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Bevacizumab improves tumor infiltration of mature dendritic

cells and effector T-cells in triple-negative breast cancer

patients
Yves Boucher 1,7✉, Ashwin S. Kumar 1,2,7, Jessica M. Posada1,3,7, Evisa Gjini4,5, Kathleen Pfaff4, Mikel Lipschitz4, Ana Lako4,5,

Dan G. Duda 1, Scott J. Rodig3,4, F. Stephen Hodi4,6 and Rakesh K. Jain 1✉

A single dose of bevacizumab reduced the density of angiopoietin-2-positive vessels while improving the infiltration of CD4+ T and

CD8+ T cells, and mature dendritic cells in patients with primary triple-negative breast cancer. Our findings provide a rationale for

including bevacizumab during neoadjuvant treatment to enhance the efficacy of immune checkpoint blockers in this disease.
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Approximately 15–20% of all breast cancers lack expression of
HER2 and hormone receptors and are referred to as triple-
negative breast cancer (TNBC). A randomized phase III trial
demonstrated significant efficacy of neoadjuvant anti-PD-1 anti-
body pembrolizumab combined with chemotherapy for localized
TNBC1. However, response was seen in less than 30% of patients.
In addition, in metastatic TNBC, pembrolizumab and chemother-
apy increased median progression-free survival by 2–4 months,
more often in PD-L1-positive tumors2. Therefore, new approaches
are needed to further improve the efficacy of immunotherapy
for TNBC.
Using orthotopic breast cancer models in mice, we previously

found that blocking vascular endothelial growth factor receptor-2
(VEGFR2) normalizes the tumor vasculature, polarizes immuno-
suppressive tumor-associated macrophages (TAMs) to an immu-
nostimulatory phenotype, enhances the infiltration of CD8+
T cells, and improves the effectiveness of a cancer vaccine3. We
also found that anti-VEGFR2 therapy decreases angiopoietin-2
(Ang2) expression in a breast cancer model4. Ang2 can destabilize
blood vessels, increase the recruitment of immunosuppressive
cells, and is associated with immunotherapy resistance in
melanoma patients5,6. Thus, reduction in Ang2 expression may
contribute to extending vascular normalization and improving
anti-tumor immune responses7. Additionally, VEGF can directly
inhibit the maturation of dendritic cells (DCs)8.
We hypothesized that the anti-VEGF antibody bevacizumab

could normalize tumor vessels, reduce Ang2 levels, and increase
the infiltration by T cells and other immunostimulatory cells,
including DCs, in human TNBC. To this end, we assessed the
effects of VEGF blockade on the vasculature and intratumoral
infiltration by immune cells in 10 paired-biopsies prior to
treatment and 2 weeks after a single dose of bevacizumab in a
phase II trial of neoadjuvant bevacizumab (10mg/kg) followed by
bevacizumab combined with dose-dense chemotherapy in TNBC
patients9 (see Methods). We previously reported that bevacizu-
mab decreased circulating Ang2 levels and induced vascular
normalization in patients with a sufficiently high tumor micro-
vascular density at baseline9. Here, we used multiplex

immunofluorescence to quantify the density of CD31+Ang2+
and CD31+Ang2− blood vessels and density of T cells, TAMs, and
DCs in these biopsies.
Bevacizumab significantly reduced total CD31+ and CD31

+Ang2+ but not CD31+Ang2− vessel density (Fig. 1a–d),
consistent with vascular normalization. As seen in preclinical
models3, VEGF blockade significantly increased the overall
infiltration by CD8+ T cells, including CD8+PD-1+, CD8+PD-1−,
and CD8+granzyme-B+ (GzmB+) T-cell subsets in TNBC (Fig.
2a–e, Supplementary Fig. 1). Moreover, we found a non-significant
trend for increased density of CD8+ T cells post-bevacizumab in
lesions with fewer CD31+Ang2+ vessels (Supplementary Fig. 1).
The fraction of CD8+PD-1+ T cells, whose increase was recently
shown to associate with improved survival in TNBC10, did not
change post-bevacizumab (Supplementary Fig. 1). PD-1hi pheno-
type in CD8+ T cells in TNBC is a marker of T-cell exhaustion but is
also associated with biomarkers of activation (i.e., IFNγ+, GzmB+)
more than PD-1− or PD-1lo phenotype10.
Our analysis further revealed that bevacizumab significantly

