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Abstract
Directed acyclic graph (DAG) models are popular tools for describing causal relationships and for
guiding attempts to learn them from data. They appear to supply a means of extracting causal con-
clusions from probabilistic conditional independence properties inferred from purely observational
data. I take a critical look at this enterprise, and suggest that it is in need of more, and more explicit,
methodological and philosophical justification than it typically receives. In particular, I argue for
the value of a clean separation between formal causal language and intuitive causal assumptions.
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1. Introduction

This article is based on a talk given at the 2008 NIPS Workshop Causality: Objectives and Assess-
ment, where I was commissioned to play “devil’s advocate” in relation to the enterprise of causal
discovery, which—as evidenced by the other contributions to the workshop—has become an im-
portant and vibrant strand of modern machine learning. Like Cartwright (2007, Chapter II), I take
a sceptical attitude to the widespread view that we can learn about causal processes by constructing
DAG models of observational data.

In taking on this sceptical rôle I would not wish to be thought entirely negative and destructive:
on the contrary, I am impressed by the overall quality of work in this area, be it fundamental method-
ology, algorithmic development, or scientific application. Moreover, many of the cautions I shall
raise have been clearly identified, appreciated and enunciated by the major players in the field, and
will be at the back, if not the forefront, of the minds of many of those who use the techniques and
algorithms. I do feel, however, that there is still a useful contribution to be made by reiterating and
to some extent reframing these cautions. A companion paper (Dawid, 2010) makes similar points,
with emphasis on the variety of concepts of causality rolled up in the statistical methodology.

My principal concern here is to clarify and emphasise the strong assumptions that have to be
made in order to make progress with causal modelling and causal discovery, and to argue that these
should never be accepted glibly or automatically, but deserve careful attention and context-specific
discussion and justification whenever the methods are applied. And, in a more positive vein, I
describe a formal language that can assist in expressing such assumptions in an unambiguous way,
thereby facilitating this process of discussion and justification.

c○2009 A. Philip Dawid.
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1.1 DAG models

A unifying feature of the discussion is the use of directed acyclic graph (DAG) representations.
These can interpreted and applied in a number of very different ways, which I attempt to elucidate
and contrast. Here I give a very brief preview of these different interpretations.

Consider for example the simple DAG

(a) X ← Z→ Y .

One interpretation of this is as a probabilistic DAG, which is just a graphical way of describing
the probabilistic conditional independence (CI) property X⊥⊥Y | Z—and is thus interchangeable
with the entirely equivalent descriptions of this CI property by means of the DAGs

(b) X → Z→ Y ; or

(c) X ← Z← Y .

A totally different interpretation of (a) is as a causal DAG, saying that Z is (in some sense)
a “common cause” of both X and Y , which are otherwise causally unrelated. Under this causal
interpretation the DAGs (a), (b) and (c) are not interchangeable.

Although these interpretations (probabilistic and causal) have absolutely nothing in common,
it is often assumed that a single DAG can fulfil both these interpretative functions simultaneously.
When this is so, it follows that any variable will be independent of its non-effects, given its di-
rect causes—the causal Markov property that forms the basis of “causal discovery” algorithms that
attempt to infer causal relationships from observationally discovered probabilistic conditional in-
dependencies. Unfortunately there is no clear way of deciding when (if ever) it is appropriate to
endow a DAG with this dual interpretation.

Pearlian DAGs aim to clarify this connexion, using interventions to define causal relationships,
and making strong assumptions to relate the non-interventional probabilistic regime with various
interventional causal regimes. For example, this interpretation of DAG (a) would require that the
observational joint conditional distribution of (X ,Y ) given Z = z (under which X and Y are in fact
conditionally independent) is the same as the joint distribution of (X ,Y ) that would ensue when
we intervene on Z to set its value to z. Such Pearlian assumptions, which are testable (at least in
principle), support a rich causal calculus. There are also valuable variations on this approach that
require fewer assumptions (e.g., we envisage intervention at some, but not all, of the nodes in the
DAG).

This abundance of different interpretations of the same DAG is rich in possibilities, but at the
same time a potential source of confusion.

1.2 Outline

In §2 I recall the importance of distinguishing between passive observation (“seeing”) and interven-
tion (“doing”). Section 3 introduces the algebraic theory of conditional independence (CI), relevant
to the “seeing” context, while graphical representations of CI are described and discussed in §4.
In §5 I switch to considering causal models and their graphical representations, as relevant to the
“doing” context, while §6 discusses possible relationships that might be assumed to hold between
graphical representations in the two contexts. Section 7 treats the more specific assumptions under-
lying Judea Pearl’s use of DAGs to represent and manipulate causality. In §8, I comment on the
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strong assumptions that are implicit in these causal models. Section 9 then presents an approach
to modelling causality that does not require any such assumptions (though these can be represented
when desired), and this is further illustrated, and contrasted with other approaches, in §§ 10 and 11.
The need for (and possibilities for) contextual justification of causal assumptions is highlighted in
§12, while §13 summarises the arguments presented and considers what might be an appropriate
rôle for causal discovery.

2. Seeing and doing

Spirtes et al. (2000) and Pearl (2009), among others, have stressed the fundamental importance of
distinguishing between the activities of Seeing and Doing. Seeing involves passive observation of
a system in its natural state. Doing, on the other hand, relates to the behaviour of the system in a
disturbed state, typically brought about by some external intervention. For statistical applications
a strong case can be made (Dawid, 2000, 2002b) for regarding the philosophically problematic
concept of causation as simply describing how the system responds to external intervention—a
stripped-down “agency” or “manipulationist” interpretation of causality (Hausman, 1998; Wood-
ward, 2003). Causal inference then refers to the problem of drawing conclusions, from available
data, about such responses to interventions.

The cleanest case is when the data were collected under the very interventional regime in which
we are interested. “To find out what happens to a system when you interfere with it you have to
interfere with it (not just passively observe it)” (Box, 1966). This is the credo underlying the whole
discipline of experimental design and inference, as exemplified by the most important medical ad-
vance of the 20th century: the controlled clinical trial.

Often, however, for reasons of cost, practicality, ethics, etc., we can not experiment, but are
confined to passive observation of the undisturbed system. Now it is a logically trivial but fun-
damentally important point that there is no necessary connexion between the different regimes of
seeing and doing: a system may very well behave entirely differently when it is kicked than when
it is left alone. So any understanding one might achieve by observation of the system’s undisturbed
behaviour is at best indirectly relevant to its disturbed behaviour, and thus to causal inference. We
might attempt to proceed by assuming connexions between the different regimes, which—if valid—
would allow us to transfer knowledge gained from seeing to inferences about the effects of doing.
But it is important to be entirely explicit about such assumptions; to attempt, so far as is possible,
to justify them; and to be fully aware of the sensitivity of any conclusions drawn to their validity.

In recent years there has grown up a body of methodology, broadly described as causal discov-
ery, that purports to extract causal (doing) conclusions from observational (seeing) data in fairly
automatic fashion (Spirtes et al., 2000; Glymour and Cooper, 1999; Neapolitan, 2003). This ap-
proach largely revolves around directed acyclic graph (DAG) models, which have interpretations in
both the seeing and the doing contexts, so that a DAG model identified from observational (seeing)
data can be imbued with causal (doing) content. However, these two interpretations of DAGs, while
related, are logically distinct, and have no necessary connexion. Hence it is important to clearly
identify, understand, and provide contextual justification for, the assumptions that are needed to
support replacement of one interpretation by another. There can be nothing fully automatic about
causal discovery.

I will survey various different interpretations of DAG models, and their relationships with con-
ditional independence.
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3. Seeing: Conditional independence

We start by concentrating on the behaviour, under a single stable regime, of a collection of variables
of interest. We assume that this behaviour will be modelled by means of a fixed joint probability
distribution P.1 If we can obtain and record repeated observations under the same regime, we might
hope to estimate P. Here we largely ignore problems of inference, and restrict attention to purely
probabilistic properties.

