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Abstract

Background: The assessment of a woman’s risk for developing breast cancer has become increasingly important

for establishing personalized screening recommendations and forming preventive strategies. Studies have consistently

shown a strong relationship between breast cancer risk and mammographic parenchymal patterns, typically assessed
by percent mammographic density. This paper will review the advancing role of mammographic texture analysis as a

potential novel approach to characterize the breast parenchymal tissue to augment conventional density assessment

in breast cancer risk estimation.

Main text: The analysis of mammographic texture provides refined, localized descriptors of parenchymal tissue

complexity. Currently, there is growing evidence in support of textural features having the potential to augment
the typically dichotomized descriptors (dense or not dense) of area or volumetric measures of breast density in

breast cancer risk assessment. Therefore, a substantial research effort has been devoted to automate mammographic

texture analysis, with the aim of ultimately incorporating such quantitative measures into breast cancer risk assessment
models. In this paper, we review current and emerging approaches in this field, summarizing key methodological

details and related studies using novel computerized approaches. We also discuss research challenges for advancing

the role of parenchymal texture analysis in breast cancer risk stratification and accelerating its clinical translation.

Conclusions: The objective is to provide a comprehensive reference for researchers in the field of parenchymal pattern

analysis in breast cancer risk assessment, while indicating key directions for future research.
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Background
The incidence and mortality rates of breast cancer remain

extremely high despite advances in screening and treat-

ment [1]. In the USA, it is estimated that, in 2016, there

will be 246,660 new cases of invasive breast cancer and

40,450 breast cancer deaths [2]. Therefore, better strategies

are urgently needed to identify women at high risk for de-

veloping breast cancer who could benefit the most from

supplemental screening and preventive therapies [3, 4].

Unfortunately, to date, the broadly available risk assess-

ment models cannot identify high-risk women reliably

within the general population. Current models predict

either the risk of carrying a high-risk genetic mutation

such as BRCA1/2 (e.g., Claus model, BOADICEA, and

BRCAPRO) or the risk of developing breast cancer over

time with or without such a mutation (e.g., Gail model,

BOADICEA, Rosner-Colditz model, and Tyrer-Cuzick

model) [5]. These models have only modest discrimina-

tory capacity and continuing efforts are needed to improve

these models at the individual level [6]. In addition,

genetic susceptibility models are only useful in the familial

setting (where cancer pedigree history is known) and are

not of relevance to the general population where the great

majority of women have no relevant family history. There-

fore, in striving to tailor breast cancer screening recom-

mendations for the individual woman [7] it is crucial to

develop more accurate risk assessment models that can be

easily adopted in routine clinical practice.
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While mammography remains the cornerstone of early

breast cancer detection [8], it also provides a readily ac-

cessible method to assess the distribution of fatty and

dense, or fibroglandular (stromal and epithelial), tissues

in the breast. In x-ray imaging, fatty tissue appears

radiographically lucent, or darker, and dense tissue is

radio-opaque, or brighter. Mammographic percent density

(PD), a measure of the relative amount of fibroglandular

tissue within the breast, has been shown to be related to

screening sensitivity and specificity and has also been

established as a strong independent risk factor for breast

cancer [9–12]. Studies have repeatedly shown significant

associations with breast cancer risk for both qualitative

and quantitative breast density measures and a potential

to improve cancer risk assessment models [13, 14]. Recent

legislation in several US states mandates notification of

breast density [15], and substantial research continues to

be devoted to accurate measurement of this key bio-

marker and to its incorporation into risk prediction

models [9, 16].

Compared to the global image measure of breast density,

parenchymal texture descriptors can provide more refined,

localized descriptors to characterize the complexity as well

as the morphological distribution of the breast paren-

chymal patterns. Breast density measures are generally

dichotomous, or each area or voxel of breast density

measured in the mammogram is compared to a thresh-

old of “dense” or “not dense” without reflecting the

broader range and spatial distribution of the various

breast parenchymal elements. Parenchymal textural

features have been proposed as not only imaging

markers that could identify parenchymal changes asso-

ciated with breast cancer development [17–19], but also

with subtypes and grading of subsequent breast malig-

nancies [20–22]. In addition, there is growing evidence

in support of textural features of the breast parenchyma

reflecting inherent, independent, biologic risk factors

associated with cancer development, and this may thus

have the potential to augment breast density in asses-

sing an individual woman’s risk of developing cancer

[23–25]. Therefore, efforts to incorporate breast paren-

chymal texture analyses in breast cancer risk assess-

ment have recently also gained substantial momentum.

