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Abstract—Multi-Gbit/s transmission over 1 mm diameter
graded index plastic optical fiber (GI-POF) is reported. Transmis-
sion rates between 5.3 and 7.6 Gbit/s are achieved for fiber lengths
between 10 and 50 m using discrete multi-tone modulation (DMT)
in an intensity modulated direct detection system using directly
modulated eye-safe VCSEL and silicon photodiode (PD). The
used system bandwidth is only 1.42 GHz resulting in a spectral
efficiency of � � bits/s/Hz. All employed components represent
a low-cost, off-the-shelf cost-effective solution for high-speed
in-home communication systems.

Index Terms—Home communication systems, frequency divi-
sion multiplexing, optical fiber communication, signal processing.

I. INTRODUCTION

I
N-HOME communication systems are becoming of in-

creasing importance for the exchange of information

among varieties of consumer electronics in the home, due to

emerging services such as video services which require broad-

band communication. While ongoing standardization activities

are specifying regulations for transmission rates of up to 1

Gbit/s for in-home communication over power lines, coaxial

and CAT-5 cables [1], [2], the solutions for offering high data

rate and converged services over one optical infrastructure for

in-home networks are gaining traction. Several optical solutions

have been proposed for short-range in-home communication

scenarios. The first proposed physical layer approach, based

on standard silica 50/62.5 m core diameter multimode fiber

(MMF), is considered especially for transmission rates beyond

10 Gbit/s [3]. However, as the main constraint for in-home
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networking is the requirement for cheap and user-friendly so-

lutions in brown-field deployment, plastic optical fibers (POFs)

are now been considered for short-range links [4]. Among

different POF solutions, 1 mm diameter polymethylmetacrylate

(PMMA) POFs are an attractive solution for the advantages of

‘do-it-yourself’ installation [5], due to inexpensive and simple

connectorization, easy maintenance, use of visible light trans-

ceivers and small bending radius compared with conventional

MMFs. Step-index (SI) POF with a numerical aperture (NA) of

0.5 presents a low bandwidth-distance product (80 MHz at 50 m

[5]). For this reason the use of graded-index (GI) PMMA POF

is a state-of-the-art solution for multi-Gbit/s transmission [6].

Providing between 1 and 2 GHz at 50 m, GI-POF presents a

much larger bandwidth when compared to SI-POF. To achieve

the maximum bit-rate of the channel spectral efficient modu-

lation formats should be employed. The potential of orthog-

onal frequency division modulation (OFDM) for achieving high

spectral efficient transmission over an optical link, with robust-

ness against impairments such as modal or chromatic dispersion

due to its simple and effective equalization in the frequency do-

main, has been demonstrated [7]–[9]. In particular, the baseband

version of OFDM known as discrete multi-tone (DMT) modula-

tion has been studied in recent years within intensity modulation

and direct detection (IM-DD) schemes to maintain a cost-effec-

tive solution as well as maximizing the channel capacity.

Using this technique, together with adaptive bit and power

allocation, more than 40 Gbit/s transmission over 100 m of 50

m core size perfluorinated GI-POF using high-performance

and high-cost infrared transceivers [10], 4.7 Gbit/s transmis-

sions over 50 m 1 mm multi-core POF using avalanche photo-

detector [11], and 10 Gbit/s over 25 m of SI-POF using high

power laser [12] has been demonstrated. However, all this pro-

posed solutions employ neither cost-effective nor eye-safe op-

tical components.

In this paper, we show transmission performance over 50 m

using eye-safe transceivers according to the regulations [13]

and off-the-shelf optoelectronic components. In particular, we

employ the DMT modulation technique with 256 subcarriers

and up to 32 level quadrature amplitude modulation (32-QAM)

using a rate-adaptive bit-loading algorithm.

The achieved results show that PMMA GI-POF of 1 mm core

diameter provides suitable solutions for short-range multi-gi-

gabit in-home networks.

