
Beyond blacklists:
Learning to Detect Malicious

Web Sites from Suspicious URLs
Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker

Claudio Bozzato
Lorenzo Simionato

Problematiche

• Evitare lo spam ed il phishing

• Necessario un metodo automatizzato per rilevare le
pagine pericolose

• Le blacklist non permettono di rilevare nuovi attacchi

• Metodo dinamico per identificare siti web maligni

• Quali informazioni utilizzare?

• Come estrarle?

2

State of the art

• All’attuale stato dell’arte esistono diversi approcci per
l’estrazione delle features a partire da un URL

• URL based

• Content based

• Informazioni indirette

3

URL Based
• Whitelist / blacklist (es: Google Safe Browsing)

• Word based:
 confirm, account, banking, secure, ebayisapi, webscr, login, signin

• Formato dell’URL:

• Host obfuscation:
 http://www.google.it http://74.125.77.104 http://1249725800

• Target organization:
 http://www.53.com/icons/small/www.paypal.com/SecureInfo/index.php

• Numero di “.” nell’hostname:
 http://www.53.com.wps.portal.secure.pool34.st

• Numero di caratteri dopo il nome dell’organizzazione:
 http://ebay.com.clickme.glas11.st

• Caratteri sospetti (“@”, “-”, ...)
 http://www.paypal.com@1249725800

4

http://74.125.77.104
http://74.125.77.104
http://74.125.77.104
http://74.125.77.104
http://1249725800
http://1249725800
http://203.143.16.149/icons/small/www.paypal.com/SecureInfo/index.php
http://203.143.16.149/icons/small/www.paypal.com/SecureInfo/index.php
http://www.53.com.wps.portal.secure.pool34.st
http://www.53.com.wps.portal.secure.pool34.st
http://www.53.com.wps.portal.secure.pool34.st
http://www.53.com.wps.portal.secure.pool34.st
http://www.53.com.wps.portal.secure.pool34.st
http://www.53.com.wps.portal.secure.pool34.st

Content based
• iFRAMEs

 <iframe src=http://attacker/bad.js width=0 height=0></iframe>

• Obfuscated JavaScript
 alert(“hello”)
 var _0xa32a=["\x68\x65\x6C\x6C\x6F"]; alert(_0xa32a[0])

• TF-IDF (Terms Frequency - Inverse Document Frequency)
 Alto TF-IDF = alto TF nel documento e basso IDF tra i documenti

• Robust Hyperlinks (CANTINA)

• Si trovano i 5 termini con TF-IDF più alto
• Si cercano questi termini in un motore di ricerca
• Si controlla che il dominio sia presente tra i primi N URL ritornati

• Immagini conosciute (Loghi)

• Link sospetti (URL based / Content based / Altro)

• Forms pericolosi (richiesta di credenziali)

• DOM walking (Javascript dinamico)
5

http://attacker/bad.js
http://attacker/bad.js

Informazioni indirette

• PageRank: in genere le pagine web di questo tipo non rimangono
online per un tempo sufficiente da ottenere un PageRank alto

• PageRank dell’URL e dell’host

• Popolarità in Netcraft

• Data di registrazione del dominio

6

Classificazione
• Come classifichiamo?

• Naive Bayes

• Modello lineare (CANTINA):
effetto calcolato come differenza tra TP e FP

• LR (Logistic Regression): tecnica ampiamente utilizzata sia per l’accuratezza che
per il comportamento in presenza di un grande set di feature (in particolare con
molte feature irrilevanti)

• SVM: tecnica basata sugli iperpiani, che mira a massimizzare la distanza dei punti
del training set più vicini.

