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Abstract

We propose a discriminative model for recognizing group activities. Our model
jointly captures the group activity, the individual person actions, and the interac-
tions among them. Two new types of contextual information, group-person inter-
action and person-person interaction, are explored in a latent variable framework.
Different from most of the previous latent structured models which assume a pre-
defined structure for the hidden layer, e.g. a tree structure, we treat the structure of
the hidden layer as a latent variable and implicitly infer it during learning and in-
ference. Our experimental results demonstrate that by inferring this contextual in-
formation together with adaptive structures, the proposed model can significantly
improve activity recognition performance.

1 Introduction

Look at the two persons in Fig. 1(a), can you tell they are doing two different actions? Once the
entire contexts of these two images are revealed (Fig. 1(b)) and we observe the interaction of the
person with other persons in the group, it is immediately clear that the first person is queuing, while
the second person is talking. In this paper, we argue that actions of individual humans often cannot
be inferred alone. We instead focus on developing methods for recognizing group activities by
modeling the collective behaviors of individuals in the group.

Before we proceed, we first clarify some terminology used throughout the rest of the paper. We use
action to denote a simple, atomic movement performed by a single person. We use activity to refer
to a more complex scenario that involves a group of people. Consider the examples in Fig. 1(b),
each frame describes a group activity: queuing and talking, while each person in a frame performs
a lower level action: talking and facing right, talking and facing left, etc.

Our proposed approach is based on exploiting two types of contextual information in group activ-
ities. First, the activity of a group and the collective actions of all the individuals serve as context
(we call it the group-person interaction) for each other, hence should be modeled jointly in a unified
framework. As shown in Fig. 1, knowing the group activity (queuing or talking) helps disambiguate
individual human actions which are otherwise hard to recognize. Similarly, knowing most of the
persons in the scene are talking (whether facing right or left) allows us to infer the overall group
activity (i.e. talking). Second, the action of an individual can also benefit from knowing the actions
of other surrounding persons (which we call the person-person interaction). For example, consider
Fig. 1(c). The fact that the first two persons are facing the same direction provides a strong cue that
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Figure 1: Role of context in group activities. It is often hard to distinguish actions from each individual person
alone (a). However, if we look at the whole scene (b), we can easily recognize the activity of the group and the
action of each individual. In this paper, we operationalize on this intuition and introduce a model for recognizing
group activities by jointly consider the group activity, the action of each individual, and the interaction among
certain pairs of individual actions (c).

both of them are queuing. Similarly, the fact that the last two persons are facing each other indicates
they are more likely to be talking.

Related work: Using context to aid visual recognition has received much attention recently. Most
of the work on context is in scene and object recognition. For example, work has been done on ex-
ploiting contextual information between scenes and objects [13], objects and objects [5, 16], objects
and so-called “stuff” (amorphous spatial extent, e.g. trees, sky) [11], etc.

Most of the previous work in human action recognition focuses on recognizing actions performed
by a single person in a video (e.g. [2, 17]). In this setting, there has been work on exploiting contexts
provided by scenes [12] or objects [10] to help action recognition. In still image action recognition,
object-action context [6, 9, 23, 24] is a popular type of context used for human-object interaction.
The work in [3] is the closest to ours. In that work, person-person context is exploited by a new
feature descriptor extracted from a person and its surrounding area.

Our model is directly inspired by some recent work on learning discriminative models that allow
the use of latent variables [1, 6, 15, 19, 25], particularly when the latent variables have complex
structures. These models have been successfully applied in many applications in computer vision,
e.g. object detection [8, 18], action recognition [14, 19], human-object interaction [6], objects and
attributes [21], human poses and actions [22], image region and tag correspondence [20], etc. So
far only applications where the structures of latent variables are fixed have been considered, e.g. a
tree-structure in [8, 19]. However in our applications, the structures of latent variables are not fixed
and have to be inferred automatically.

Our contributions: In this paper, we develop a discriminative model for recognizing group ac-
tivities. We highlight the main contributions of our model. (1) Group activity: most of the work
in human activity understanding focuses on single-person action recognition. Instead, we present
a model for group activities that dynamically decides on interactions among group members. (2)
Group-person and person-person interaction: although contextual information has been exploited
for visual recognition problems, ours introduces two new types of contextual information that have
not been explored before. (3) Adaptive structures: the person-person interaction poses a challenging
problem for both learning and inference. If we naively consider the interaction between every pair of
persons, the model might try to enforce two persons to have take certain pairs of labels even though
these two persons have nothing to do with each other. In addition, selecting a subset of connec-
tions allows one to remove “clutter” in the form of people performing irrelevant actions. Ideally, we
would like to consider only those person-person interactions that are strong. To this end, we propose
to use adaptive structures that automatically decide on whether the interaction of two persons should
be considered. Our experimental results show that our adaptive structures significantly outperform
other alternatives.

