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As the world is severely affected by COVID-19 pandemic, the use of chloroquine and

hydroxychloroquine in prevention or for the treatment of patients is allowed in multiple

countries but remained at the center of much controversy in recent days. This review

describes the properties of chloroquine and hydroxychloroquine, and highlights not

only their anti-viral effects but also their important immune-modulatory properties and

their well-known use in autoimmune diseases, including systemic lupus and arthritis.

Chloroquine appears to inhibit in vitro SARS virus’ replication and to interfere with

SARS-CoV2 receptor (ACE2). Chloroquine and hydroxychloroquine impede lysosomal

activity and autophagy, leading to a decrease of antigen processing and presentation.

They are also known to interfere with endosomal Toll-like receptors signaling and cytosolic

sensors of nucleic acids, which result in a decreased cellular activation and thereby a

lower type I interferons and inflammatory cytokine secretion. Given the antiviral and anti-

inflammatory properties of chloroquine and hydroxychloroquine, there is a rational to

use them against SARS-CoV2 infection. However, the anti-interferon properties of these

molecules might be detrimental, and impaired host immune responses against the virus.

This duality could explain the discrepancy with the recently published studies on CQ/HCQ

treatment efficacy in COVID-19 patients. Moreover, although these treatments could be

an interesting potential strategy to limit progression toward uncontrolled inflammation,

they do not appear per se sufficiently potent to control the whole inflammatory process

in COVID-19, and more targeted and/or potent therapies should be required at least

in add-on.
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INTRODUCTION

Chloroquine (CQ) and hydroxychloroquine (HCQ) are “old” drugs but are still widely used in
very diverse situations, including infectious diseases (1–3), rheumatic/inflammatory diseases (4),
or in clinical research protocols as add-on cancer therapy (5). Indeed, they are cheap and safe
considering rare effective ocular toxicity (<2%) and acute cardiac toxicity. However, clinicians
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should be warned that CQ/HCQ treatments, especially with high
doses, can be complicated with heart failure, or non-reversible
conduction disorders (6).

As the world is severely affected by COVID-19 pandemic, the
use of CQ/HCQ in prevention or for the treatment of patients
is at the center of much controversy in recent days. We thus
believe appropriate to make a short review and discuss about
their pharmacological properties and the ways CQ/HCQ are able
to interfere with innate or adaptative immune system.

HISTORY OF HCQ/CQ

HCQ and CQ are weak bases with a common flat aromatic
core structure. These decades-old drugs are in fact synthetic
antimalarial drugs, although HCQ is above all a major treatment
for systemic lupus (7). The story of antimalarials starts with
the cinchona bark that was already used by the Incas for its
antipyretic property rather than malaria treatment itself. It was
only in 1820, that Pelletier and Caventou, french pharmacists,
isolated the fundamental antimalarial alkaloid: quinine. During
world war II, American soldiers who fought in the pacific region
received antimalarials (quinacrine) in prophylaxis, showing a
beneficial effect of this compound on lupus and rheumatoid
arthritis. CQ was subsequently introduced in 1943, showing its
beneficial effect in systemic lupus erythematosus in 1953 (8). CQ
cardiac and retinal side effects led to the development, in 1955,
of a hydroxylated derivative: HCQ, a little less active but above
all less toxic molecule (9, 10). HCQ holds actually a major place
in the treatment of autoimmune/ inflammatory rheumatic or
dermatological diseases.

LYSOSOMAL ACTIVITY AND AUTOPHAGY

Autophagy is a catabolic homeostatic or induced process that
involves the sequestration of cytoplasmic components in double-
membraned autophagosomes. Autophagosomes ultimately fuse
with lysosomes leading to the degradation of their content.
Autophagy is a major player in immunity (11). It contributes to
reduce inflammation by modulating type I interferon production
and inflammasome activity. Autophagy is a countermeasure
to infectious diseases clearing intracellular pathogens but
autophagic membrane can conversely constitute hubs for viral
replication. Autophagy also contributes to generate antigens
processed on MHC class II (12).