• Cross-validation:

• Si partizionano i dati in training set e test set
• Si fa l’analisi sul training set e la validazione sul test set
• Si ripete per diversi step mediando i risultati

• Bisogna fare attenzione all’overfitting se abbiamo troppe features rispetto al training
set

7

Relative Operating Characteristic
• Bisogna cercare di ridurre al minimo i falsi positivi mantenendo una buona accuratezza

• Scelta del threshold per bilanciare veri positivi e falsi positivi

• Confronto di diversi modelli

8

Risultati

• Netcraft: da 75% a 96% di accuratezza con 0% di false positives e 84%
di true positives

• CANTINA: accuratezza del 90% con 1% di false positives

• “A Framework for Detection and Measurement of Phishing Attacks”:
accuratezza di 93.4%, false positive di 0.7% e true positive di 88%

• Google Safe Browsing (Firefox): 53% true positives, 0% false positives

• Gli strumenti attualmente disponibili basati su euristiche ed utilizzabili
come toolbar sono soggetti a molti false positives

• SpoofGuard: accuratezza del 91% ma 48% di false positives

9

L’articolo

• Approccio esclusivamente URL based

• Non si controlla il contenuto delle pagine (rischio per
l’utente e overhead)

• Non si considera il contesto in cui si trova il link (pagina
web, e-mail, mittente dell’e-mail)

• Raccoglie un grande insieme di features

• E’ il metodo stesso a scegliere le features più importanti

• Accuratezza del 95-99% (sul test set)

10

Features
• Lexical

• Hostname
• Path
• Lunghezza dell’hostname
• Lunghezza dell’URL
• Numero di “.”
• Bag of words (insieme di token)

• Host-Based: permette di sapere dov’è il sito e chi lo possiede

• IP address: a quale AS appartiene? I record A, NS, MX sono nello stesso AS?
• WHOIS: data di registrazione, update, scadenza, dettagli nascosti?

 nomi di chi ha registrato il dominio
• TTL dei record DNS del dominio? (fast-fluxers)
• Presenza di keywords nell’hostname (server, client)?
• Locazione geografica dell’host
• Velocità di connessione

11

Features

12

Classificazione

13

Length
URL

N° dots
URL

Path token
“www”

Hosted in
“France”

BlackList
1

WhiteList AS
6185

Registar
“GoDaddy” ...

URL1 10 2 0 0 0 0 1 0 ...

URL2 15 3 1 0 0 0 0 0 ...

URL3 12 3 0 0 0 1 0 1 ...

URL4 60 8 1 1 1 0 0 1 ...

...

Logistic regression

14

z = b +
d�

i=1

wixi

Date d feature di valore (numerico) x1, x2, ... xd
si calcola z nel seguente modo:

Dove b e wi sono dei parametri da calcolare:
• b è detto intercept
• wi è il peso associato alla feature i

Logistic regression

15

σ(z) =
1

1 + e−z

A partire da z, si calcola:

Se 0 < σ(z) < t:

Se t < σ(z) < 1:

t è una threshold da determinare in modo tale da
minimizzare gli errori di classificazione

L’URL viene classificato come benigno

L’URL viene classificato come maligno

l1-norm regularization

• L’intercept e i pesi vengono calcolati massimizzando la
funzione obiettivo:

16

distributed independently of the values of other features [5]. Let-
ting P (x|y) denote the conditional probability of the feature vec-

tor given its label, the model assumes P (x|y) =
Qd

j=1
P (xj |y).

Then, from Bayes rule, assuming that malicious and benign Web
sites occur with equal probability, we compute the posterior proba-
bility that the feature vector x belongs to a malicious URL as:

P (y=1|x) =
P (x|y = 1)

P (x|y=1) + P (x|y=0)
. (1)

Finally, the right hand side of eq. (1) can be thresholded to predict
a binary label for the feature vector x.
A Naive Bayes classifier is most easily trained by computing the

conditional probabilities P (xj |y) from their maximum likelihood
estimates [5]. For real-valued features, we model P (xj |y) by a
Gaussian distribution whose mean and standard deviation are com-
puted over the jth component of feature vectors in the training set
with label y. For binary-valued features, we estimate P (xj =1|y)
as the fraction of feature vectors in the training set with label y for
which the jth component is one.
The model parameters in the Naive Bayes classifier are estimated

to maximize the joint log-likelihood of URL features and labels,
as opposed to the accuracy of classification. Optimizing the lat-
ter typically leads to more accurate classifiers, notwithstanding the
increased risk of overfitting.
Support Vector Machine (SVM): SVMs are widely regarded

as state-of-the-art models for binary classification of high dimen-
sional data. SVMs are trained to maximize the margin of cor-
rect classification, and the resulting decision boundaries are robust
to slight perturbations of the feature vectors, thereby providing a
hedge against overfitting. The superior generalization abilities of
SVMs have been borne out by both theoretical studies and experi-
mental successes [23].
The decision rule in SVMs is expressed in terms of a kernel