2 Contextual Representation of Group Activities

Our goal is to learn a model that jointly captures the group activity, the individual person actions, and
the interactions among them. We introduce two new types of contextual information, group-person
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Figure 2: Graphical illustration of the model in (a). The edges represented by dashed lines indicate the connec-
tions are latent. Different types of potentials are denoted by lines with different colors in the example shown in
(b).

interaction and person-person interaction. Group-person interaction represents the co-occurrence
between the activity of a group and the actions of all the individuals. Person-person interaction
indicates that the action of an individual can benefit from knowing the actions of other people in the
same scene. We present a graphical model representing all the information in a unified framework.
One important difference between our model and previous work is that in addition to learning the
parameters in the graphical model, we also automatically infer the graph structures (see Sec. 3).

We assume an image has been pre-processed (i.e. by running a person detector) so the persons in the
image have been found. On the training data, each image is associated with a group activity label,
and each person in the image is associated with an action label.

2.1 Model Formulation

A graphical representation of the model is shown in Fig. 2. We now describe how we model an
image I . Let I1, I2, . . . , Im be the set of persons found in the image I , we extract features x from
the image I in the form of x = (x0, x1, . . . , xm), where x0 is the aggregation of feature descriptors
of all the persons in the image (we call it root feature vector), and xi(i = 1, 2, . . . ,m) is the feature
vector extracted from the person Ii. We denote the collective actions of all the persons in the image
as h = (h1, h2, . . . , hm), where hi ∈ H is the action label of the person Ii and H is the set of all
possible action labels. The image I is associated with a group activity label y ∈ Y , where Y is the
set of all possible activity labels.

We assume there are connections between some pairs of action labels (hj , hk). Intuitively speaking,
this allows the model to capture important correlations between action labels. We use an undirected
graph G = (V, E) to represent (h1, h2, . . . , hm), where a vertex vi ∈ V corresponds to the action
label hi, and an edge (vj , vk) ∈ E corresponds to the interactions between hj and hk.

We use fw(x,h, y;G) to denote the compatibility of the image feature x, the collective action labels
h, the group activity label y, and the graph G = (V, E). We assume fw(x,h, y;G) is parameterized
by w and is defined as follows:

fw(x,h, y;G) = w⊤Ψ(y,h,x;G) (1a)

= w⊤
0
φ0(y, x0) +

∑

j∈V

w⊤
1
φ1(xj , hj) +

∑

j∈V

w⊤
2
φ2(y, hj) +

∑

j,k∈E

w⊤
3
φ3(y, hj , hk) (1b)

The model parameters w are simply the combination of four parts, w = {w1, w2, w3, w4}. The
details of the potential functions in Eq. 1 are described in the following:

Image-Action Potential w⊤
1
φ1(xj , hj): This potential function models the compatibility between

the j-th person’s action label hj and its image feature xj . It is parameterized as:

w⊤
1
φ1(xj , hj) =

∑

b∈H

w⊤
1b 1(hj = b) · xj (2)

where xj is the feature vector extracted from the j-th person and we use 1(·) to denote the indicator
function. The parameter w1 is simply the concatenation of w1b for all b ∈ H.
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Action-Activity Potential w⊤
2
φ2(y, hj): This potential function models the compatibility between

the group activity label y and the j-th person’s action label hj . It is parameterized as:

w⊤
2
φ2(y, hj) =

∑

a∈Y

∑

b∈H

w2ab · 1(y = a) · 1(hj = b) (3)

Action-Action Potential w⊤
3
φ3(y, hj , hk): This potential function models the compatibility be-

tween a pair of individuals’ action labels (hj , hk) under the group activity label y, where (j, k) ∈ E
corresponds to an edge in the graph. It is parameterized as:

w⊤
3
φ3(y, hj , hk) =

∑

a∈Y

∑

b∈H

∑

c∈H

w3abc · 1(y = a) · 1(hj = b) · 1(hk = c) (4)

Image-Activity Potential w⊤
0
φ0(y, x0): This potential function is a root model which measures the

compatibility between the activity label y and the root feature vector x0 of the whole image. It is
parameterized as:

w⊤
0
φ0(y, x0) =

∑

a∈Y

w⊤
0a 1(y = a) · x0 (5)

The parameter w0a can be interpreted as a root filter that measures the compatibility of the class
label a and the root feature vector x0.