increased the intratumoral density of CD4+ T cells but not
CD4+FOXP3+ T cells (Fig. 2f, Supplementary Fig. 1). Interestingly,
we found a significant inverse correlation between CD4+ T cell
and CD31+Ang2+ vessel density post-bevacizumab (Supplemen-
tary Fig. 1). CD4+ T cells mediate vascular normalization in breast
cancer models11, and bevacizumab-induced vascular normalization
in these TNBC patients9 via Ang2 suppression could mediate the
increase in CD8+ T-cell density. Indeed, dual VEGF/Ang2 blockade
increased intratumoral density of CD8+ T cells in murine tumors7.
We also determined the effect of VEGF blockade on naïve

(CD45RA+) and memory (CD45RO+) T cells, and MHC-I expres-
sion. Bevacizumab significantly reduced CD45RA+ T-cell density
(Fig. 2g) and tended to increase CD45RO+ memory T-cell density
in 7/10 paired-biopsies (Fig. 2h), resulting in a significant decrease
in CD45RA+/CD45RO+ T-cell ratio (Fig. 2i). Moreover, bevacizu-
mab significantly increased the expression of MHC-I (Fig. 2j), in line
with findings in renal cell carcinoma12. Hence, bevacizumab can
promote the maturation of memory T cells and MHC-I expression
in TNBC.
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Moreover, bevacizumab treatment induced a significant
increase in both CD11c+CD163−CD68− and CD11c+CD163
+CD68− DC density in TNBC tissues (Fig. 3a–c). Bevacizumab
also induced a significant increase in density of CD163+CD11c
−CD68− cells (Fig. 3d) but not CD163+CD68+CD11c− (M2-like)
TAMs (Fig. 3e) or CD68+CD163−CD11c− or CD11c+CD68
+CD163− (M1-like) TAMs (Supplementary Fig. 1). Bevacizumab-
induced infiltration of CD11c+CD163+CD68– DCs in TNBC was
correlated with infiltration of CD8+ (Rho= 0.67) and CD8+PD-1+
T-cells (Rho= 0.81), and MHC-I expression (Rho= 0.81) (Supple-
mentary Fig. 2). CD163 is a biomarker of M2-like TAMs and the
mature inflammatory DC3 subset13. DC3s activate naïve T cells and
promote the recruitment of memory T cells in breast cancer13. Our
results suggests that inhibition of VEGF—a known inhibitor of DC
activity8—can enhance the maturation of DCs in TNBC.
Finally, bevacizumab significantly increased the percentage of

stromal tumor-infiltrating lymphocytes (sTILs), a well-established
prognostic marker in TNBC (Fig. 3f–g)14. The percentage of sTILs
also correlated with MHC-I expression pre- (Rho= 0.95) and post-
bevacizumab (Rho= 0.83) (Supplementary Fig. 2).
The post-bevacizumab bimodal response of several immune

phenotypes (e.g., CD8+ T cells, CD11c+CD163+CD68− DCs)
suggested a differential response between patients. We used
the unbiased K-means clustering algorithm to analyze data. K-
means clustering separated patients into 2 clusters pre- and
post-bevacizumab (Supplementary Fig. 3). In cluster 1
bevacizumab-induced enhancement of CD8+ T cells, CD8+PD-
1+ T cells, CD11c+CD163+CD68− DCs and CD163+CD11c
−CD68− was at a maximum and associated with higher
infiltration of CD11c+CD163+CD68− and CD163+CD11c
−CD68− cells pre-bevacizumab, as well as lower densities of