functionK(x,x′) that computes the similarity between two feature
vectors and non-negative coefficients {αi}

n
i=1 that indicate which

training examples lie close to the decision boundary. SVMs classify
new examples by computing their (signed) distance to the decision
boundary. Up to a constant, this distance is given by:

h(x) =
n

X

i=1

αi(2yi−1)K(xi,x), (2)

where the sum is over all training examples. The sign of this dis-
tance indicates the side of the decision boundary on which the ex-
ample lies. In practice, the value of h(x) is thresholded to predict
a binary label for the feature vector x.
SVMs are trained by first specifying a kernel function K(x,x′)

and then computing the coefficients αi that maximize the margin
of correct classification on the training set. The required optimiza-
tion can be formulated as an instance of quadratic programming, a
problem for which many efficient solvers have been developed [6].
In our study, we experimented with both linear and radial basis
function (RBF) kernels.
Logistic Regression: This is a simple parametric model for bi-

nary classification where examples are classified based on their dis-
tance from a hyperplane decision boundary [11]. The decision rule
is expressed in terms of the sigmoid function σ(z) = [1 + e−z]−1,
which converts these distances into probabilities that feature vec-
tors have positive or negative labels. The conditional probability
that feature vector x has a positive label y=1 is the following:

P (y=1|x) = σ(w·x + b), (3)

where the weight vector w∈#d and scalar bias b are parameters to
be estimated from training data. In practice, the right hand side of

eq. (3) is thresholded to obtain a binary prediction for the label of
the feature vector x.

We trained models for logistic regression using a regularized
form of maximum likelihood estimation. Specifically, we chose
the weight vector w and bias b to maximize the objective function:

L(w, b) =
n

X

i=1

log P (yi|xi) − γ

d
X

α=1

|wα|. (4)

The first term computes the conditional log-likelihood that the model
correctly labels all the examples in the training set. The second
term in eq. (4) penalizes large magnitude values of the elements in
the weight vectorw. Known as $1-norm regularization, this penalty
not only serves as a measure against overfitting, but also encourages
sparse solutions in which many elements of the weight vector are
exactly zero. Such solutions emerge naturally in domains where the
feature vectors contain a large number of irrelevant features. The
relative weight of the second term in eq. (4) is determined by the
regularization parameter. We selected the value of γ in our experi-
ments by cross validation.

We included $1-regularized logistic regression for its potential
advantages over Naive Bayes and SVMs in our particular domain.
Unlike Naive Bayes classification, the parameters in logistic regres-
sion are estimated by optimizing an objective function that closely
tracks the error rate. Unlike SVMs, $1-regularized logistic regres-
sion is especially well suited to domains with large numbers of ir-
relevant features. (In large numbers, such features can drown out
the similarities between related examples that SVMs expect to be
measured by the kernel function.) Finally, because $1-regularized
logistic regression encourages sparse solutions, the resulting mod-
els often have decision rules that are easier to interpret in terms of
relevant and irrelevant features.

3. DATA SETS
This section describes the data sets that we use for our evalu-

ation. For benign URLs, we used two data sources. One is the
DMOZ Open Directory Project [19]. DMOZ is a directory whose
entries are vetted manually by editors. The editors themselves
go through a vetting process, with editors given responsibility for
larger portions of the directory as they gain trust and experience.
The second source of benign URLs was the random URL selector
for Yahoo’s directory. A sample of this directory can be generated
by visiting http://random.yahoo.com/bin/ryl.

We also drew from two sources for URLs to malicious sites:
PhishTank [21] and Spamscatter [3]. PhishTank is a blacklist of
phishing URLs consisting of manually-verified user contributions.
Spamscatter is a spam collection infrastructure from which we ex-
tract URLs from the bodies of those messages. Note that the ma-
licious URL data sets have different scopes. PhishTank focuses on
phishing URLs, while Spamscatter includes URLs for a wide range
of scams advertised in email spam (phishing, pharmaceuticals, soft-
ware, etc.). Both sources include URLs crafted to evade automated
filters, while phishing URLs in particular may be crafted to visually
trick users as well.