One of the most important of such properties is that of conditional independence, CI (Dawid,
1979a, 1980). We write X⊥⊥Y | Z [P] to denote that, under the distribution P, variables X and Y
are probabilistically independent given Z = z, for any observable value z of Z. When P can be
understood we write simply X⊥⊥Y | Z. This can be interpreted in various equivalent ways, but for
our purposes the most useful is the following:2

P(X = x | Y = y, Z = z) depends only on z, and not further on y. (1)

Universal3 qualitative properties of probabilistic CI include (Dawid, 1979a; Spohn, 1980; Pearl
and Paz, 1986):

X⊥⊥Y | X
X⊥⊥Y | Z ⇒ Y ⊥⊥X | Z
X⊥⊥Y | Z, W ≤ Y ⇒ X⊥⊥W | Z
X⊥⊥Y | Z, W ≤ Y ⇒ X⊥⊥Y | (W,Z)

X⊥⊥Y | Z
and
X⊥⊥W | (Y,Z)

 ⇒ X⊥⊥(Y,W ) | Z

(2)

(where W ≤ Y denotes that W is a function of Y ).
There is another useful property, which is however valid not universally, but only under addi-

tional conditions (Dawid, 1979b, 1980):4

X⊥⊥Y | (Z,W ) and X⊥⊥Z | (Y,W )⇒ X⊥⊥(Y,Z) |W . (3)

While (2) (and, where appropriate, (3)) do not exhaust all the general properties of probabilistic
CI (Studený, 1992), they are adequate for most statistical purposes.

4. Graphical representation

It can be helpful to use mathematical constructions of various kinds to represent and manipulate
CI (Dawid, 2001a). This involves making formal analogies between properties of probabilistic

1. There are of course many interpretations of probability (Galavotti, 2005). For present purposes a naïve frequentist
view, which can also be given a subjective Bayesian intepretation in terms of exchangeability (de Finetti, 1975), will
suffice. Williamson (2005) argues for an “objective Bayesian” interpretation as most appropriate for causal inference.
The formal mathematical framework is the same in all cases.

2. Purely for simplicity, we may here suppose the variables are discrete, and all combinations of logically possible
values have positive probability. For a rigorous definition in the general case, see Dawid (1980).

3. i.e. holding for any distribution P and any variables X ,Y, . . .
4. For example, when the sample space is discrete and each elementary outcome has positive probability.
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CI and non-probabilistic properties of the representations we use. The representations themselves
can look very different from probability distributions, and we need to be very clear as to how we
are to interpret properties of such a representation as “saying something about” properties of CI.
As with any use of representations to assist understanding and construct arguments, the semantics
(or meaning) of a representation—describing exactly just how it is to be taken as relating to the
external “reality” it is intended to represent—is at least as important as its syntax—describing its
internal grammar.

One of the most popular and useful of such representations is the directed acyclic graph (DAG).
A DAG D has a set V of nodes, and arrows joining them, with no loops or directed cycles. A
full description and analysis of the formal semantics of the relationship between DAGs and the
collections of CI properties they represent, together with the associated notation and terminology,
can be found in Cowell et al. (2007). Although this theory will be familiar to many readers, I repeat
here the specific features I wish to emphasise—more to clarify what is not being said than what is.

4.1 d-separation

Given node-sets S,T,U ⊆ V , we say U d-separates S from T in D , and write S ⊥d T |U [D ], if the
following somewhat complex geometric property5 is satisfied. First we delete all nodes that are not
“ancestors” of some node in S∪T ∪U , as well as all their incoming arrows; then we add undirected
edges between any two nodes that are “parents” of a common “child” node, if they are not already
joined by an arrow; next we delete all arrowheads, so obtaining an undirected graph, the relevant
moralized ancestral graph. Finally, in this graph we look for paths joining S and T that do not
intersect U . If there are none such, then S and T are d-separated by U in D .

It turns out (Lauritzen et al., 1990) that this graph-theoretic separation property also obeys the
formal rules (2) (with ≤ interpreted as ⊆), and is thus potentially able to represent some collections
of probabilistic conditional independence properties. Specifically, when the nodes of D represent
random variables, we say that D represents a collection C of conditional independence relations
between sets of variables if the graph-theoretic property S ⊥d T |U [D ] holds exactly when the
CI relation S⊥⊥T |U either belongs to C , or can be logically deduced from C by application of
the rules in (2). For a probability distribution P over V , we say D represents P if (the Markov
condition):

S ⊥d T |U [D ]⇒ S⊥⊥T |U [P]. (4)

This will be so if and only if, under P, for each V ∈ V , V is conditionally independent of its parents
in V , pa(V ), given its non-descendants in V , nd(V ). Such a representation is termed (probabilisti-
cally) faithful when the converse implication to (4) also holds, i.e. the only conditional independence
properties holding in P between the variables in V are those represented by D . These relationships
between the d-separation properties of a DAG and a collection of CI properties, or a joint distribu-
tion P, constitute the semantic interpretation of the DAG.

As a simple example, Figure 1 shows the unique DAG over four variables (Z,U,X ,Y ) that
represents the following pair of CI properties:

U ⊥⊥ Z (5)

Y ⊥⊥ Z | (X , U). (6)

5. We here describe the “moralisation” version of this property (Lauritzen et al., 1990). This is logically equivalent to
the d-separation property as described by Pearl (1986); Verma and Pearl (1990).
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Figure 1: Simple DAG

It is important to note that, for given variable set V , the collections of CI properties C that
can be represented by a DAG are very special.6 Thus with V = {X ,Y,Z}, the pair of properties
{X⊥⊥Y , X⊥⊥Y | Z} has no DAG representation, and this is indeed the typical state of affairs.
Conversely, when a DAG representation is available, it need not be unique. Distinct DAGs on V are
termed Markov equivalent when they represent the same collection of CI relations: this will be so
if and only if they have the same skeleton (undirected version) and immoralities (configurations of
the form A→C← B with no arrow between A and B) (Frydenberg, 1990; Verma and Pearl, 1991).
Thus the three DAGs (a), (b) and (c) of §1.1 are Markov equivalent, all representing the same single
CI property X⊥⊥Y | Z, and are all equally valid for this purpose. This representational flexibility
is extended further when we allow the set V of variables considered to vary: thus both DAGs of
Figure 2 represent the single CI property A⊥⊥B.

Figure 2: Two DAGs representing A⊥⊥B

4.2 What do the arrows mean?

According to the theory presented above, the purpose of a DAG representation is to mirror, via the d-
separation semantics described in §4, the probabilistic relationship of conditional independence—a
relationship that, it is worth emphasising, is entirely symmetrical, as captured by the second line
of (2). However, it is in the very nature, and indeed name, of a directed acyclic graph that it
contains directed arrows between variables, so that this particular graphical representation embodies
a non-symmetrical relationship between nodes. But this is a pure artifact: thus Figure 1, although

6. They are exactly those that are logically equivalent (using (2)) to a collection of the form Vi⊥⊥{V1, . . . ,Vi−1} | Si for
i = 1, . . . ,N, where V1, . . . ,VN is an ordering of V , and Si ⊆ {V1, . . . ,Vi−1}. In this case the associated DAG has an
arrow into each Vi from each node in Si.
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composed of directed arrows, is nothing but an alternative way of representing the symmetrical CI
relationships (5) and (6). The rôle of an arrow in a DAG model is much like that of a construction
line in an architect’s drawing: although it plays an important rôle in the formal syntax of the model,
it has no direct counterpart in the world, and contributes only indirectly to the semantic interpretation
of the model.

4.3 Reification

Nevertheless, having built a DAG representation of a probability distribution, it is hard to resist
the temptation to interpret an arrow from node X to node Y in the DAG as representing something
meaningful in the real-world system that the DAG is modelling—for example, as embodying some
conception of the non-symmetrical relation of cause and effect: that X is, in some sense, a “direct
cause” of Y . Likewise, we might be tempted to read off from the Figure 1 such intuitive properties
as “X lies on the causal pathway between Z and Y ”. But no such inferences are justified from the
formal semantics relating DAG representations to conditional independence. Such interpretation
of an incidental formal attribute of a mathematical representation of the world as corresponding
to something real in the external (physical or mental) world7 may be termed “reification”. While
reification can often be indicative and fruitful, it is important to be very clear as to when we are
reaching beyond the formal semantics by which the representation has been supposed to encode
real-world properties, and in that case to consider very carefully whether, when and how this might
be justifiable.