0733-8724/$26.00 © 2011 IEEE
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The paper is organized as follows: the introduction is fol-

lowed by brief overview on DMT and the bit-loading algorithm

employed in Section II. In Section III, the experimental setup

and results are discussed. The evaluation of the DMT and optical

parameters is outlined. To underline the possible limitations in a

real in-home deployment, the implication of lower bending ra-

dius is studied. Finally the paper is concluded in Section IV.

II. DMT AND BIT-LOADING

DMT technique has been widely used in digital subscriber

copper lines (xDSL) to efficiently use the bandwidth-limited and

noisy copper channel. Based on digital signal processing (DSP)

equalization, the possibility to use each subcarrier as a separate

narrowband channel provides the possibility to allocate an arbi-

trary number of bits (constellation size) to each subcarrier. For

optimal allocation, bit and power loading algorithms are used to

adapt to the channel response.

A rate-adaptive bit loading algorithm to achieve the max-

imum number of bits within a DMT frame period with a power

constraint is employed [14]. This is an optimization problem

that can be expressed as follows [15]:

(1)

subject to

(2)

where is the number of subcarriers, is the power asso-

ciated to the th subcarrier, is the number of bit of the th

subcarrier, is the signal-to-noise ratio (SNR) of the th sub-

carrier when unit energy is applied. Moreover, is the SNR

gap, i.e., the difference in SNR required to achieve maximum

capacity as defined by the Shannon Limit. Finally, is the

fixed total available energy for transmission.

The target is to optimize the number of bits per subcarrier ,

and the corresponding energy distribution per subcarrier , in

order to maximize the total number of bit . An optimal solu-

tion can be found using the water-filling approach [16], but the

method proposed by Chow in [14] is more computationally ef-

ficient, and hence used in this paper.

According to Chow algorithm, we order the subcarriers ac-

cording to the value of , and discard the subcarriers which

are least energy-efficient for transmitting bits. The energy is re-

distributed equally among the remaining subcarriers to support

higher data rates. Due to the logarithmic relationship, the re-

sulting non-integer number of allocated bits per subcarrier is

rounded to the nearest integer. The corresponding energy is ad-

justed to support the newly allocated integer number of bits to

give the same performance. This adjustment causes non-uni-

form energy distribution among the subcarriers.

Fig. 1. Experimental setup.

Fig. 2. Photos of the (a) red VCSEL and (b) the PIN-PD used in our setup.

The resulting number of bits per subcarrier determines the

modulation level associated to the th subcarrier. Using quadra-

ture amplitude modulation (QAM) means that the th subcarrier

is allocated -QAM. The distance between QAM constella-

tion points is chosen such that the average power of the th sub-

carrier is equal to .

III. RESULTS AND DISCUSSIONS

The experimental setup is depicted in Fig. 1. A Firecomms

red VCSEL with a wavelength of 667 nm (Fig. 2(a)) is di-

rectly modulated by the DMT signal generated from a Tektronix

AWG7122B arbitrary waveform generator (AWG) with a band-

width of 10 GHz. The modulated optical power is launched,

without the use of a lens, into a 1 mm diameter Optimedia

PMMA GI-POF with the power level of 0 dBm. The optical

signal after 50 m link ( dBm) is coupled, using a lens,

to a PIN-based PD (Fig. 2(b)) with a photosensitive diameter

of 400 m and a responsivity of 0.5 A/W at 660 nm. The PD is

equipped with a trans-impedance amplifier (TIA), mounted very

close to the photodiode chip, with a trans-impedance gain of

10 k . This receiver scheme and the use of a matched PD-TIA

guarantees a high sensitivity and large bandwidth of the receiver.

The received electrical signal is sampled by a 16 GHz

real-time Tektronix DPO72004 digital phosphor oscilloscope

(DPO). Both DMT modulation and demodulation are realized

offline in MATLAB. Since the AWG and DPO are not syn-

chronized, the clock/phase recovery is performed by the DMT

demodulator.

Regarding the digital signal processing (DSP), the DMT

digital (de)modulator is implemented offline, hence there
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Fig. 3. Optical output power (mW) versus VCSEL bias current (mA).