An important mode of action of HCQ is the inhibition
of lysosomal activity (Figure 1 and Table 1). As weak bases
(Figure S1A), CQ and HCQ accumulate in lysosomes
(lysosomotropism) and inhibit their function. In vitro, CQ
can disrupt the endolysosomal system and therefore destabilize
the lysosomal membranes leading to intracellular release
of lysosomal enzymes and impairment of autophagosome–
lysosome fusion (13, 14). As a consequence LC3-II

Abbreviations: CQ, chloroquine; HCQ, hydroxychloroquine; IFN, interferon;
IFN-I, type I interferons; NET, neutrophil extracellular trap; pDC, plasmacytoid
dendritic cell; SARS, severe acute respiratory syndrome; SLE, systemic lupus
erythematosus; TLR, toll like receptor.

(microtubule-associated protein light chain 3-II), a lipidated
protein normally associated with autophagosomes until
degradation/recycling after fusion with lysosomes, accumulates
under HCQ incubation (Figure S1B) (13, 25). Lysosomes are
involved not only in the recycling of cellular substrates but also in
the processing of antigens and their presentation on MHC class
II proteins (4, 26–29). Thus, CQ/HCQ decrease, within 1 h in
vitro, antigen processing and presentation by antigen presenting
cells (4, 15, 16). Other mechanisms are invoked for the impact
of HCQ or CQ on autophagy. Recently Rebecca et al. identified
that inhibition of palmitoyl-protein thioesterase 1 (PPT1) is,
at least in part, responsible for the observed anti-autophagy
effect (30).

TOLL LIKE RECEPTORS

Perhaps the most important advance in our understanding of
CQ/HCQ has been the discovery of their inhibiting effects
on toll like receptors (TLRs), one of our first line of defense
against bacterial and viral agents. HCQ and CQ inhibit
some endosomal TLRs, mostly TLR7 and TLR9, which are
able to recognize viral, bacterial and endogenous nucleic
acids (Figure 1 and Table 1) (4, 31). These TLRs are located
in the intracellular compartments to minimize accidental
exposure to self-nucleic material (31). TLR7 is activated by
ssRNA compounds, while TLR9 is activated by unmethylated
CpG DNA (32). Activation of these endosomal TLRs can
significantly contribute to promoting inflammation and/or
the development of autoimmune diseases, such as systemic
lupus erythematosus (SLE) (33, 34). Therefore, inhibition of
endosomal TLRs, and consequently type I interferons (IFN-I)
production, holds great therapeutic potential for the treatment
of autoimmune diseases (35). CQ/HCQ have shown their
ability to inhibit, in mice and in vitro, the TLR9 stimulation
induced by CpG and the underlying production of IL-6
and TNFα (36, 37). These drugs can also inhibits RNA-
mediated activation of TLR7 signaling and the production
of IFNα (38, 39). In addition to cytokines secretion, TLR7
and 9 inhibition will also impair costimulatory molecules
expression, such as CD86 on B cells, contrary to stimulation with
pokeweed mitogen (Figure S1C) (40). Two modes of action are
currently suggested:

• Raising endosomal pH has been proposed as the explanation
for defective maturation and antigen presentation as well
as impaired responses to TLR activation. Indeed, acidic
conditions are necessary for strong interactions of nucleic
acids with TLR9 (17). In this way, blocking endosomal
acidification hinders the signaling of TLR 3, 7, and 9 (18–
20). Ewald et al. showed that cleavage of TLR9 does not take
place in the absence of acidification of the endolysosomal
compartments. However, the proteolysis of TLR9 is an
essential step for the recognition of ligands (CpG for TLR9)
and the recruitment ofMyD88, and consequently the signaling
of TLR9 (21).