5. Causal DAGs

An entirely different use of a DAG representation is to model causal relations directly. Unlike con-
ditional independence, which is a clearly defined property of a probability distribution, causality
is a slippery and ambiguous concept. In dealing with causal relations, we can either regard them
as fundamental undefined primitives in themselves, or as defined in terms of still more basic in-
gredients, such as the effect of interventions. In either case the important thing, if a representation
is to be used for meaningful communication, is that all parties have the same (explicit or implicit)
understanding of the things it is supposed to be representing, and of the nature and mechanics of the
representation.

A common causal interpretation of a DAG is along the following lines, quoted from Hernán and
Robins (2006) (their Figure 2 is redrawn here as our Figure 3), in discussion of a certain problem
relating to the use of “instrumental variables” (see §10 below):

“A causal DAG is a DAG in which:

(i). the lack of an arrow from Vj to Vm can be interpreted as the absence of a direct
causal effect of Vj on Vm (relative to the other variables on the graph)8

(ii). all common causes, even if unmeasured, of any pair of variables on the graph
are themselves on the graph. In Figure 2. . . the inclusion of the measured vari-
ables (Z,X ,Y ) implies that the causal DAG must also include their unmeasured
common causes (U,U∗).”

7. Bourdieu (1977, p. 29) speaks of “sliding from the model of reality to the reality of the model”
8. A stronger and potentially more useful requirement is that an arrow be present if and only if there is such a direct

causal effect.
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Figure 3: Figure 2 of Hernán and Robins (2006)

Here we have used teletype font (not in the original) to highlight non-mathematical causal
concepts.9 Only when we have pre-existing understanding and interpretation of these concepts will
it be possible to say whether or not a given DAG is indeed a causal DAG for the problem it is
intended to represent. Such a question can never be addressed solely in formal terms, by reference
only to the DAG. In particular, we can not define concepts such as “direct causal effect” or “common
cause” by reference to a putative DAG model unless that model has previously been justified as
“causal” by other, necessarily non-graphical, considerations not involving these terms.

However we may choose to understand the causal terms involved, it is clear that the semantics
whereby a DAG represents causal properties are qualitatively totally different from those whereby it
represents conditional independence properties. In the former case, the arrows are supposed to have
a direct interpretation in terms of cause and effect; whereas, as emphasised in §4.2, for conditional
independence the arrows are nothing but incidental construction features supporting the d-separation
semantics. A related distinction is that conditional independence is an externally determined all-or-
nothing affair, whose validity is unaffected by which other variables and properties we may choose
to represent in our DAG: this means, in particular, we can not interpret the presence or absence of
an arrow from X to Y in some probabilistic DAG representation as representing a fundamental CI
property, since such arrows can come and go as we vary the set of variables represented. In contrast,
the very meaning of the properties (such as “direct effect”) represented by a causal DAG may be
dependent on the specification of the variable set V , and may change (with corresponding changes
in the relevant representation) as we vary V . Correspondingly an arrow in a causal DAG can be
considered as having independent meaning (e.g. as representing a “direct effect”)—albeit only in
terms of causal concepts defined relative to the specific variables represented.

Contrasting conditional independence and causality, we see that both in their subject matter
and in their graphical representation they differ markedly. We could simply keep them in entirely
different pockets, with nothing whatsoever to do with each other. However, there is a long-standing
tradition of attempting to forge connexions between the two. Indeed, some thinkers (Shafer, 1996;
Spohn, 2001) regard the very concept of causality as entirely supervenient on that of conditional
independence (for an appropriate collection of variables).

9. Note that (i) involves a causal concept that is not regarded as absolute, but rather as relative to a specific collection of
variables under consideration.
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6. Probabilistic causality

One approach, going back at least to Reichenbach (1956) and pursued by Suppes (1970) among
others, essentially proceeds by relating the probabilistic conditional independence of two variables
X and Y given some third variable Z to the causal independence of X and Y , in the sense that
neither of these variables causally affects the other. However it is not easy to make this precise.
In one direction, it apparently implies that, if X and Y are completely independent probabilistically
(so that we can take Z to be vacuous), then neither can causally affect the other. However, this
degree of implication is not usually claimed, since such independence could be an accidental result
of numerical cancellation between two or more non-null causal probabilistic relationships involving
these and other variables.10 Likewise, if we find that X and Y are not independent given any variable
Z currently under consideration, we can not immediately deduce causal dependence between X and
Y , since we can not rule out the possibility that we have simply not examined enough Zs.

In the converse direction, it might be claimed (the “weak causal Markov assumption”, Scheines
and Spirtes, 2008) that, if X and Y are “causally disconnected”, in the sense that neither X nor Y
causally affects the other and they have no other common cause Z, then they should be probabilisti-
cally independent.

6.1 Causal Markov condition

A still more thoroughgoing approach is based on the “Causal Markov condition”, CMC (Spohn,
1980; Spirtes et al., 2000). Essentially, this supposes that, when we do have a causal DAG represen-
tation11 of a system, the identical DAG will also represent its CI properties. Equivalently,12 CMC
requires that any variable be probabilistically independent of its non-effects,13 conditional on its
direct causes—all understood relative to the set of variables in the causal DAG. When valid, CMC
allows us to infer conditional independence properties from causal assumptions (so long as these
can be represented by a causal DAG).

6.2 Other interpretations of probabilistic causality

Recently other ideas have been suggested for relating causal relationships between variables to
properties of their joint probability distribution. For example, Janzing and Schölkopf (2008b,a) dis-
tinguish between the two decompositions of a joint distribution, p(x,y) = p(x) p(y |x) and p(x,y) =
p(y) p(x |y), in terms of their algorithmic complexity: if, say, the former is simpler by this criterion,
one might regard this as indicating a causal effect of X on Y . Similarly (Zhang and Hyvärinen,
2010), if one can reasonably describe p(y |x), but not p(x |y), in terms of an implicit additive error
structure, one might again interpret that as implying that X is a cause of Y . It is clear that the as-
sumptions underlying such claims are very different from those of “probabilistic causality” above.
The extent to which they might be appropriate, and indeed whether they even relate to the same
conception of causality, deserves deeper attention.

10. Such a state of affairs is sometimes dismissed as being due to a “non-faithful” DAG representation of the problem.
But at this level of generality we do not have a DAG.

11. e.g., as described in §5.
12. At any rate, with the stronger interpretation of footnote 8.
13. The “effect” relation here is the transitive closure of the “direct effect” relation.
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6.3 Causal discovery

“Causal discovery” aims to deduce causal properties of a system from its CI properties, themselves
typically inferred (with a consequent degree of uncertainty) from an analysis of data generated by
the system. There are many variations and algorithms, but all share the same basic philosophy. The
fundamental assumptions14 needed to validate this enterprise in any particular application are:

Assumption 6.1 (Causal representation) There exists some DAG D that is a causal DAG repre-
sentation of the system.

Assumption 6.2 (Causal Markov condition) The identical DAG D also represents (by means of
the Markov condition (4)) the probabilistic conditional independence properties of the system.

The more sophisticated causal discovery methods appreciate that (especially in the light of (ii) of
§5) it would not generally be reasonable to expect the causal DAG D to involve only the variables
that happen to have been measured, and so will allow for the inclusion of additional unobserved
variables.

Some putative causal DAG representations might be eliminated directly on a priori grounds,
e.g. taking into account temporal order. Under Assumption 6.2, any remaining putative causal DAG
representation will have implications for the probability distribution over the observed variables—
either directly in terms of conditional independencies when there are no unobserved variables in
the causal DAG, or more subtle consequences of “latent conditional independence” when there are.
Consequently, if those implications are not supported by the data, then the hypothesised causal DAG
may be eliminated on empirical grounds. In this way, and under the assumptions made, we can gain
partial knowledge of causal structure from a combination of a priori reasoning and observational
data.

To make further progress, it is common to strengthen Assumption 6.2 as follows:

Assumption 6.3 (Causal faithfulness) The causal DAG D is a probabilistically faithful represen-
tation of the system.