Fig. 4. IIP2 and IIP3 (dBm) of our experimental setup with two tone at 365
and 375 MHz versus VCSEL bias current (mA).

are few limitations in DSP. 8-bit precision is used in the

digital-to-analog conversion (DAC) and the analog-to-digital

conversion (ADC) in the AWG and the real-time oscilloscope,

leading to negligible quantization noise.

The design of the optical link is critical to the performance

of the system. Firstly, the VCSEL optimum bias parameter is

addressed. Fig. 3 shows the static Light-Current characteristics

of the VCSEL at the ambient temperature of 21 C. The optical

output power is maintained below 1 mW and reaches this value

at the bias current of 4 mA. The VCSEL performance shown in

Fig. 3 suggests the bias current of 2 mA, implying operation of

the VCSEL in the linear region. However, it was found that the

optimal bias current is around 4 mA, as will be further discussed

in the following subsections. For the dynamic characterization

case, a preliminary explanation is given in Fig. 4, which shows

the input intercept points of the second and the third order [17],

denoted as IIP2 and IIP3 respectively. These are obtained using

a two tone test at 365 and 375 MHz. As shown in Fig. 4, the bias

current of 4 mA corresponds to the maximum IIP2 and close

to maximum IIP3. On the contrary, the bias current of 2 mA

presents the lowest IIP2 and IIP3, hence operation in this biasing

region could introduce high non-linearities to the system.

Fig. 5. Frequency response of the system including transceivers, POF link, and
receiver in the back-to-back case and after 50 m transmission.

TABLE I
DMT SIGNAL PARAMETERS

A. System Frequency Response

At the optimum bias current of the VCSEL (4 mA), the fre-

quency response of the entire optical system was measured. The

modulation bandwidth of the VCSEL is 3 GHz [18], while the

response bandwidth of the receiver is around 1.4 GHz. For this

reason the frequency response in the optical back-to-back case

(using a POF length of 1 m) is limited by the receiver response

as shown in Fig. 5.

The bandwidth of the graded-index POF is reported to be

more than 1.5 GHz after 50 m transmission [19]. In comparison

to the back-to-back case, after 50 m, a 3 dB decrease in power at

1.1 GHz is observed (see Fig. 5). Although the optical channel

bandwidth is less than 1.5 GHz, we believe that multi-gigabit

transmission is feasible provided that the POF attenuation can

be minimized. The graded-index POF attenuation is reported to

be 0.2 dB/m at 650 nm in [19], while in this case the attenuation

was verified to be 0.3 dB/m at 667 nm. After 50 m transmission,

the total optical loss became 15 dB. This high value decreases

the received SNR and hence the maximum achievable transmis-

sion rate, as shown in the following subsections.

B. 5.3 Gbit/s Transmission Over 50 m PMMA GI-POF

The record transmission result was achieved through the op-

timal application of the DMT modulation. The AWG generated

the DMT waveform with a sampling speed of 4.5 Gsamples/s.

As shown in Table I, the characteristics of the waveform are:

256 subcarriers with the spacing of 8.8 MHz, within the band-

width of 2.25 GHz. As shown in Fig. 5, the 3 dB bandwidth of

the system is around 1.1 GHz, this means there will be some

unused subcarriers after bit loading (while the DC subcarrier
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Fig. 6. Signal-to-noise ratio (SNR) measured before (up) and after (down) bit
loading for DMT transmission over 50 m PMMA GI-POF.

is not used). The DPO sampling speed was fixed to the max-

imum 50 Gsamples/s. This high sampling speed was chosen to

obtain a good clock recovery and digital filter suppression. In

fact, since sampling speeds of the transmitter and the receiver

are not synchronized and the receiver does not include clock-re-

covery, oversampling is necessary to minimize inter-carrier in-

terference [20]. For cost-effective real implementation, the use

of such high sampling speed can be avoided, using Schmidl &

Cox approach [21] and/or training symbols [22].

Parameters such as the cyclic prefix length and Schmidl blocks

preambles are critical for clock/phase recovery and equalization

of the DMT waveform. These were set to 8 and 4 respectively as

summarized in Table I. Finally the clipping level is set to 8 dB,

which is shown to be optimum for this case study.