Table 1 summarizes the number and types of features in the
data sets that we use in our evaluations. The four data sets con-
sist of pairing 15,000 URLs from a benign source (either Yahoo or
DMOZ) with URLs from a malicious source (5,500 from Phish-
Tank and 15,000 from Spamscatter). We refer to these sets as the
DMOZ-PhishTank (DP), DMOZ-Spamscatter (DS), Yahoo-Phish-
Tank (YP), and Yahoo-Spamscatter (YS) sets. We collected URL
features between August 22, 2008 – September 1, 2008.

We normalized the real-valued features in each feature set to

1247

• In questo modo si vogliono:

• ridurre gli errori di classificazione (primo termine)

• minimizzare il valore assoluto dei pesi
(secondo termine).
Si favoriscono quindi soluzioni con molti pesi nulli

Data sets

• Per il training ed il testing del modello, sono necessari dei
data set con URLs da analizzare

• Datasets con URLs “benigni”:

• DMOZ (directory, 15000 URLs)

• Yahoo random URL (url casuali, 15000 URLs)

• Dataset con URLs “maligni”:

• PhishTank (siti di phishing, 5500 URLs)

• SpamScatter (link in mail di spam, 15000 URLs)

17

Esperimenti

• Combinazione di dataset benigni e maligni: se ne
ottengono quattro: DP, DS, YP, YS
D: DMOZ, Y:Yahoo, S: Spamscatter, P: PhishTank

• Esperimenti separati per ciascun dataset

• In ciascun esperimento si divide il dataset in 10 parti
casuali

• Il 50% di ciascuna parte è usato per il training, l’altro 50%
per il testing

• Il risultato della classificazione è calcolato come media
dei risultati ottenuti nelle 10 parti

18

Risultati

• Dai risultati ottenuti, l’utilizzo di un gran numero di
feature produce errori molto piccoli (<5%)

• Si ottengono errori simili anche senza l’utilizzo delle
feature delle blacklist

• Utilizzando invece solamente feature relative all’URL gli
errori sono ben più grandi (>10%)

• Si nota come ci siano differenze, anche significative,
variando i dataset. Ad esempio gli URLs raccolti da
PhishTank hanno parecchi campi WHOIS non disponibili

19

Risultati

20

Feature type DP YP DS YS

DNS NS record 10818 4186 10838 3764
WHOIS info 9070 3959 8702 3525
Hostname 7928 3112 7797 2959
TLD + domain 5787 2186 5609 1980
DNS A record 5627 2470 5207 1862
Geographic 4554 2250 4430 1836
Path tokens 4363 8021 8390 11974
Last token of path 1568 3751 2892 5071
DNS MX record 1323 497 1422 559
TLD 319 284 102 51
Connection speed 31 29 30 30
DNS TTL 14 13 14 12
Blacklists 7 7 7 7
WHOIS dates 6 6 6 6
Spamassassin plugin 5 5 5 5
IP address misc. 4 4 4 4
Lexical misc. 3 3 3 3
All features 51427 30783 55458 33648

Table 1: Breakdown of feature types for data sets used in eval-
uations.

lie between zero and one, shifting and rescaling each real-valued
feature so that zero and one corresponded to the minimum and
maximum values observed in the training set. Values outside this
range in the testing set were clipped to zero or one as appropriate.
The normalization served to equalize the range of the features in
each feature set, both real-valued and binary. Intuitively, it reflects
our prior belief that the real-valued and binary-valued features are
equally informative and therefore should be calibrated on the same
measurement scales.
One further complication arises due to undefined, or missing,

features. Many real-valued features are undefined for large num-
bers of examples in the data set (e.g., DNS time-to-live values).
We handled missing values using the following heuristic: for each
real-valued feature, we defined an extra binary feature indicating
whether the feature was defined. This heuristic enables the classi-
fiers to learn how to treat missing features from the way they appear
in the training set.

4. EVALUATION
In this section, we evaluate the effectiveness of the classifiers

on identifying URLs to malicious sites. Specifically, we want to
answer the following questions: Does using more features lead to
more accurate classification? What is the most appropriate classifi-
cation model to use? What is the impact on accuracy if we tune the
classifier for lower false positives? Can we effectively classify data
from once source with a model that was trained on a different data
source? What trends do we see among the relevant features? And
what do the misclassified examples have in common?