In this case, the only conditional independence properties enjoyed by the variables in D will be
those represented by the causal DAG D . Under Assumption 6.1 and Assumption 6.3, knowledge
of which (patent or latent) conditional independencies do or do not hold between the observed
variables allows us to eliminate still more putative causal DAG representations of the problem.
However, even if we knew which variables were to be included in the causal DAG D , and all the
conditional independence properties they possess, we might not be able to identify D uniquely,
since we could never distinguish observationally15 between distinct DAGs that are Markov (but not
causal) equivalent. Even with this remaining ambiguity, it may be possible to make some causal
inferences: thus if every uneliminated causal DAG description of the problem involves the same
variable set V , and all contain an arrow from X to Y , we can infer that X is a direct cause of Y
relative to V .

Zhang and Spirtes (2008) point out that certain implications of the combination of Assump-
tions 6.1 and 6.3 can be tested empirically. For it follows from Assumption 6.3 that the conditional

14. There are also variations using different graphical representations of causal and CI properties, such as partial ancestral
graphs (Richardson and Spirtes, 2002; Zhang, 2008).

15. although we may be able to do so on a priori grounds

68



BEWARE OF THE DAG!

independence properties of the observational distribution P are faithfully represented by some DAG,
and this property has testable consequences. But this does not make much progress towards causal
inference without the additional strong Assumption 6.1.

7. Pearlian DAGs

Judea Pearl, through his book (Pearl, 2009) and many other works, has popularised a particular
use of DAGs to represent both CI and causal properties simultaneously—the latter understood as
describing the effects of interventions. We shall refer to a DAG imbued with such an interpretation
as a Pearlian DAG.16

Such a representation applies to a collection of variables measured on some system, such that
we can intervene (or at least can conceive of the possibility of intervening) on any one variable
or collection of variables, so as to “set” the value(s) of the associated variable(s) in a way that is
determined entirely externally. This gives rise to a wide variety of interventional regimes, while the
observational regime arises as the special case that no variables are set. A DAG D is then a Pearlian
representation of the system when the following properties hold:

Property 7.1 (Locality) Under regimes in which all variables other than V are set, at arbitrary
values, the associated distribution of V depends only on the settings of its parents, pa(V ), in D .

This can be interpreted as requiring that only the DAG parents of V have a direct effect on V , relative
to the other variables in the DAG.

Property 7.2 (CMC) Under any regime, D represents (by means of the Markov condition (4)) the
probabilistic conditional independence properties of the associated joint distribution.

Under any interventional regime that sets the value of V ∈V , there trivially can be no dependence of
the (one-point) distribution of V on pa(V ): the arrows into V could thus be removed while retaining
a DAG representation of this regime.

Under Property 7.1, D can plausibly be interpreted as a causal DAG representation of the prob-
lem: property (i) of §5 is incorporated in Property 7.1, while property (ii), though not directly
interpreted or represented, might be regarded as implicit in Property 7.2. With this interpretation,
Property 7.2, applied to the observational regime, implies the causal Markov condition.

However, a Pearlian DAG representation must also satisfy an additional “modularity” (or “in-
variance”) condition:

Property 7.3 (Modularity) For any node V ∈ V , its conditional distribution, given its DAG par-
ents pa(V ), is the same, no matter which variables in the system (other than V itself) are intervened
on.

16. We in fact shall deal only with Pearl’s initial, fully stochastic, theory. More recently (see the second-half of Pearl
(2009), starting with Chapter 7), he has moved to an interpretation of DAG models based on deterministic functional
relationships, with stochasticity deriving solely from unobserved exogenous variables. That interpretation does how-
ever imply all the properties of the stochastic theory, and can be regarded as a alternative description of it. (This is
however not so when we move from DAG models to more general representations, when such deterministic models
have restricted generality: see Example 11.2 below.)
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(Note that Property 7.1 follows from Property 7.2 combined with Property 7.3).
Property 7.3 extends CMC: not only can we relate the qualitative conditional independence

properties and causal properties represented by D (as embodied in CMC), but we can further relate
the various quantitative distributional behaviours of the system when subjected to different interven-
tions. In particular, from purely observational data on V we could estimate the modular parent-child
distributions, and piece these together to deduce the joint distribution for the system under any set of
interventions: a fully quantitative solution to the problem of inferring causality from observational
data.

We see that a Pearlian DAG representation embodies CMC (for its particular interpretation of
causality), but much more besides. When we can assume that a system is represented by some
Pearlian DAG, we can attempt “quantitative causal discovery”, in which we attempt to learn the
quantitative as well as the qualitative causal structure of the problem, as embodied in the underlying
Pearlian DAG.

8. How do we get started?

As is brilliantly attested by the work of Pearl, an extensive and fruitful theory of causality can
be erected upon the foundation of a Pearlian DAG. So, when we can assume that a certain DAG is
indeed a Pearlian DAG representation of a system, we can apply that theory to further our causal un-
derstanding of the system. But this leaves entirely untouched the vital questions: when is a Pearlian
DAG representation of a system appropriate at all?; and, when it is, when can a specific DAG D
be regarded as filling this rôle? As we have seen, Pearlian representability requires many strong
relationships to hold between the behaviours of the system under various kinds of interventions.

Causal discovery algorithms, as described in §6.3, similarly rely on strong assumptions, such as
Assumption 6.1 and Assumption 6.2, about the behaviour of the system. The need for such assump-
tions chimes with Cartwright’s maxim “No causes in, no causes out” (Cartwright, 1994, Chapter
2), and goes to refute the apparently widespread belief that we are in possession of a soundly-based
technology for drawing causal conclusions from purely observational data, without further assump-
tions.17 This belief perhaps arises because every DAG model can be given both a probabilistic and
a causal interpretation, so it is easy to conclude that, once we have derived a DAG model to de-
scribe observational conditional independencies, it must necessarily also be interpretable according
to more sophisticated causal semantics (e.g., as a Pearlian DAG). While this is evidently untrue
(in particular, distinct but Markov equivalent DAG models, representing identical observational CI
properties, will always have different implications when interpreted causally), such reification of a
DAG CI representation can be very tempting.

In my view, the strong assumptions needed even to get started with causal interpretation of
a DAG are far from self-evident as a matter of course,18 and whenever such an interpretation is
proposed in a real-world context these assumptions should be carefully considered and justified.
Without such justification, why should we have any faith at all in, say, the application of Pearl’s
causal theory, or in the output of causal discovery algorithms?

17. See Geneletti (2005) for further discussion of the hidden assumptions made in this enterprise.
18. It is commonly recognised (Scheines and Spirtes, 2008) that there are cases where such assumptions should not be

expected to hold, such as in the presence of measurement error or coarsening (which might however be rehabilitated
by including the original variables in the DAG), and, more fundamentally, when dealing with dynamic processes in
equilibrium (Dash, 2005).
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But what would count as justification? We return to this important question in §12. For the
moment we merely remark that it cannot be conducted entirely within a model, but must, as a
matter of logic, involve consideration of the interpretation of the terms in the model in the real
world.

9. A formal language for causality

Another difference between a DAG representation of CI and a DAG representation of causality is
that the former is always available, while the latter is not. In particular, a complete DAG over a
collection of variables is totally non-committal as to their CI properties, and so (vacuously) correct.
However, interpreted causally, even a complete DAG makes strong assertions. If we do not wish to
make any such assertions, we can not even begin to consider using a causal DAG representation.

A less restrictive approach to causal modelling (Didelez and Sheehan, 2007a) is to develop a for-
mal framework, with clear semantics relating mathematical properties of a putative representation to
causal properties of the external system it is intended to represent, but without any commitment as
to what properties the system should have: such properties should be expressible within the system,
but not imposed by it. In particular, no rigid assumptions about how causality relates to probability
need be made. Rather, the aim is to present a completely general language, in terms of which we
can clearly express and manipulate whatever tentative causal assumptions we may wish to entertain
in a specific context (in particular, it should be possible to make no such assumptions whatsoever).
In these respects the rôle of such a theory would be similar to that of the theory of probabilistic
conditional independence, as described in Sections 3 and 4.