3 Learning and Inference

We now describe how to infer the label given the model parameters (Sec. 3.1), and how to learn the
model parameters from a set of training data (Sec. 3.2). If the graph structure G is known and fixed,
we can apply standard learning and inference techniques of latent SVMs. For our application, a
good graph structure turns out to be crucial, since it determines which person interacts (i.e. provides
action context) with another person. The interaction of individuals turns out to be important for
group activity recognition, and fixing the interaction (i.e. graph structure) using heuristics does not
work well. We will demonstrate this experimentally in Sec. 4. We instead develop our own inference
and learning algorithms that automatically infer the best graph structure from a particular set.

3.1 Inference

Given the model parameters w, the inference problem is to find the best group activity label y∗ for a
new image x. Inspired by the latent SVM [8], we define the following function to score an image x

and a group activity label y:

Fw(x, y) = max
Gy

max
hy

fw(x,hy, y;Gy) = max
Gy

max
hy

w⊤Ψ(x,hy, y;Gy) (6)

We use the subscript y in the notations hy and Gy to emphasize that we are now fixing on a particular
activity label y. The group activity label of the image x can be inferred as: y∗ = arg maxy Fw(x, y).
Since we can enumerate all the possible y ∈ Y and predict the activity label y∗ of x, the main
difficulty of solving the inference problem is the maximization over Gy and hy according to Eq. 6.
Note that in Eq. 6, we explicitly maximize over the graph G. This is very different from previous
work which typically assumes the graph structure is fixed.

The optimization problem in Eq. 6 is in general NP-hard since it involves a combinatorial search.
We instead use an coordinate ascent style algorithm to approximately solve Eq. 6 by iterating the
following two steps:

1. Holding the graph structure Gy fixed, optimize the action labels hy for the 〈x, y〉 pair:

hy = arg max
h′

w⊤Ψ(x,h′, y;Gy) (7)

2. Holding hy fixed, optimize graph structure Gy for the 〈x, y〉 pair:

Gy = arg max
G′

w⊤Ψ(x,hy, y;G
′) (8)

4



The problem in Eq. 7 is a standard max-inference problem in an undirected graphical model. Here
we use loopy belief propagation to approximately solve it. The problem in Eq. 8 is still an NP-hard
problem since it involves enumerating all the possible graph structures. Even if we can enumerate
all the graph structures, we might want to restrict ourselves to a subset of graph structures that will
lead to efficient inference (e.g. when using loopy BP in Eq. 7). One obvious choice is to restrict
G′ to be a tree-structured graph, since loopy BP is exact and tractable for tree structured models.
However, as we will demonstrate in Sec. 4, the tree-structured graph built from simple heuristic (e.g.
minimum spanning tree) does not work that well. Another choice is to choose graph structures that
are “sparse”, since sparse graphs tend to have fewer cycles, and loopy BP tends to be efficient in
graphs with fewer cycles. In this paper, we enforce the graph sparsity by setting a threshold d on
the maximum degree of any vertex in the graph. When hy is fixed, we can formulate an integer
linear program (ILP) to find the optimal graph structure (Eq. 8) with the additional constraint that
the maximum vertex degree is at most d. Let zjk = 1 indicate that the edge (j, k) is included in the
graph, and 0 otherwise. The ILP can be written as:

max
z

∑

j∈V

∑

k∈V

zjkψjk, s.t.
∑

j∈V

zjk ≤ d,
∑

k∈V

zjk ≤ d, zjk = zkj , zjk ∈ {0, 1}, ∀j, k (9)

where we use ψjk to collectively represent the summation of all the pairwise potential functions in
Eq. 1 for the pairs of vertices (j, k). Of course, the optimization problem in Eq. 9 is still hard due
to the integral constraint zjk ∈ {0, 1}. But we can relax the value of zjk to a real value in the range
of [0, 1]. The solution of the LP relaxation might have fractional numbers. To get integral solutions,
we simply round them to the closest integers.