• CQ/HCQ can also directly bind to nucleic acids and
such interferences lead to structural changes in the TLR
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FIGURE 1 | Molecular mechanisms of chloroquine/hydroxychloroquine in pDCs. (1) Autophagosome-lysosome fusion. CQ/HCQ impair this step. (2) Degradation of

cargo from autophagosome. CQ/HCQ accumulate in lysosomes (lysosomotropism) and inhibit their function by increasing the pH. (3) Antigens are processed on

MHC class II. (4) Proteolysis of TLRs by acid-dependent proteases is an essential step for the recognition of ligands. CQ/HCQ inhibit acid-dependent proteases by

increasing the pH. (5) TLRs interact with nucleic acids presented to endosomal compartments. HCQ and CQ can bind directly to nucleic acids, preventing their

recognition and inhibiting TLR-ligand interactions. (6) TLRs activation lead to MyD88 recrutement with a subsequent synthesis of pro-inflammatory cytokines,

especially IFN-I. (7) Cytosolic DNA binds to cGAS, which then synthesizes the second messenger cGAMP to mediate STING-dependent transcription of IFN-I. HCQ

and CQ block the binding of dsDNA / cGAS, thus attenuating the underlying activation of the STING pathway mediated by cGAMP. (8) Cytosolic RNA is recognized

by RIG-I, the signal is transferred to MAVS, then to subsequent interactors leading to expression of IFN-I. CQ/HCQ may impair this process. (9 and 10) The release of

IFNα, among other cytokines, stimulates a feedback activation with notably MHCII and co-stimulatory molecules upregulation. CQ: chloroquine; dsDNA,

double-stranded DNA; ER, endoplasmic reticulum; HCQ: hydroxychlroquine; IFN-I: type I interferons; MHC: major histocompatibily complex; pDC: plasmacytoid

dendritic cell; TLR : toll like receptor.

ligands, preventing their recognition and inhibiting TLR-
ligand interactions (18, 22).

PLASMACYTOID DENDRITIC CELLS

The capacity of plasmacytoid dendritic cells (pDCs) to produce
massive quantities of type I IFN has driven our understanding
about the biology of these cells and their major role in both
immunity against virus and in inflammation/autoimmunity (41).

pDCs can be acutely activated through different cell surface
receptors and cytosolic sensors but TLR7/9 are likely their

dominant mode of activation for endogenous or exogenous
nucleic acids, with respect to IFN-I production (41–45). When
triggered, pDCs expressed costimulatory molecules, and are able
to prime subsequently T cells. Within 10 h following the sensing
of nucleic acids, more than 80% of genes expressed in pDCs are
IFNs or driven by IFNs (41, 46, 47). In addition, pDCs secrete
cytokines as IL-6, TNFα and IL-12 and control the expression
of many inflammatory cytokines. Because of these properties,
they are considered as one of the main cellular actor of anti-viral
defense (45).

In parallel, pDCs and IFN-I, have been largely studied in
chronic inflammatory/autoimmune diseases and systemic lupus

Frontiers in Immunology | www.frontiersin.org 3 July 2020 | Volume 11 | Article 1409

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gies et al. Immunomodulatory Effects of Chloroquine/Hydroxychloroquine

TABLE 1 | Main mechanisms of actions of CQ/HCQ.

Mode of actions Molecular mechanisms References

Impairment of

lysosomal activity and

autophagic process

CQ/HCQ accumulate in lysosomes

(lysosomotropism) and inhibit their functions

(4, 13–16)

CQ/HCQ Impair of

autophagosome–lysosome fusion

CQ/HCQ decrease antigen processing and

presentation, by antigen presenting cells

Interference with TLR

signaling

Accumulation of CQ/HCQ in lysosomes

raises endosomal pH and hinders the

signaling of TLR 3,7, and 9

(17–21)

Direct binding of CQ/HCQ to nucleic acids

prevents their recognition and inhibits

TLR-ligand interactions

(18, 22)

Inhibition of cytosolic

sensors of nucleic

acids

CQ/HCQ reduce activation of STING

pathway: CQ/HCQ block the binding of

dsDNA to cGAS.

(23, 24)

CQ/HCQ reduce activation of RIG-I,

pathway? (further investigations required)

(24)

CQ, chloroquine; dsDNA, double-stranded DNA; HCQ, hydroxychlroquine.