4.1 Methodology
We start by describing our experimental methodology. For each

feature set and data set in our experiments, we perform classifi-
cation over 10 random splits of the data, and the splits are 50/50
between training and testing. We learn a decision threshold t that
will minimize the overall classification error (see Section 2.2 for
methodology of learning t). We show the average classification
results of those 10 splits.
We ran our experiments on a machine with 2 dual-core 2.33 GHz

Xeon processors with 4 GB memory. Memory exhaustion was
not an issue, but typical usage was on the order of a few hundred
megabytes. We implemented a Naive Bayes solver in MATLAB.
For the SVM solvers, we used the .mex implementations of LIB-
SVM [6] and LIBLINEAR [7] that interface with MATLAB. We

0 5 10 15 20 25 30 35

Basic

Botnet

Blacklist

Blacklist+Botnet

WHOIS

Host−based

Lexical

Full

w/o WHOIS/Blacklist

Error rate (%)

F
e

a
tu

re
 S

e
ts

DMOZ−PhishTank
Yahoo−PhishTank
DMOZ−Spamscatter
Yahoo−Spamscatter

Figure 1: Error rates for LR with nine features sets on each of
the four URL data sets. Overall, using more features improves
classification accuracy.

implemented a custom optimizer for !1-regularized logistic regres-
sion in MATLAB using multiplicative updates [24].

4.2 Feature Comparison
Our first experiments on URL classification were designed to

explore the potential benefits of considering large numbers of auto-
matically generated features as opposed to small numbers of man-
ually chosen features. Fig. 1 compares the classification error rates
on the four data sets described in Section 3 using nine different
sets of features. The different feature sets involve combinations of
features reflecting various practical considerations. For brevity, we
only show detailed results from !1-regularized logistic regression
(LR), which yields both low error rates (see Section 4.3) and also
highly interpretable models (see Section 4.6). However, the other
classifiers also produce qualitatively similar results.

Table 2 shows the total number of features in each feature set for
the Yahoo-PhishTank data set. For these experiments, we also re-
port the number of relevant features that received non-zero weight
from !1-regularized logistic regression. (The other three data sets
yield qualitatively similar results.) The feature sets are listed in as-
cending order of the total number of features. In what follows, we
describe the detailed compositions of these feature sets, as well as
their effects on classification accuracy.

We start with a “Basic” feature set that corresponds to the set of
URL-related (not content-related) heuristics commonly chosen by
various anti-phishing studies, including Fette et al. [8], Bergholz
et al. [4] and CANTINA [28]. This set consists of four features:
the number of dots in a URL, whether the hostname contains an IP
address, the WHOIS registration date (a real-valued feature), and
an indicator variable for whether the registration date is defined.
Under this scheme, the classifier achieves a 10% error rate.

The next three feature sets (Botnet, Blacklist, and Blacklist +
Botnet) represent the use of current spam-fighting techniques for
predicting malicious URLs. The features for “Botnet” are from the
SpamAssassin Botnet plugin (Section 2.1). These consist of five
binary features indicating the presence of certain client- or server-
specific keywords, whether the hostname contains an IP address,
and two more features involving the PTR record of the host. With
these features, we obtain a 15% error rate at best.

1248

Analisi

• Con il classificatore LR, siamo in grado di analizzare il
“peso” di ciascuna feature, in maniera da trovare quelle
più o meno rilevanti

• Se il peso relativo ad una feature è

• positivo: allora essa “penalizza” l’URL

• negativo: allora essa “premia” l’URL

• zero: allora essa non è considerata

• In questo modo possiamo sia verificare quello che già
sappiamo sugli URLs maligni, sia imparare nuove cose

21

Analisi

• Ad esempio nel dataset YP:

• 3962 su 30783 feature considerate (peso non zero)

• URL contenenti com, members nell’hostname o
banking, paypal, http nel path sono feature maligne

• Date di registrazione del dominio mancanti o molto
recenti sono feature maligne

• IP ranges di Google, Yahoo e AOL sono feature
benigne

•

22

Errori di classificazione

• Maggior causa di false positive:

• Sito in hosting su IP/AS considerati maligni

• Maggiori cause di false negative:

• URL con token benigni

• Siti in hosting su servizi gratuiti (e.g. geocities.com)

• Siti compromessi

•

23

Limitazioni

• Conoscendo le feature ed i pesi ad esse associati, un
attaccante potrebbe tentare di ingannare il classificatore:
URL con poche informazioni (e.g. TinyURL), registrazione
su domini benigni (e.g. .org), ecc.