3.2 Learning

Given a set of N training examples 〈xn,hn, yn〉 (n = 1, 2, . . . , N), we would like to train the model
parameter w that tends to produce the correct group activity y for a new test image x. Note that the
action labels h are observed on training data, but the graph structure G (or equivalently the variables
z) are unobserved and will be automatically inferred. A natural way of learning the model is to adopt
the latent SVM formulation [8, 25] as follows:

min
w,ξ≥0,Gy

1

2
||w||2 + C

N
∑

n=1

ξn (10a)

s.t. max
Gyn

fw(xn,hn, yn;Gyn) − max
Gy

max
hy

fw(xn,hy, y;Gy) ≥ ∆(y, yn) − ξn,∀n,∀y (10b)

where ∆(y, yn) is a loss function measuring the cost incurred by predicting y when the ground-
truth label is yn. In standard multi-class classification problems, we typically use the 0-1 loss ∆0/1

defined as:

∆0/1(y, y
n) =

{

1 if y 6= yn

0 otherwise
(11)

The constrained optimization problem in Eq. 10 can be equivalently written as an unconstrained
problem:

min
w,ξ

1

2
||w||2 + C

N
∑

n=1

(Ln −Rn) (12a)

where Ln = max
y

max
hy

max
Gy

(∆(y, yn) + fw(xn,hy, y;Gy)), Rn = max
Gyn

fw(xn,hn, yn;Gyn)(12b)

We use the non-convex bundle optimization in [7] to solve Eq. 12. In a nutshell, the algorithm
iteratively builds an increasingly accurate piecewise quadratic approximation to the objective func-
tion. During each iteration, a new linear cutting plane is found via a subgradient of the objective
function and added to the piecewise quadratic approximation. Now the key issue is to compute two
subgradients ∂wL

n and ∂wR
n for a particular w, which we describe in detail below.

First we describe how to compute ∂wL
n. Let (y∗,h∗,G∗) be the solution to the following optimiza-

tion problem:
max

y
max

h

max
G

∆(y, yn) + fw(xn,h, y;G) (13)
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Figure 3: Different structures of person-person interaction. Each node here represents a person in a frame. Solid
lines represent connections that can be obtained from heuristics. Dashed lines represent latent connections that
will be inferred by our algorithm. (a) No connection between any pair of nodes; (b) Nodes are connected
by a minimum spanning tree; (c) Any two nodes within a Euclidean distance ε are connected (which we call
ε-neighborhood graph); (d) Connections are obtained by adaptive structures. Note that (d) is the structure of
person-person interaction of the proposed model.

Then it is easy to show that the subgradient ∂wL
n can be calculated as ∂wL

n = Ψ(xn, y∗,h∗;G∗).
The inference problem in Eq. 13 is similar to the inference problem in Eq. 6, except for an additional
term ∆(y, yn). Since the number of possible choices of y is small (e.g.|Y| = 5) in our case), we can
enumerate all possible y ∈ Y and solve the inference problem in Eq. 6 for each fixed y.

Now we describe how to compute ∂wR
n, let Ĝ be the solution to the following optimization prob-

lem:

max
G′

fw(xn,hn, yn;G′) (14)

Then we can show that the subgradient ∂wR
n can be calculated as ∂wR

n = Ψ(xn, yn,hn; Ĝ). The
problem in Eq. 14 can be approximately solved using the LP relaxation of Eq. 9. Using the two
subgradients ∂wL

n and ∂wR
n, we can optimize Eq. 10 using the algorithm in [7].

4 Experiments

We demonstrate our model on the collective activity dataset introduced in [3]. This dataset contains
44 video clips acquired using low resolution hand held cameras. In the original dataset, all the
persons in every tenth frame of the videos are assigned one of the following five categories: crossing,
waiting, queuing, walking and talking, and one of the following eight pose categories: right, front-
right, front, front-left, left, back-left, back and back-right. Based on the original dataset, we define
five activity categories including crossing, waiting, queuing, walking and talking. We define forty
action labels by combining the pose and activity information, i.e. the action labels include crossing
and facing right, crossing and facing front-right, etc. We assign each frame into one of the five
activity categories, by taking the majority of actions of persons (ignoring their pose categories) in
that frame. We select one fourth of the video clips from each activity category to form the test set,
and the rest of the video clips are used for training.

Rather than directly using certain raw features (e.g. the HOG descriptor [4]) as the feature vector
xi in our framework, we train a 40-class SVM classifier based on the HOG descriptor of each
individual and their associated action labels. In the end, each feature vector xi is represented as a
40-dimensional vector, where the k-th entry of this vector is the score of classifying this instance
to the k-th class returned by the SVM classifier. The root feature vector x0 of an image is also
represented as a 40-dimensional vector, which is obtained by taking an average over all the feature
vectors xi (i = 1, 2, ...,m) in the same image.