(SLE) (48). IFN-I are involved in SLE physiopathology through
multiple mechanisms, focusing recent therapeutic research and
trials (49, 50). HCQ is essential in the treatment of the
disease and in prevention of flares, and CQ/HCQ are able
to decrease IFNs production by pDCs (Figure S1D) (22, 51).
In addition, HCQ/CQ effects are not limited to pDCs and
result in several other cytokines inhibition (Figures S1E,F)
(22, 52–54).

CYTOSOLIC SENSORS OF NUCLEIC
ACIDS

Apart from TLRs, HCQ/CQ interfere with other pattern
recognition receptors (PRRs) essential to the anti-viral response
namely the cGAS–STING and RIG-I–MAVS pathways (Figure 1
and Table 1). These cytosolic PRRs recognize and respond
to DNA and RNA, respectively (23, 55). Cytosolic DNA is
recognized by the cGAS-STING signaling axis which stimulates
antiviral immunity by inducing IFN-I (56, 57). More precisely,
cytosolic DNA binds to cGAS, which then synthesizes the second
messenger cGAMP to mediate STING-dependent transcription
of IFN-I (57). CQ/HCQ block the binding of dsDNA to cGAS,
thus attenuating the underlying activation of the STING pathway
mediated by cGAMP (23, 24).

Cytosolic RNA is recognized by RIG-I, the signal is transferred
to MAVS, then to subsequent interactors leading to expression
of IFN-I (55). An et al. showed that CQ/HCQ may inhibit
RIG-I–stimulated induction of IFNs (24). However, the potential
impacts of CQ/HCQ on this pathway need further investigations.

OTHER EFFECTS OF CQ/HCQ

Considering CQ/HCQ and pathogens direct interactions, only
the interference of CQ and Plasmodium, via hemozoin
crystallization inhibition leading to parasite death, has been

clearly documented (58). Immunity against infectious agents,
including bacteria, virus or fungus, also involve vessels, and
inflammation at the endothelium level (59). In this view,
CQ/HCQ has been suggested to prevent prothrombotic state and
endothelial dysfunction (60, 61). Finally, neutrophil extracellular
traps (NETs) and the ability to mount NETosis is essential in
innate immunity against pathogens. However, CQ is also effective
as an early upstream inhibitor of NET formation in murine
models of inflammation (62).

CQ/HCQ AND SARS-COV2 INFECTION

Considering SARS-CoV2, which is at the center of current
concerns, some studies argue for lower nasopharyngeal carriage
after 6 days (63) and an overall improvement of patients with
CQ/HCQ (63–66), while more recent studies do not show rapid
viral clearance or lower mortality (67–73).

Little is known about the mechanisms of action of CQ/HCQ
during SARS-CoV2 infection. CQ has repeatedly demonstrated
its ability, in vitro or in mouse models, to inhibit the replication
of various strains of coronavirus, including those responsible for
severe acute respiratory syndrome (SARS) in 2002 and 2003 (74–
76). Additionally, in vitro studies carried out on SARS-CoV2
responsible for COVID-19 infection also confirm the potential
interest of CQ/HCQ (77–79). Indeed, the increased endosomal
pH due to CQ/HCQmay affect early stage of viral replication, via
inhibition of virus-endosome fusion (80), and seem to stall the
release of viral genome (77, 79). Although a direct interaction
between HCQ/CQ and the virus has yet not been described,
in vitro CQ interferes with terminal glycosylation of the SARS
coronavirus receptor ACE2 (75, 81). Strikingly ACE2 is an
interferon stimulated gene (82, 83), as CQ/HCQ decrease IFN-
I secretion, they may also hinder the expression of the viral
receptor in the neighboring airway epithelial cells (83).