• Problema dei falsi positivi rispetto ad un approccio
tradizionale tramite Blacklist (dove i falsi positivi sono
praticamente zero).
Possibile soluzione per ridurli: calcolare i pesi in maniera
tale da da minimizzare i falsi positivi, invece degli errori
complessivi (naturalmente aumenteranno i falsi negativi).

24

Limitazioni

• Performance non soddisfacenti.
Per un dataset (∼20000 URLs):

• 30 min. per la fase di training

• 5h cross-validation

• 90s. per il testing (+ query WHOIS/Blacklist/ecc)

• Fase di training troppo lunga nel caso di molti URL:
successivo paper con algoritmo di tipo online machine-
learning

• Da verificare le perfomance del testing (necessario ad
ogni visita di un nuovo indirizzo)?

25

Limitazioni

• Accuratezza veramente del 95-99%?

• Risultati ottenuti “mischiando” i dataset di training/testing
di gran lunga peggiori

26

times for each classifier. The cross-validation time refers specifi-
cally to the cross-validation process used in LR to choose a regu-
larization constant. Although expensive, it can be effectively amor-
tized when training over time.

Bayes SVM-lin SVM-rbf LR

Train 51 s 50 s 63 s 30 min
Test 87 s 91 s 170 s 90 s
Cross-validation — — — 5 hrs

Table 3: Training and testing times for the Yahoo-PhishTank
data set.

The SVM and LR classifiers have at least half of the error of
Naive Bayes, which is not surprising given the models that we
chose. Naive Bayes is a classifier that sees wide-spread use in spam
filters and related security applications, in part because the training
and testing performance of Naive Bayes is fast. However, the bene-
fit of reduced training time is outweighed in this case by the benefit
of using classifiers whose explicit goal is to minimize errors. This
tradeoff is particularly worthwhile when we are dealing with a large
feature set.
As mentioned in Section 2.2, SVM classifiers can perform poorly

if irrelevant features in a large feature set make the kernel functions
poor measures of similarity. Given that the difference in error be-
tween SVM and LR is so small, though, this problem did not mate-
rialize in our data set. As such, we continue to show the results for
LR for the remaining experiments because of its interpretability,
which is useful for understanding how the model performs (Sec-
tion 4.6) and how it might be improved (Section 4.7).

4.4 Tuning False Positives & Negatives
An advantage of using these models is that they can tradeoff false

positives and false negatives. We have seen in the previous sections
that classifying with the “Full” feature set yields very low overall
error rates. For policy reasons, however, we may not want to choose
a decision threshold t to minimize the overall error rate. Instead,
we may want to tune the threshold to have very low false positives
at the expense of more false negatives (or vice versa).
Consider blacklisting as a motivating example. Blacklisting has

the intrinsic advantage that it will have very low false positives.
Suppose a network administrator wants to take advantage of the
benefits of classifying over a full feature set while maintaining the
low false positives of a blacklist-only policy as applied to URL
classification. To do so, we can select a threshold for the full feature
set that will yield a false positive rate competitive with blacklisting
while having a much lower false negative rates.
Figure 3 shows the results of this experiment as an ROC graph

with respect to the decision threshold t. We see that even if we
tune the decision threshold of the full-featured classifier to the same
false positives as a blacklist-only classifier, the full-featured classi-
fier still predicts malicious URLs with much better accuracy than
with blacklists alone.

4.5 Mismatched Data Sources
Coupling the appropriate classifier with a large feature set can

yield a highly accurate classifier when trained and tested on disjoint
sets of the same data source. But do these results hold when train-
ing and testing examples are drawn from different data sources?
To answer this question, we experiment with training and testing
on various combinations of benign and malicious sources of URLs.
(We use the abbreviations defined in Section 3 to refer to each com-
bination of data sources, e.g. YP for Yahoo-PhishTank).
Table 4 shows classification results using !1-regularized logistic

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

False positive rate (%)

T
ru

e
 p

o
si

tiv
e

 r
a

te
 (

%
)

↑
FP = 0.1%
FN = 7.6%

↓

FP = 0.1%
FN = 74.3%

Full
Blacklist

Figure 3: Tradeoff between false positives and false negatives:
ROC graph for LR over an instance of the Yahoo-PhishTank
data set using (1) the “Full” feature set and (2) blacklists only.
We highlight the points where the false positives are tuned to
0.1%.