One way of proceeding involves extending that same CI theory into the causal domain, using a
manipulationist conception of causality (similar to that underlying the approach of Pearl). The basic
ingredients are of two kinds, intended to represent, respectively, the variables (“domain variables”)
in the system, and the “regimes” under which those variables are generated. For application to
modelling a particular external system, we must fully understand what real-world variables are
supposed represented by the domain variables in the model, and what real-world regimes by the
regime variables in the model. To accommodate our manipulationist stance, at least one of the
regimes modelled should result from an external intervention.

The kind of causal property that will be expressible in this theory will concern relationships be-
tween the probabilistic behaviours of the domain variables, across the various regimes. Specifically,
we are able (but are not obliged!) to postulate the identity, across two or more regimes, of the condi-
tional distribution for one set of domain variables given another set of domain variables. When this
holds we can regard that conditional distribution as a stable “modular component”,19 transferable
across regimes.

This invariance or (stochastic) “stability” concept, in addition to being fundamental to my in-
terpretation of causality, has other useful applications, arguably outside “causal inference”, which
can be modelled and analysed in essentially the same way. Thus we might consider the differing

19. Modularity—though more typically conceived in terms of transferable deterministic relationships between
variables—has often been taken as an essential or defining property of causality, though this view has been chal-
lenged (Cartwright, 2007, Chapter II-3). While I make no metaphysical commitment to modularity as essential to the
understanding of causality, nor even to the expression of modularity solely in terms of invariant conditional distribu-
tions, I consider that this particular approach covers a very great deal of ground, and is able to handle most aspects
of “statistical” causality. A similar approach, regarding causality as residing in the “structural stability” of random
variation, is taken by Russo (2008).
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probabilistic behaviours of some collection of random variables in various different hospitals. We
could then introduce a non-random regime indicator (but now without an interventional interpre-
tation) to index which hospital we are looking at: this would allow us to express an assumption
that a certain conditional distribution is the same in all hospitals. Or (see Example 9.1 below), we
could express the property that a certain imperfect diagnostic test has the same error probabilities,
no matter who it is used on. Such “reusable invariant modules” can be conveniently implemented
in “object-oriented” software such as HUGIN 620 (Dawid et al., 2007), and have been found useful
in generic schemes for handling and interpreting evidence (Hepler et al., 2007).

We observe that Property 7.3 of a Pearlian DAG representation is of just this modular form.
The essential difference between Pearl’s approach and that described here is that, in a Pearlian DAG
model, Property 7.3 requires many modularity properties to hold—for each V ∈ V , under many
different observational-interventional regimes—in a way that is fully determined by the form of
the DAG. In contrast, we do not seek to impose any particular modularity requirements, nor do we
require that the problem be representable by a DAG. We simply provide a language for expressing
and manipulating any modularity properties that we might think it appropriate, on the basis of
subject matter understanding, to impose or hyothesise. As we shall see in §9.2, in some (special)
cases such more limited assumptions can themselves be usefully represented by DAG-type models,
but these will be non-prescriptive, and will make explicit exactly what modularity assumptions it
has been considered appropriate to incorporate.

9.1 Extended conditional independence

Suppose then that there is a collection of domain variables that together describe relevant aspects
of the behaviour of a system under each regime of interest. Under any one of these regimes, these
variables will have a joint distribution. Any conditional independence properties that distribution
may have could be expressed algebraically as in §3 or—where appropriate—graphically as in §4.
We now indicate how to extend such mathematical representations to incorporate any relationships,
as described above in terms of invariant conditional distributions, that might be assumed to hold
between the various different regimes.

Example 9.1 As a simple example, let X be a patient’s actual systolic blood pressure, and Y the
value of this as recorded on a certain sphygnomanometer. The same sphygnomanometer might be
used on different patients at different times, but it might be reasonable to assume that the distribution
of Y given X is stable, irrespective of the circumstances of use. We could introduce a regime
indicator F , whose values specify the conditions, environment, kind of patient, etc.. Note that
whereas the domain variables (X ,Y ) are random, F is not: rather, it has the status of a statistical
parameter, indexing the probabilistic regime under consideration. In particular, any probability or
independence statements must, explicitly or implicitly, be conditioned on the value of F .

The stability assumption is just that the conditional density p(y | F = f ,X = x) for Y , given
X = x, in regime F = f , is in fact the same for all values of f . In the light of (1), we see that this
can be expressed in the form of a conditional independence property:

Y ⊥⊥F | X . (7)

�

20. <http://www.hugin.com/>
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It is important to note that expression (7) makes sense, even though F is not a random variable.
In general, for the expression X⊥⊥Y | Z in (1) to be meaningful, while X must be random there is
no requirement that the conditioning variables Y and Z be random: either or both could be a param-
eter variable or regime indicator (see Dawid (1979a, 2002b) for further details). This language of
extended conditional independence (ECI) thus provides a natural way of expressing stability across
regimes of modular conditional distributions. In particular, ECI supplies an appropriate formal lan-
guage (syntax and semantics) for describing and handling causality in our modular manipulationist
understanding of the term.

Example 9.2 Consider a system involving domain variables Z,U,X ,Y . We wish to model the effect
of an intervention that sets the value of X . To this end we introduce an intervention variable, FX , a
special regime indicator with values corresponding to the different regimes that arise on intervening
to set the value of X in various ways (Spohn, 1976; Spirtes et al., 2000; Pearl, 2009). If X is binary,
then FX might have values /0, 0 and 1, the interpretation being that, when FX = /0 (the idle regime),
the domain variables arise from the undisturbed system; whereas when FX = 0 [resp., 1] they arise
from the system disturbed by an external intervention that forces X to take the value 0 [resp., 1].

In general, the joint distributions of (Z,U,X ,Y ) under the three different regimes (i.e., given
FX = /0, 0 or 1) could be entirely arbitrary,21 and unrelated to each other. But should we wish to
specify or describe connexions between them, we can usefully do so using ECI. This programme
can be effected, in great generality, in entirely algebraic fashion: we can use the general properties
(2) and (with due care) (3) to manipulate ECI properties, almost exactly as for probabilistic CI. We
just have to ensure that no non-random variable occurs as the first term in any ECI relation in either
our assumptions or our conclusions.

Again, these manipulations are most conveniently described and conducted in graphical terms—
though we once again warn that by no means every problem that can be manipulated algebraically
can be modelled graphically. �

9.2 Augmented DAGs

Just as for regular CI it is sometimes possible, and then is helpful, to represent a collection of ECI
properties by means of a DAG22—but now extended to include nodes to represent non-random
regime variables (generally drawn as square), in addition to nodes representing domain variables
(generally drawn as round). Indeed, this can be done with essentially the identical constructions
and interpretations as for regular DAGs. Such a DAG is termed an influence diagram (ID) (Dawid,
2002b).

Many of the IDs considered in a causal context have a specific form, as “augmented DAGs”(Pearl,
1993). Figure 4 shows an augmented DAG, a variation on the simple, purely probabilistic, DAG
of Figure 1, that also incorporates, in a particular way, an intervention node FX , interpreted as in
Example 9.2.

What does it mean to say that a particular system is modelled by this augmented DAG? To ad-
dress this question, we apply the “d-separation semantics” described in §4—but now ignoring the

21. Except that, to express our intended interpretation of FX , under FX = 0 [resp., 1] we should require X = 0 [resp., 1]
with probability 1. There is however no immediate implication for the distribution of any other variables.

22. Other kinds of graphical CI representations can be similarly extended to include intervention variables (Dawid, 2002a;
Zhang, 2008; Eichler and Didelez, 2009).
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Figure 4: Augmented DAG

distinction between domain and regime variables. The DAG thus represents the following (alge-
braically expressed) conditional independence properties:

(U,Z) ⊥⊥ FX (8)

U ⊥⊥ Z | FX (9)

Y ⊥⊥ FX | (X ,U) (10)

Y ⊥⊥ Z | (X ,U ;FX). (11)

Using (1), property (8) is to be interpreted as saying that the joint distribution of (U,Z) is
independent of the regime FX : i.e., it is the same in all three regimes. In particular, it is unaffected
by whether, and if so how, we intervene to set the value of X . The identity of this joint distribution
across the two interventional regimes FX = 0 and FX = 1 could be interpreted as expressing a causal
property: manipulating X has no (probabilistic) effect on the pair of variables (U,Z). Furthermore,
since this common joint distribution is also supposed the same in the idle regime, FX = /0, we could in
principle use observational data to estimate it—thus opening up the possibility of causal inference.