DISCUSSION

Thanks to its known capacity to inhibit both TLRs and cGAS-
STING pathway, HCQ is a first line treatment in SLE and
other autoimmune/inflammatory conditions. More than 70%
of SLE patients around the world are under HCQ therapy
which represents today indeed thousands of people. From
its wide use, we know that HCQ efficiency takes a few
weeks to impact clinical symptoms, as arthritis, or cutaneous
manifestations (7). However, despite the first use of CQ and
HCQ in immune related disease almost 70 years ago, their exact
mechanisms of action are only beginning to be understood,
whether considering pharmacokinetic or molecular mechanisms.
In any case, in vitro CQ/HCQ inhibit the production of IFN-I
and inflammatory cytokines by innate immune cells. However,
considering cytokines profile in SLE patients under diverse
immunosuppressive therapies compared to untreated patients
(84), HCQ per se is far from being the most efficient.

Recently, a new coronavirus SARS-CoV2 infection (or
COVID-19) has started to spread around world with the
development of pneumonia and severe acute respiratory
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syndrome (SARS). CQ/HCQ remain at the center of a therapy
controversy as several publications describe an improvement
of patients with CQ/HCQ (63–66), while others give results
showing rather their ineffectiveness (67–73). Undoubtedly,
several mechanistical arguments are in favor of HCQ/CQ
interfering with coronavirus infection and virus spreading.
However, we know that COVID-19 is not only an acute viral
infection. Some patients experience a biphasic evolution/two-
step disease progression. They are first infected, viremic, with
flu-symptoms. At this stage, they may develop mild respiratory
manifestations. Some days later, for yet unclear reasons, disease
can dramatically worsen with an inflammatory procession
leading to a subsequent “cytokine storm,” a pro-thrombotic state
and even a macrophage activation syndrome with heavy lung
damage and/or multiorgan failure (85–87).

Looking back to SARS-CoV models, it has been suggested
and documented in mice that the first phase of the disease
could be accompanied by an initial virus mediated and adapted
IFN-I response. The second phase of the disease would occur
secondary to an inappropriate delayed IFN-I production in
infected lungs. This leads to a subsequent and excessive innate
immune response with pathogenic inflammatory monocyte-
macrophages and sub-optimal T cell response, partly due to T
cell apoptosis, which is not enough to dampen immune innate
system overactivation (88). Accordingly, a recent study from
Hadjadj et al. identified an impaired IFN-I activity, increased T
cell apoptosis and exacerbated inflammatory responses in severe
COVID-19 patients (89). Thus, like what has been suggested for
SARS-CoV-1 infection (88), the driving clinical features of severe
COVID-19 patients stem from a dysregulated immune response
in patients with notably a delayed and abnormal production of
IFN-I (82, 89).

Hence, what are our aims when we treat SARS-CoV2 infection
with CQ/HCQ ? Do we wish to decrease a beginning viremia
by endolysosomal pathway inhibition with CQ/HCQ, which
may further delay the anti-viral IFN-I response? or do we wish
to control the inflammatory storm by interfering with PRRs
and endosomal TLRs signaling, leading to a decreased cellular
activation and thereby cytokine secretion? Then, if we initiate the
treatment in the second phase of the disease, when the disease
becomes somehow an inflammatory disease, are we really in
frame with CQ/HCQ already demonstrated properties?

It appears from our clinical experience and from national
or international series of COVID19 infected patients,
that men are more affected than women (69, 90) and

patients with autoimmune diseases, including SLE who are
under HCQ or other immunosuppressive drugs, are not
drastically affected. This could have other explanations than
HCQ efficiency: (i) most of patients with autoimmunity
are women, (ii) some of them present an intrinsic IFN-
I response which is not completely abolished by HCQ
and remains more intense than healthy donors, (iii)
immunosuppressive therapies could impact or prevent high
auto-inflammatory conditions.

At this time, we do not have any definitive clue concerning
CQ/HCQ impacts on the first anti-viral phase of COVID-19,
and the use of CQ/HCQ must remain cautious as results from
recent studies do not support these treatments (67, 69, 72).
Considering published data on COVID-19 disease and older data
about SARS physiopathology, and although CQ/HCQ remain
an interesting potential strategy to limit progression toward
uncontrolled inflammation, they do not appear per se to be
sufficient to control the whole inflammatory process in COVID-
19, andmore targeted and/or potent therapies should be required
at least in add-on.
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