CD31+Ang2+ vessels pre-bevacizumab. In cluster 2 the changes
for the same four immune biomarkers were relatively small
(Supplementary Fig. 3).
Our study has several limitations. A single biopsy may not

reflect the heterogeneity of immune microenvironment. Also, the
biopsy procedure may produce a focal inflammatory response.
These limitations notwithstanding, our results show that bevaci-

zumab can increase intratumoral infiltration by sTILs, CD4+ T cells,
CD8+ (including PD-1+) T cells, CD8+GzmB+ T cells, and CD11c
+CD163+CD68− DCs in primary TNBC. The effects of bevacizu-
mab treatment on DCs and T cells suggest that VEGF blockade
could enhance the efficacy of immunotherapy in TNBC. Indeed,

clinical findings strongly suggest that improving the infiltration of
sTILs and CD8+ T cells can improve the efficacy of immunother-
apy in TNBC14,15. The changes in infiltrating immune cells induced
by bevacizumab should be further evaluated in clinical studies as
predictive dynamic biomarkers of treatment efficacy and patient

selection for combinations with immunotherapy. This is particu-
larly critical for TNBC, since the vast majority of patients do not
respond to immunotherapy. Our findings, along with proven
efficacy of combined anti-PD-1/PD-L1 and anti-VEGF/R agents in
multiple malignancies, provide a strong rationale for this approach

in neoadjuvant setting in TNBC patients.

METHODS

Ethics of study design and consent

This study was approved by the Dana–Farber/Harvard Cancer Center

Institutional Review Board. Written informed consent was required for

enrollment. The trial is registered at ClinicalTrials.gov (NCT00546156).

Fig. 1 Bevacizumab reduced the CD31+Ang2+ vessel density. a Representative immunofluorescence for CD31 and Ang2 pre- and post-
bevacizumab (images from paired samples of same patient); scale bar= 50 µm. Quantitative analyses of TNBC vessels (b–d).
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Patient characteristics

Enrollment required a pathological diagnosis of adenocarcinoma of the

breast. Eligible TNBC patients were negative for ER, PR, and HER2, had a

breast lesion ≥1.5 cm, and no evidence of distal metastasis. Patients

with bilateral cancer were eligible as long as one cancer was eligible.

Patients also required sufficient hematopoietic, hepatic, and renal

function, along with a left ventricular ejection fraction ≥50%. Patients

with any HER2-positive disease (amplified by FISH or IHC), a history of

prior myocardial infarction, uncontrolled hypertension, ≥grade 2

neuropathy, significant bleeding within 6 months of study entry, or

urine protein: creatinine ratio >1 were excluded.

Multiplex and single antibody immunofluorescence

The staining was performed in 10-paired TNBC biopsy samples collected
before and 2 weeks after a single-dose of bevacizumab. For each patient
the staining was performed on a single-biopsy pre-bevacizumab and a
single-biopsy post-bevacizumab. Multiplex immunofluorescence for CD68
(Agilent Dako M0876, 1:2000), CD163 (Leica NCL-L-CD163, 1:1500), CD11c
(Leica CD11C-563-L-CE, 1:1500), CD8 (Agilent Dako M710301, 1:5000), PD-1
(Cell Signaling Technology 43248 S, 1:11000), granzyme-B (Dako M7235,
1:100), CD4 (Dako M731029, 1:250), FOXP3 (BioLegend 320102, 1:2000),
CD31 (Abcam Ab28364, 1:250), and Ang 2 (Santa Cruz Sc-74403, 1:250) was
performed with the BOND RX fully automated autostainer (Leica
Biosystems). The target antigens, antibody clones, and dilutions for all

CD8+ GzmB+

CD45RA+ / CD45RO+

Fig. 2 Bevacizumab increased the CD8+ and CD4+ T-cell density and MHC-I expression. a Representative multiplex immunofluorescence
for CD8 and PD-1 pre- and post-bevacizumab (images from paired samples of the same patient). CD8+PD-1+ T cells (white arrows); scale bar
= 50 µm. b–f Quantitative analyses of overall CD8+ (b), CD8+PD-1+ (c), CD8+PD-1− (d), CD8+GzmB+ (e), and CD4+ T cells (f). g–j
Quantitative analyses of CD45RA+ (g) and CD45RO+ (h) T-cells, CD45RA+/CD45RO+ ratio (i), and MHC-I+ cells (j).
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antibodies are listed in Supplementary Table 1. Formalin-fixed, paraffin
embedded tissue sections were baked for 3 h at 60 °C then loaded into the
BOND RX. Slides were deparaffinized (BOND DeWax Solution, Leica
Biosystems) and rehydrated through a series of washes of graded ethanol
to deionized water. Antigen retrieval (BOND Epitope Retrieval Solution 1,
Leica Biosystems) was performed at pH 6.0 for 10min at 98 °C. Slides were
then stained with primary antibodies with an incubation time of 40min.
Next, the slides were incubated with Opal Fluorophore Reagents (Akoya
Biosciences) for 5 min to visualize signal for the antibody complexes. This
process was repeated iteratively for all antibodies.
Single antibody staining for CD45RO (DAKO M0742, 1:500) and MHC-I

