdydτ >

>

∫
R+

∫
R+

|f(x, y)|K2
0

(√
x2 + y2 − y

)
x−1dxdy

∫
R+

|KKiτ [f ]|dτ.
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Therefore, KKiτ [f ] ∈ L1(R+; dτ). On the other hand, KKiτ [f ] is a continuous
function on R+ via the absolute and uniform convergence of integral (43), which is
guaranteed by the estimate

|KKiτ [f ]| ≤
∫ ∞

0

∫ ∞

0

K0

(√
x2 + y2 − y

)
K0

(√
x2 + y2 + y

)
|f(x, y)|dxdy

x
≤

≤
∫ ∞

0

∫ ∞

0

K2
0

(√
x2 + y2 − y

)
|f(x, y)|dxdy

x
< ∞.

Therefore, using relation (2.16.51.6) in [7, Vol. 2]), we calculate the composition of
this operator and the cosine Fourier transform (1) to obtain

(Fc KKiτ [f ])(λ) =
√

π

2

∫ ∞

0

∫ ∞

0

K0

(
2

√
y2 + x2 cosh2 λ

2

)
f(x, y)

dxdy

x
.

Further, Beurling condition (2) yields∫
R+

∫
R+

|KKiτ [f ](FcKKiτ [f ])(λ)|eτλdτdλ <

<
√

2π

∫
R+

∫
R+

|KKiτ [f ]| cosh τλ

∞∫
0

∞∫
0

K0

(
2

√
y2 + x2 cosh2 λ

2

)
|f(x, y)|x−1dydxdλdτ =

=
√

2π

∫
R+

∫
R+

∫
R+

|f(x, y)KKiτ [f ]|Kτ

(√
x2 + y2 − y

)
Kτ

(√
x2 + y2 + y

)
x−1dydxdτ <

<
√

2π

∫
R+

∫
R+

∫
R+

|f(x, y)KKiτ [f ]|K2
τ

(√
x2 + y2 − y

)
x−1dydxdτ < ∞.

So KKiτ [f ] ≡ 0. But f(x, y) ∈ L2

(
R+ × R+;x−1dxdy

)
. Hence, recalling the

Plancherel theorem for transformation (43) (see [14]), it satisfies the following Parseval
identity: ∫

R+

∫
R+

|f(x, y)|2 dydx

x
=

16
π4

∫
R+

τ sinh 2πτ |KKiτ [f ]|2dτ.

Thus f(x, y) = 0 a.e. Theorem 7 is proved.
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