In Fig. 6, the SNR is shown before and after bit-loading.

Notice that before bit-loading, the SNR measurement result

presents a continuous curve from 25 dB to 0 dB. The SNR

noticeably decreases at 1.42 GHz. After bit-loading, the SNR

assumes a step-like shape similar to the bit-allocation shown

in Fig. 7. In particular, since after 1.42 GHz (162th subcarrier)

no bits are allocated, the SNR of the last 94 unused subcarriers

cannot be evaluated. A spectral efficiency of 3.7 bits/s/Hz is

therefore achieved.

We also highlight that the step-like shape of the SNR after

bit loading is due to the non-uniform power allocation to each

subcarrier as determined by the bit-loading algorithm discussed

in Section II. As shown in Fig. 7, power tends to increase with

the subcarrier index inside the same bit allocation block, and

decreases when a different bit allocation block starts.

Finally, Fig. 8 shows the QAM constellations for 32-QAM

and 4-QAM, where 5 and 2 bits are allocated to the lowest and

the highest subcarrier indexes respectively. No distortion effects

are shown in these constellations which are received after the

equalization step.

Fig. 9 shows the maximum achievable bit-rate of the DMT

signal versus fiber length using the parameters presented in

Table I. Due to the high losses induced by the fiber, the trans-

mission performance is SNR-limited. Hence, Fig. 9 shows

a linear relationship between bit-rate and POF length with

Fig. 7. Bit (up) and Power (down) allocation for DMT transmission over 50 m
PMMA GI-POF using 256 subcarriers.

Fig. 8. Highest and lowest constellations (respectively 32-QAM and 4-QAM)
used in 50 m PMMA GI-POF experiment.

Fig. 9. Maximum achieved bit rate for different POF lengths using bit loading
with target BER of �� .

negative slope of 60 Mbit/s/m. Since the PMMA GI-POF loss

is 0.3 dB/m, this slope is equivalent to 200 Mbit/s/dB.

From the inset in Fig. 9, notice that all the bit error rates

(BER) achieved at the various distances remain below . If a

7% overhead enhanced forward error correction (EFEC) code is

inserted, then the BER of decreases to [23]. Ac-

counting for EFEC overhead, cyclic prefix and preamble from
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Fig. 10. Percentage Bit-rate variation versus number of subcarrier of the DMT
signal.

the gross transmission rate of 5.3 Gbit/s, the net bit-rate becomes

4.85 Gbit/s. To determine the implication of the various elec-

trical and optical parameters on the system performance, the fol-

lowing subsections provide further evaluation.

C. Evaluation of DMT and Optical Link Parameters

The results presented in the previous subsection were ob-

tained with the DMT parameters shown in Table I. Here we

evaluate the effect of deviation of these parameters on the link

performance. We are very much interested in the dependencies

of the total bit-rates on different values of subcarrier counts,

clipping levels, laser bias currents, and fiber bending loss. In

Figs. 10–12 we present the link performance as a function of

these four parameters. For the link performance we take the ob-

tained bit-rate relative to the optimum bit-rate, indicated as

Bitrate. We define Bitrate as follows,

%

where Bitrate is the achieved result for the applied parameter

values, while is the reference bit-rate, equal to the

achieved gross bit-rate result of 5.3 Gbit/s shown in the previous

subsection.

The first parameter under consideration is the number of sub-

carriers. Increasing the number of subcarriers will better uti-

lize the available bandwidth, hence an increase in the total bit-

rate. Up to 256 subcarriers, the link performance increases con-

siderably, thereafter the performance becomes saturated (see

Fig. 10). However, increasing the subcarrier counts will increase

the system complexity regarding the digital signal processing

steps. A compromise between the number of subcarriers and

the complexity of the system is then required. For this reason,

choosing 256 subcarriers is the optimum compromise between

bit-rate and complexity.