(Abcam Ab70328, 1:6000) was performed by the Dana-Farber/Harvard
Cancer Center Specialized Histopathology Core. For the single CD45RA
(Thermofisher MA5-12490, 1:150) antibody stain, antigen retrieval (Vector
Citrate pH6 retrieval solution) was performed at pH 6.0 for 20min at 98 °C.

Slides were incubated in CuSO4 for 90min to block autofluorescence.

Slides were then stained with the CD45RA primary antibody overnight at

4 oC followed by a Cy3 labeled anti-mouse secondary antibody (Jackson

Immunoresearch). All slides were counterstained with DAPI (NucBlue Fixed

Cell ReadyProbes Reagent, Invitrogen), washed with deionized water, air

dried, and mounted with ProLong Diamond Anti-fade Mountant

(Invitrogen).
Imaging was performed with the Mantra Quantitative Pathology

Workstation (Akoya Biosciences) at 20X resolution. Images were analyzed

using in QuPath16 and Python. Cells were identified based on a positive

DAPI signal, and each of the cell populations were classified as positive or

negative based on a single intensity threshold on mean expression within

the cell. Immune cells located in both the tumor and stromal compartment

were included in the quantitative analysis. The mean number of positive or

Fig. 3 Bevacizumab increased CD11c+CD163−CD68− and CD11c+CD163+CD68− DC density. a Representative multiplex immuno-
fluorescence for CD11c, CD163, and CD68 in TNBC pre- and post-bevacizumab (images from paired samples of the same patient); scale bar=
50 μm. Red boxes identify CD11c+CD163+CD68− DCs, white boxes identify CD163+CD68+CD11c− TAMs. b–e Quantitative analyses of
CD11c+CD163−CD68− (b), CD11c+CD163+CD68− (c), CD163+CD11c−CD68− (d), and CD163+CD68+CD11c− (e) cells. f H&E image of
sTILS pre- and post-bevacizumab (images from paired samples of the same patient); scale bar= 100 µm. g Quantitative analysis of sTILs.
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negative cells per mm2 of tissue was subsequently calculated and
reported.

Stromal TIL analysis

The percentage of stromal TILs was assessed based on H&E slides using the
approach reported by Salgado et al.17. Briefly, the tumor and stromal areas
were defined and any areas with crush artifact, necrosis, or the previous
core biopsy site were excluded. The type of stromal inflammatory infiltrate
was determined, and all mononuclear cells (including lymphocytes and
plasma cells) were included, while neutrophils and intratumoral TILs were
excluded from the analysis. We analyzed one biopsy section (magnification
×200) per patient. A full assessment of average stromal TILs in the tumor
area was calculated, and the area fraction of sTILs was reported.

Statistical analysis

The Wilcoxon test was conducted for each cell population on a per patient
basis for each group. An alpha value of 0.05 was considered statistically
significant. Correlations were evaluated using Spearman rank correlation.
Principal component analysis dimension reduction and k-means clustering
with 25 random starts were conducted on all normalized patient data, pre-
and post-bevacizumab. All analyses were performed using Prism Version 9
Software (GraphPad) and R Statistical Software (Foundation for Statistical
Computing).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

The datasets generated during and/or analyzed during the current study are available

from the corresponding authors on reasonable request.

CODE AVAILABILITY

We generated code for QuPath 0.2.3, Python 3.7.3, and R 4.0.2. The codes used for

processing of data are available from the corresponding authors on reasonable
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