Property (9) asserts that, in their (common) joint distribution in any regime, U and Z are inde-
pendent: this however is a purely probabilistic, not a causal, property.

Property (10) says that the conditional distribution of Y given (X ,U) is the same in both inter-
ventional regimes, as well as in the observational regime, and can thus be considered as a modular
component, fully transferable between the three regimes — again, I regard this as expressing a
causal property.

Finally, property (11) asserts that this common conditional distribution is unaffected by further
conditioning on Z (not in itself a causal property).

Just as for regular CI, it is possible for a collection of ECI properties to have more than one
representation as an augmented DAG. This is the case for Figure 5, where the direction of the arrow
between U and V is not determined.

We see that the ingredients required for at least some causal assertions and inferences—namely
that certain marginal or conditional distributions be unaffected by whether or how certain interven-
tions are made—are readily expressible using the familiar language of conditional independence
(specifically, they arise when the second argument of an ECI relation is a regime variable). They are
just as readily manipulated by means of the rules embodied in (2). And in those special cases that it
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Figure 5: Two Markov-equivalent augmented DAGs

is possible to express all the causal and probabilistic assumptions made in a form that can be repre-
sented by an augmented DAG, we can use the d-separation semantics of §4 as a “theorem-proving
machine” to discover their logical implications.

9.3 Pearlian DAGs as augmented DAGs

A Pearlian DAG is readily represented as a special kind of augmented DAG. To do this, we elaborate
the given DAG by including, for every domain variable V in it, an intervention node FV , and an arrow
pointing from FV to V . Properties 7.1, 7.2 and 7.3 are then explicitly represented by the d-separation
semantics. Correspondingly all the implications of a Pearlian representation can be deduced from
this augmented DAG and d-separation.

In Pearl’s earlier work (Pearl, 1993, 1995) he moved backwards and forwards between explicit
and implicit representation of the intervention variables in the DAG. More recently he, and most of
those following him, have been using only the implicit version, in which the intervention variables
FV are not explicitly included in the diagram, but (to comply with the Pearlian interpretation) the
DAG is nevertheless to be interpreted as if they were. I regard this demotion of the intervention indi-
cators as a retrograde move, since the resulting graphical representation, while imbued with Pearlian
causal semantics, is visually indistinguishable from a DAG used to describe purely probabilistic CI.
Consequently, great care is needed to be clear just what a given DAG is intended to represent, and
to avoid slipping unthinkingly from one interpretation to another. Explicit representation of in-
tervention nodes helps to guard against such confusion, as well as simplifying interpretation and
manipulation.23

10. Instrumental variables

To clarify the similarities and differences between augmented DAG representations and other causal
DAG representations, we revisit the example of §5. Hernán and Robins (2006) present the causal
DAG of Figure 3 as a counterexample to the supposition (Martens et al., 2006) that the following
conditions are necessary for a variable Z to qualify as an “instrumental variable” for estimating the
causal effect of an “exposure” X on a “response” Y , in the presence of an additional, unmeasured,
variable U (a confounder), that affects both X and Y , when we can not directly manipulate X :

23. For example, Pearl (1995) derives his “do-calculus” rules using an explicit augmented DAG representation, but then
re-expresses them in terms of the unaugmented graph—when they become considerably more complex. It is not clear
what is gained to compensate for this loss of transparencqy.
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(i). Z has a causal effect on X

(ii). Z affects the outcome Y only through X (i.e., no direct effect of Z on Y )

(iii). Z does not share common causes with the outcome Y (i.e., no confounding for the effect of Z
on Y ).

The causal DAG presented by Hernán and Robins (2006) as embodying these assumptions is
essentially the same as our Figure 1. This is contrasted with the causal DAG of Figure 3, which
is not regarded as embodying condition (i), since Z has no direct causal effect on X , but is merely
associated with it through sharing a common cause U∗.

Note that the descriptions of both problems employ intuitive causal terms, and that these are
associated with the presence and directionality of the arrows in the causal DAG representations.

DAG representations of the ECI versions of these stories are presented in Figure 4 and Figure 6.
In each case an intervention node FX associated with X has been added, describing three regimes
of interest: the idle regime FX = /0 corresponding to pure observation, and the two interventional
regimes FX = 0 and 1, corresponding to an intervention in which X is externally manipulated to
take values 0 and 1, respectively. While data can be gathered only under the idle regime, which is
thus all that can be directly estimated, our interest is nevertheless in estimating (if possible), and,
especially, comparing, the distributions of the response Y under the interventional regimes, FX = 0
and FX = 1.

Figure 6: Augmented DAG corresponding to Figure 3

Now in the story represented by Figure 3 or Figure 6, the variable U∗, while apparently required
for a full causal specification of the structure of the problem, plays no rôle in the analysis of Z as
an instrumental variable. So we can restrict attention to the joint distribution, under the various
regimes, of the variables (U,X ,Y,Z), and their independence properties. We then find that the
augmented DAG of Figure 6 embodies the identical conditional independence properties (8)–(11)
as the alternative augmented DAG of Figure 4, in which U∗ does not figure at all. Consequently,
for our purposes this is just as good an augmented DAG representation of the problem as Figure 6.
This equivalence should be contrasted with the apparent attitude of Hernán and Robins (2006),
that if Figure 3 is a “true” causal DAG representation of the problem, then Figure 1 is not. We
would likewise have to distinguish these two DAG representations under a Pearlian interpretation,
which would be equivalent to attaching intervention nodes to every domain variable. But this would
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involve making many additional and possibly questionable assumptions, none of which is needed
for the analysis.

An important interpretive difference between causal DAGs as described in §5 and as represented
by augmented DAGs is that, in the former, causal meaning is understood as carried by the arrows,
whereas, in the latter, it is entirely carried by extended conditional independence properties, involv-
ing intervention variables, which are represented only indirectly in the DAG, via d-separation. In
particular, in Figure 4 (and in contrast to the causal interpetation of Figure 1) the arrow from Z to
X is not to be construed as representing a relationship of cause and effect between Z and X (see
Didelez and Sheehan (2007b) for more on this in the context of Mendelian randomization).

The ECI properties (8)–(9) are “core conditions” for a variable Z to be an instrument for the
effect of X on Y .24 Once so characterised, these properties can be manipulated algebraically using
the rules of (2) (together with properties such as FX = 0⇒X = 0), without reference to any graphical
representation: the “theorem-proving” properties of DAG representations, while immensely useful,
are logically inessential. But if we do want to use graphical representations to help us, there is no
point in arguing whether it is Figure 4 or Figure 6 that is “correct”—since each of them embodies
(8)–(9) equally well.

11. Non-DAG modularity

Bertrand Russell (Russell, 1913) famously opined “The law of causality, I believe, like much that
passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only
because it is erroneously supposed to do no harm”. Many scientific laws are symmetric, and thus
inappropriate for representation in terms of directional causal properties. Nevertheless, they can
still be described by means of modularity properties, and these can frequently be expressed using
ECI.25

Example 11.1 Ideal gas

Consider a system involving a fixed number N of molecules of a monatomic ideal gas in an im-
permeable container, whose volume can be adjusted by manipulating a piston. The container is
immersed in a heat bath of constant absolute temperature t∗. Let V , P denote, respectively, the
volume and pressure of the gas.

Suppose first that the manipulations of the piston are isothermal, i.e. slow enough that, by heat
transfer through the walls of the container, the gas always remains at the external temperature t∗.
Then P and V are functionally related by Boyle’s law:

PV = c (12)

where the constant c is kNt∗, k being Boltzmann’s constant.

24. There is one more core condition, expressible in terms of ECI though not graphically representable: X 6⊥⊥Z | FX = /0.
In addition to these core conditions, precise identification of a causal effect by means of an instrumental variable
requires further modelling assumptions, such as linear regressions (Didelez and Sheehan, 2007b).