Another important parameter of the DMT signal is the clip-

ping level or crest factor. Fig. 11 shows Bitrate against the

crest factor of the DMT signal. The optimum crest factor lies

somewhere between 6 and 8 dB. For the record transmission,

we chose 8 dB crest factor, but it is important to note that the

Fig. 11. Percentage Bit-rate variation versus crest factor (clipping level) of the
DMT signal.

Fig. 12. Percentage Bit-rate variation versus driving bias current.

crest factor of 6 dB also gives a reasonably good result. We re-

mark here that the crest factor of the DMT signal without clip-

ping would be around 14–15 dB which results in more than 30%

reduction in bit-rates.

Besides the number of subcarriers and crest factor, which are

the main parameters of the DMT signal and can finely be con-

trolled in the DSP, we we analyze the optical parameters of the

link. Driving bias currents of the light source and bending loss

are examined. We have shown in Fig. 4 that a bias current of 4

mA is a good operating point when considering the light source

linearity performance. For further clarification, Fig. 12 shows

Bitrate versus the DC bias currents of the VCSEL, confirming

that the optimum value of bias current is 4 mA. For low bias cur-

rents, the link performance is dominated by the signal-to-noise

ratio as less light is generated by VCSEL. For high bias currents,

laser nonlinearity will reduce the achievable bit-rates.

We operated the VCSEL at the optimum bias current. How-

ever, note that with a variation of mA, the overall bit-rate

will degrade by a maximum of 7% still achieving 4.9 Gbit/s.

Thus, in a real system implementation, a slightly lower bit-rate

can still be achieved without the use of additional hardware such

as current controllers.
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Fig. 13. Percentage Bit-rate variation and optical loss versus the bending radius
of a 180 bend.

D. Bending Loss

Graded-index POF is today the plastic optical fiber with the
highest available bandwidth. For this reason, this type of fiber
is highly considered for realizing multi gigabit transmission in
an in-home environment.

In a realistic in-home deployment where fibers need to be
pulled throughout the corners of homes, another important
feature is the resilience against mechanical stresses, including
bending. While for 1 mm diameter step-index POF bending
losses below 0.5 dB are reported for a bending radius of 20 mm
[5], bending losses for graded-index POF are higher. A bending
radius of 25 mm is reported [19]. For this reason, we studied the
bit-rate penalty due to decreasing bending radius using a half
bend (180 bend). Fig. 13 shows Bitrate and optical bending
loss against different values of bending radius. No penalty is
observed at the bending radius of 25 mm, while a penalty %
is noticeable at bending radius below 20 mm. The bit-rate
decreases quite linearly for bending radius under 20 mm, and
this decrease becomes asymptotically for 7.5 mm and less.

In conclusion, fiber bending affects the link performance due
to less optical power received. Due its elasticity, POF is quite
tolerant to bending to some degree. Allowing a tolerance of
maximum 7% deviation in the highest bit-rate, a bending radius
not less than 20 mm is recommended.

IV. CONCLUSION

We have shown transmission technology capable of deliv-

ering greater than 5 Gbit/s transmission rate over 1 mm diameter

plastic optical fiber. By employing DMT techniques in an inten-

sity-modulated direct detection system and optimizing the elec-

trical and optical system parameters, we demonstrate a record

transmission rate of 5.3 Gbit/s and 7.6 Gbit/s over 50 m and

10 m respectively. This record corresponds to a spectral effi-

ciency bits/s/Hz.

We also presented detailed evaluation on the DMT parame-

ters and optical transmitter employed. These results highlight

the implications of the choice of parameters in realizing this

state-of-the-art solution.

By combining the advantages of 1 mm diameter PMMA

GI-POF with eye-safe off-the-shelf transceivers, a cost-effective

end-to-end network solution is presented for realizing multi-

gigabit transmission.

This solution presents a desired do-it-yourself installation for

in-home network environment in comparison to power lines,

coaxial and twisted pairs solutions as it can be installed in the

same power-line ducts.

In combination with emerging high-capacity, real-time dig-

ital signal processing, scalability towards 10 Gbit/s short-range

communication over 1 mm diameter POFs is feasible.
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