Testing
Training YS YP DS DP
YS 0.90% 5.66% 9.38% 17.73%
YP 21.33% 1.24% 44.02% 33.54%
DS 13.55% 31.57% 1.00% 13.70%
DP 22.95% 3.06% 22.92% 3.01%

All sources (YDSP) 0.95% 2.40% 1.43% 3.19%

Table 4: Overall error rates when training on one data source
and testing on another (possibly different) data source using the
LR classifier.

regression. Each row represents a pairing of benign and malicious
URL training sources, and each column represents a pairing of be-
nign and malicious URL testing sources. As expected, the entries
along the NW-SE diagonal yield the lowest classification errors be-
cause they represent matching similar data sources (these numbers
are repeated from previous experiments). When only the benign
URL source is mismatched (e.g., YS and DS), error increases due
to higher false positives. And if only the malicious URL source is
mismatched (e.g., YS and YP), error increases due to higher false
negatives. Nevertheless, we note that training on the Spamscatter
set — which includes URLs advertising a wide range of scam sites
— generally performs better on a mismatched source (YS-YP at
6%, DS-DP at 14%) than the PhishTank set (YP-YS at 21%, DP-
DS at 23%) — which focuses only on phishing sites (Section 3).

Finally, if the training and testing sources are completely mis-
matched (SW-NE diagonal), the error ranges between 18–44%. Al-
though better than random, the disparity in accuracy emphasizes
the judicious selection of training data. This selection is of partic-
ular importance for use in a deployment: the training data should
reflect the “testing” environment in which the system is used. To
that end, if we use all four training sources, the generalization abil-
ity of the classifier is strong across all testing sources (last row).
Thus, in a deployed system practitioners will want to pay special
attention to collecting training data that is representative.

4.6 Model Analysis
Besides high classification accuracy, LR has the advantages of

performing automatic feature selection as well as providing an in-
terpretable linear model of the training data. In particular, because
the output of a linear model depends on the weighted sum of the
features, the sign and magnitude of the individual parameter vector
coefficients can tell us how individual features contribute to a “ma-
licious” prediction or a “benign” prediction. Positive coefficients

1250

• In una applicazione reale: training con tutti i dataset
Risultati? Possibili problemi di overfitting?

Conclusioni

• Approccio interessante per la classificazione degli URLs

• L’utilizzo di LR consente un’analisi delle caratteristiche
dei siti maligni, utile anche per scoprire nuovi trend

• Problemi di scalabilità rilevanti

• Da verificare l’accuratezza del modello nei casi reali

27

Riferimenti
“Beyond Blacklists: Learning to Detect Malicious Web Sites from Suspicious URLs”
Justin Ma, Lawrence K. Saul, Stefan Savage, Geoffrey M. Voelker
In Proc. of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Paris 2009

“A Framework for Detection and Measurement of Phishing Attacks”
Niels Provos, Sujata Garera, Monica Chew, Aviel D. Rubin
In Proc. of the 2007 ACM workshop on Recurring malcode, Alexandria 2007

“All Your iFRAMEs Point to Us”
Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, Fabian Monrose
In Proc. of the 17th conference on Security symposium, San Jose 2008

“CANTINA: A Content-Based Approach to Detecting Phishing Web Sites”
Yue Zhang, Jason Hong, Lorrie Cranor
In Proc. of the Sixteenth International World Wide Web Conference (WWW2007), Banff 2007

“The elements of statistical learning: data mining, inference, and prediction”
Trevor Hastie,Robert Tibshirani,Jerome Friedman
Springer, 2003

“Identifying Suspicious URLs: An Application of Large-Scale Online Learning”
Justin Ma, Lawrence K. Sault, Stefan Savage, Geoffrey M. Voelker
In Proc. of the International Conference on Machine Learning (ICML), Montreal 2009

28