25. Alternative modular descriptions can also be used in this more general context, for example, based on non-recursive
systems of simultaneous structural equations, such as in Pearl (2009, Chapter 7) (see Example 11.2 below). An
immediate advantage of the ECI description over representations in terms of equations is that, because of its relation-
ship with conditional distributions, each ECI property, of the form X⊥⊥Y | Z, automatically comes with an associated
directionality: from its conditioning variables (Y,Z) to its response variables X .
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Let the regime indicator F describe various isothermal manipulations of the piston, in either
fixed or random ways. In all cases the relation (12) will hold. In particular, given either V or P, the
other is determined, irrespective of the regime that brought the situation about. We shall thus have,
simultaneously, the ECI properties

P ⊥⊥ F | V (13)

V ⊥⊥ F | P (14)

where, for example, the modular conditional distribution of P given V = v associated with (13) is a
1-point distribution at c/v. We note that there is no DAG representation of the pair of ECI properties
(13) and (14).

We could alternatively consider adiabatic manipulations, which proceed sufficiently fast that
no heat can transfer through the walls of the container (but not so fast as to add energy to the gas).
Then (12) is replaced by

PV
5
3 = constant. (15)

Again (13) and (14) will hold, but now with different specifications for the modular conditional
distributions.

Finally, consider arbitrary manipulations of the piston. There are now no modular relationships
holding between P and V , but modularity can be restored by introducing the additional variable T ,
the absolute temperature of the gas. The (symmetrical) invariant relationship is

PV = kNT. (16)

In terms of ECI we have

P ⊥⊥ F | (V, T ) (17)

V ⊥⊥ F | (P, T ) (18)

T ⊥⊥ F | (P,V ) (19)

where, for example, the modular conditional distribution of P given V = v,T = t associated with
(17) is a 1-point distribution at kNt/v. Again, there is no DAG representation of this collection of
ECI properties. �

Example 11.2 Price and demand

A simple econometric model relates price, P, and quantity demanded, Q, for some good. It is
supposed possible to manipulate either of these to any given value. There are additional un-
observed explanatory variables UP, UQ, which are supposed unaffected by such manipulations,
having a given joint distribution. Let FP, FQ denote the indicators for interventions at P, Q re-
spectively. We suppose we have specified the interventional conditional distribution of Q, given
(P = p,UP,UQ;FP = p,FQ = /0), and that this does not in fact depend on UP; and similarly we
have specified the conditional distribution for P, given (Q = q,UP,UQ;FP = /0,FQ = q), which is
independent of UQ.

The idle regime, when FP = FQ = /0, is taken as referring to the joint distribution “in equilib-
rium”. On the basis of economic theory it is supposed—constituting our “modular assumptions”—
that all the above specified marginal and conditional distributions continue to apply, simultaneously,
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in this equilibrium regime. (Note that consistency conditions then constrain the possible specifica-
tions of the conditional distributions for Q and P).

The modular assumptions made are encapsulated in the following ECI properties:

(UP,UQ) ⊥⊥ (FP,FQ) (20)

Q ⊥⊥ (FP,UP) | (P,FQ,UQ) (21)

P ⊥⊥ (FQ,UQ) | (Q,FP,UP). (22)

There is no DAG representation of this collection of properties, but they can be represented
using the more general graphical semantics of chain-graphs (Cowell et al., 2007; Dawid, 2002a),
involving undirected as well as directed links: the relevant diagram is shown in Figure 7.26

Figure 7: Chain-graph for price-demand relationship

When each of the modular distributions of Q given (P,UQ), and of P given (Q,UP), is concen-
trated on a single point, so that they represent deterministic functional relationships, and moreover
those relationships are linear and (UP,UQ) are bivariate normal, our model is isomorphic to the
structural equation model considered by Pearl (2009, §7.2.1).27 However—and in sharp contrast
to the analogous case for DAG models—even if we consider only the case that UP and UQ are in-
dependent, this model is not equivalent, in terms of the properties of the observables (Q,P) under
the different regimes, to a case where the latent variables (UP,UQ) are absent (equivalently, taken
as trivial), but we allow genuine stochasticity in the above conditional distributions. In particu-
lar, the appropriate generalisation of d-separation (Frydenberg, 1990) applied to the chain-graph of
Figure 7 (even without the link UQ—UP) does not yield Q⊥⊥FP | (P,FQ), although (by (21) with the
U’s absent) this does hold in the stochastic model. A confirmation of this non-equivalence is that,
in the stochastic model without U’s, the observational and interventional distributions of Q given P
are identical, as follows immediately from the above relation; whereas Pearl’s own analysis shows
that this is typically not the case for the deterministic model incorporating U’s.

We can entertain more general models, in which the U’s are non-trivial and the specified dis-
tributions are genuinely stochastic. Again, the observational and interventional and distributions
of Q given P will differ, but the relationship between them will be different from both the cases
considered above.

26. In reality we can not vary FP and FQ independently: at least one of them must be idle. This “variation non-
independence” (Dawid, 2001a,b) could be represented in Figure 7 by a further undirected link between FP and FQ;
however this is of no real consequence here.

27. We have omitted Pearl’s observable explanatory variables I, W for simplicity.
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Our general ECI model (20)–(22) thus incorporates Pearl’s deterministic structural model, but
allows other cases too—which, it could be argued, are no less obviously appropriate as descriptions
of the problem. A moral of this analysis is that we should not be cavalier in setting out the in-
gredients (variables and modular conditional distributions) of such a model, but need to think very
carefully about them in the context of the problem we are modelling and any relevant theory. And
in order for us to be able to approach this task in a meaningful way, we must be able to identify the
unobserved explanatory variables UP and UQ as real-world quantities. We can not just treat them as
convenient mathematical fictions (“error terms”), for then how are we to decide whether our model
should be deterministic or stochastic?—a choice that will make a difference to our analysis and
conclusions.

�

12. Justifying assumptions

Perhaps the most important characteristic of my suggested approach to causality, using extended
conditional independence and (where appropriate) augmented DAGs or other graphical representa-
tions, is that it is descriptive, not prescriptive. It makes no assumptions as to how causality ought
to behave or be represented; rather, it supplies a language by which we are able clearly to express
and manipulate any such assumptions we might wish to make in any given context. In this respect
it differs from other theories of “probabilistic causality”28 in much the same way as Kolmogorov’s
purely formal theory of probability differs from other theories such as the “classical theory” based
on the assumption that intuitively “equally possible” outcomes should be assigned equal probabil-
ities, or von Mises’s theory of collectives, which sought to represent assumed empirical properties
of probability, such as the existence and stability of limiting relative frequencies, directly within the
formal theory. This strict separation of the formal general-purpose language from any special as-
sumptions that might be made in specific contexts allows for much greater clarity and flexibility. It
also protects against the ever-present danger of unthinking reification of incidental formal properties
of our representations. In particular, it does not in itself support causal interpretation of a proba-
bilistic DAG. If we wish to represent this, we have very explicitly to introduce (using ECI) whatever
additional assertions we are making about effects of interventions. ECI is a purely mechanical tool
for manipulating causal properties, not a philosophical foundation for defining them.

This purely formal approach does, of necessity, leave entirely untouched such essential ques-
tions as “Where do we get our causal assumptions from?” and “How can they be justified?” It is
at this point, entirely removed from representational issues, that we might find a place for more
informal arguments, based on intuitive understandings of cause and effect.

In principle, the meaning of ECI assumptions such as (8)–(11) is straightforward; and they
could indeed all be tested empirically if we had access to data collected on (U,Z,X ,Y ) under the
various regimes. In practice, however, we will usually not have such data (and it may not even
be clear which unobserved external variable or variables are represented by the symbol U). Then

28. By this term I do not mean to include general theories of “ statistical causality,” such as that of Rubin (1978), which
likewise make no prescriptive assumptions. See Dawid (2000, 2002b) for comparisons and contrasts between my own
approach and other approaches to statistical causality. The general points I have made could have been developed
from the viewpoint of those other theories, though these mostly do not focus, as I do, on modularity at the level
of conditional distributions, which supplies a natural point of contact with the intuitive concepts of “probabilistic
causality”.
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the appropriateness of the assumptions made requires and deserves further, necessarily context-
dependent, argument.