Results and Analysis: In order to comprehensively evaluate the performance of the proposed
model, we compare it with several baseline methods. The first baseline (which we call global bag-of-
words) is a SVM model with linear kernel based on the global feature vector x0 with a bag-of-words
style representation. The other baselines are within our proposed framework, with various ways of
setting the structures of the person-person interaction. The structures we have considered are illus-
trated in Fig. 3(a)-(c), including (a) no pairwise connection; (b) minimum spanning tree; (c) graph
obtained by connecting any two vertices within a Euclidean distance ε (ε-neighborhood graph) with
ε = 100, 200, 300. Note that in our proposed model the person-person interactions are latent (shown
in Fig. 3(d)) and learned automatically. The performance of different structures of person-person in-
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(a) (b)

Figure 4: Confusion matrices for activity classification: (a) global bag-of-words (b) our approach. Rows are
ground-truths, and columns are predictions. Each row is normalized to sum to 1.

Method Overall Mean per-class

global bag-of-words 70.9 68.6

no connection 75.9 73.7
minimum spanning tree 73.6 70.0

ε-neighborhood graph, ε = 100 74.3 72.9
ε-neighborhood graph, ε = 200 70.4 66.2
ε-neighborhood graph, ε = 300 62.2 62.5

Our Approach 79.1 77.5

Table 1: Comparison of activity classification accuracies of different methods. We report both the overall and
mean per-class accuracies due to the class imbalance. The first result (global bag-of-words) is tested in the
multi-class SVM framework, while the other results are in the framework of our proposed model but with
different structures of person-person interaction. The structures are visualized in Fig. 3.

teraction are evaluated and compared. We summarize the comparison in Table 1. Since the test set is
imbalanced, e.g. the number of crossing examples is more than twice that of the queuing or talking
examples, we report both overall and mean per-class accuracies. As we can see, for both overall and
mean per-class accuracies, our method achieves the best performance. The proposed model signif-
icantly outperforms global bag-of-words. The confusion matrices of our method and the baseline
global bag-of-words are shown in Fig. 4. There are several important conclusions we can draw from
these experimental results:

Importance of group-person interaction: The best result of the baselines comes from no connec-
tion between any pair of nodes, which clearly outperforms global bag-of-words. It demonstrates the
effectiveness of modeling group-person interaction, i.e. connection between y and h in our model.

Importance of adaptive structures of person-person interaction: In Table 1, the pre-defined
structures such as the minimum spanning tree and the ε-neighborhood graph do not perform as well
as the one without person-person interaction. We believe this is because those pre-defined structures
are all based on heuristics and are not properly integrated with the learning algorithm. As a result,
they can create interactions that do not help (and sometimes even hurt) the performance. However, if
we consider the graph structure as part of our model and directly infer it using our learning algorithm,
we can make sure that the obtained structures are those useful for differentiating various activities.
Evidence for this is provided by the big jump in terms of the performance by our approach.

We visualize the classification results and the learned structure of person-person interaction of our
model in Fig. 6.

5 Conclusion

We have presented a discriminative model for group activity recognition which jointly captures the
group activity, the individual person actions, and the interactions among them. We have exploited
two new types of contextual information: group-person interaction and person-person interaction.
We also introduce an adaptive structures algorithm that automatically infers the optimal structure of
person-person interaction in a latent SVM framework. Our experimental results demonstrate that
our proposed model outperforms other baseline methods.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Visualization of the weights across pairs of action classes for each of the five activity classes. Light
cells indicate large values of weights. Consider the example (a), under the activity label crossing, the model
favors seeing actions of crossing with different poses together (indicated by the area bounded by the red box).
We can also take a closer look at the weights within actions of crossing, as shown in (f). we can see that within
the crossing category, the model favors seeing the same pose together, indicated by the light regions along the
diagonal. It also favors some opposite poses, e.g. back-right with front-left. These make sense since people
always cross street in either the same or the opposite directions.

Crossing Waiting Queuing Walking Talking

Figure 6: (Best viewed in color) Visualization of the classification results and the learned structure of person-
person interaction. The top row shows correct classification examples and the bottom row shows incorrect
examples. The labels C, S, Q, W, T indicate crossing, waiting, queuing, walking and talking respectively. The
labels R, FR, F, FL, L, BL, B, BR indicate right, front-right, front, front-left, left, back-left, back and back-right
respectively. The yellow lines represent the learned structure of person-person interaction, from which some
important interactions for each activity can be obtained, e.g. a chain structure which connects persons facing
the same direction is “important” for the queuing activity.
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