For example, physical randomization of a treatment T in the “idle” regime is generally agreed
to provide a convincing reason for believing that the observational distribution of a response Y ,
given T = t, is the same as its distribution would be under an intervention to set T to t (formally:
Y ⊥⊥FT | T ), thus justifying causal interpretation of these conditional distributions. Although this
property of randomization is usually taken as intuitively obvious, I am not aware of any argument
for it based on deeper principles. One such argument could be based on the assumed existence of
some sufficient covariate U , such that (a) U⊥⊥FT and (b) Y ⊥⊥FT | (T,U) (Dawid, 2002b). Here,
(a) says that the distribution of U is unaffected by which regime is operating—typically believable
if U is a “pre-treatment” variable; while (b) says that, conditional on U and which treatment T is
applied, the response Y of the system is unaffected by how (i.e., in which regime) it is applied. While
it may not be easy to identify a specific pre-treatment variable U with this property, one might be
willing to accept that some such variable does exist. Randomization, and the pretreatment status of
U , now gives good cause to accept T ⊥⊥U | FT = /0, whence (since T is in any case non-random in
any interventional regime) (c) T ⊥⊥U | FT . Using the rules of (2), it is straightforward to deduce,
from the three CI properties (a), (c), (b), the desired conclusion Y ⊥⊥FT | T . Alternatively, these CI
properties can be represented by the augmented DAG of Figure 8, from which we can readily read
off Y ⊥⊥FT | T . Similar arguments can be made to justify suitably expressed causal interpretations

Figure 8: Augmented DAG for randomization

of data generated under more complex randomization schemes. But the appropriateness of any such
argument needs to be carefully considered, not just taken for granted.29

When physical randomization is not possible, it will be necessary to attempt to justify causal CI
assumptions on other grounds. For example, in the instrumental variable problem of §10, we need
to argue for the appropriateness of the assumptions (8)–(11). (Once again, it is enough that there
exist some variable U , which we need not however specify in detail, for which the conditions can
be assumed to hold.)

29. Indeed, even in a randomized double-blind clinical trial—the “gold standard” of evidence-based medicine—one
could argue that the very artificiality of the trial negates assumption (b) above: we would not expect the same
response process to operate for future treated patients as for those in the trial. To make progress we might make
weaker assumptions, such as transferability from the clinical trial into general practice of the “specific causal effect”:
E(Y | T = 1,U = u,FT = /0)−E(Y | T = 0,U = u,FT = /0) = E(Y | FT = 1,U = u)−E(Y | FT = 0,U = u). While
not expressible in terms of ECI, such an assumption still relates to the invariance of probabilistic properties across
different regimes. Again, it should be made explicit, and justified (ideally empirically).
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Property (8) essentially requires that both U and Z be pre-treatment variables, and then (10)
implies that U must be a sufficient covariate.

Properties (9) and (11) are more problematic. Property (9) could be plausible if Z is itself
determined by randomization: a scenario in which this occurs is that of “incomplete compliance”
(Dawid, 2003), where patients are randomized to treatment, with randomization indicator Z, but the
treatment X actually taken might not be the same as that assigned. Alternatively, in “Mendelian
randomization” (Didelez and Sheehan, 2007b), Z might be a gene that naturally affects X : property
(9) might then be justified, for suitable U , on the basis of the random assortment of genes under
Mendelian genetics. As described by Didelez and Sheehan (2002): “If we think of U as some
behavioural pattern or life style, this independence condition can be justified as long as we are
reasonably certain that any possible genetic factors influencing the behavioural pattern are unrelated
to this particular gene”.

Finally, (11) requires that the distribution of Y given (X ,U) (which has been assumed the same
in all regimes) is unaffected, in any regime, by further conditioning on Z—intuitively expressed as
“no direct effect of Z on Y ”. This might be plausible in the imperfect compliance context, where
we could believe that behaviour of the response Y could depend on the treatment X actually taken
and further pre-existing individual characteristics U , but not further on the treatment Z that the
individual was supposed to take. In the context of Mendelian randomization, we require that “there
is no association between the genotype and the disease status given the intermediate phenotype
and the life style” (Didelez and Sheehan, 2002). (However, core conditions (9) and (11) can be
violated in the presence of various complications, such as linkage disequilibrium, pleiotropy, genetic
heterogeneity or population stratification (Didelez and Sheehan, 2007b).)

When attempting to justify the core conditions in a specific context, it is plausible that thinking
about the problem in terms of further unobserved variables, such as U∗ in Figure 6, can play a
valuable rôle in the process. However, once these conditions have been settled on as the assumptions
we wish to introduce, there is no need to make irrelevant distinctions between alternative, equally
valid representations of them, such as Figure 4 and Figure 6.

In the ECI framework, attention is clearly drawn to any assumptions we may choose to make,
since these have to be clearly expressed as explicit ingredients added to our model, and justified in
the context of the real-world application under consideration. In other approaches the assumptions
are often hidden, and it is easy to be misled into believing that they are not in need of justification.
For example, the weak causal Markov assumption (§6) rules out certain ECI representations purely
on the basis of ordinary CI properties in the observational regime; but there is no logical reason why
this should be so, and its validity should be carefully considered in every intended application.

13. Conclusion

We have contrasted various approaches to the interpretation of graphical models of probabilistic
causal processes. Each of these purports to relate properties of the mathematical model and proper-
ties of the process.

The most common approach, “probabilistic causality” (see §6), works with intuitive understand-
ings of causal terms, which are often taken as undefined and self-evident primitives, although they
can also be regarded as deriving from an underlying manipulationist conception. Its most impor-
tant feature is that it assumes links (via e.g. the “Causal Markov Condition”) between such causal
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concepts and certain probabilistic conditional independence properties—links that, however, there
is no reason to believe hold in complete generality.

In contrast the approach described in §9, based on the algebraic theory of extended conditional
independence and its graphical representations, is based on a clearly defined internal mathematical
structure (syntax), and clearly described rules of interpretation (semantics). In these respects it is
similar to Pearl’s approach. However, unlike both that approach and that of probabilistic causality,
it does not suppose any special relationship between causality and conditional independence. It
merely supplies a formal language by means of which we can express and explore interesting causal
conjectures, phrased as the identity of certain conditional distributions across a variety of different
regimes (typically encompassing both intervention and pure observation). This surgical separation
of the formal language from ad hoc causal assumptions enforces clear and unambiguous articulation
of those assumptions, allows us to develop the logical implications of our assumptions, and clarifies
exactly what needs to be justified in any particular context. That justification is itself, however,
an entirely separate task, that can not rely on formal representations of any kind but must relate
to the real-world context of the problem. Perhaps the most important contribution of modelling
“causality” in terms of ECI is to highlight the vital need for such external justification.

13.1 What rôle for “causal discovery"?

The enterprise of “causal discovery” aims to extract causal conclusions from observationally in-
ferred conditional independencies. However it can not do so without making (explicitly or, more
often, implicitly) strong causal assumptions—which may rest unjustified, so invalidating the pro-
cess. Such methods can nevertheless be useful in suggesting interesting causal conjectures for
further investigation. Ideally we should then gather data from appropriate interventional studies,
to investigate—and if necessary revise—the validity of conjectures, made purely on the basis of
observational data, about the effects of interventions. Williamson (2005), among others, has argued
for such a “hybrid hypothetico-deductive/inductive” approach.

Alternatively, when we can collect data under a variety of regimes, including interventional
studies, we could directly apply variations of causal discovery techniques, to uncover genuinely
causal properties. Thus, if we had data on variables (U,Z,X ,Y ) under all three regimes FX = /0,
FX = 0, FX = 1, we could empirically test the ECI properties (8) and (10), by (for example) simple
χ2-tests (which are equally valid for testing homogeneity of conditional distributions as they are for
testing conditional independence); alternatively, Bayesian techniques could be used (Cooper and
Yoo, 1999). Only with such experimental data could we hope to obtain genuine empirical evidence
in favour of a causal DAG representation such as Figure 4.
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