This article reviews approaches to quantitate mammo-

graphic textural features and methods to incorporate

these features into breast cancer risk assessment models,

focusing primarily on novel computerized approaches. A

systematic review of the literature in PubMed was per-

formed to identify all original articles published up to

April 2016 that evaluated computational measures of

mammographic texture in breast cancer risk assessment.

The following keywords were used in combination:

“texture” or “parenchymal patterns” or “image features”,

“mammography” or “mammogram”, and “breast cancer

risk” or “mammographic risk”. To broaden the search,

the “related articles” function provided in PubMed was

also used, and all articles and citations obtained were

reviewed. The references from all the articles identified

were also examined for further relevant studies. The

last search was conducted on 29 April 2016. Studies

not considered relevant to the scope of the review were

excluded; other exclusion criteria included: study not

published in the English language, full text not avail-

able, letter to the editor, and duplicate publication. In

the rest of this manuscript, we summarize key methodo-

logical details and evaluation results from the 44 research

papers identified by the search and discuss future chal-

lenges in this promising research field.

Mammographic texture analysis using
automatically extracted features
The value of characterizing the mammographic texture

of the breast parenchyma in breast cancer risk estimation

was originally demonstrated in the pioneering studies of

Wolfe [26, 27], Boyd et al. [28–30], Gram et al. [31], and

Brisson et al. [32], proposing visually assessed, qualitative

or quantitative classifications which were based on the ex-

tent and the characteristics of breast densities in a mam-

mogram. These early approaches have been used by

several groups, generally reporting elevated risks among

women with more complex parenchymal tissue pat-

terns [33–45]. Nevertheless, these studies also ob-

served increased heterogeneity and low reproducibility

in corresponding risk estimates due to subjectivity and

inter-observer variation in visual appraisal of the

mammogram [33–45]. By introducing computerized

texture features to automate the characterization of

breast parenchymal patterns, later studies addressed the

limitations of visual classifications and re-established the

potential of texture descriptors in breast cancer risk as-

sessment [46–50]. Since then, this research field has

continuously been evolving. A variety of quantitative

methodologies have been developed, involving different

techniques to sample the breast and multiple texture

descriptors to characterize the texture properties of the

sampled regions of interest (ROIs) from cranio-caudal

(CC) and mediolateral-oblique (MLO) view mammograms

(Table 1).

In most studies, texture analysis has been performed

within a single ROI in the breast (Table 1). This single

ROI is usually placed in the retroareolar breast area,

while, in some cases, it can be a larger region corres-

ponding to the entire breast or to the largest rectangular

box inscribed within the breast (Fig. 1a and b). In an at-

tempt to capture the granularity and heterogeneity of

the parenchymal texture within the breast, more recent

studies have estimated texture in multiple ROIs through-

out the breast (Fig. 1c and d). A lattice-based strategy
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Table 1 Key studies in automated parenchymal texture analysis for breast cancer risk assessment

Study Mammograms Dataset Breast sampling Texture features

Year Participating institutions F/D View A B S1 S2 T1 T2 T3 T4 T5

Distinguishing or predicting cancer cases from controls

Byng et al. (1997) [60] University of Toronto, Sunnybrook Health
Science Centre, Ontario Cancer Institute

F CC 354P 354 x x x

Torres-Mejia et al. (2005) [72] LSHTM, Guy’s Hospital, UNAM, IPOFG F CC/MLO 111P 3100 x x x

Wu et al. (2008) [76] University of Michigan F CC 128C 549 x x

Manduca et al. (2009) [66] Mayo Clinic, Moffitt F CC/MLO 246P 522 x x x x x x

Wei et al. (2011) [73] University of Michigan F CC 136C 246 x x

Nielsen et al. (2011) [61] University of Copenhagen, Nordic Bioscience,
Delft University of Technology, RadboudUMC,
Mayo Clinic

F MLO 245P 250 x x x

Brandt et al. (2011) [74] University of Copenhagen, RadboudUMC,
Synarc Imaging Technologies

F MLO 245P 245 x x

Häberle et al. (2012) [56] Erlangen University Hospital, Fraunhofer Institute
for Integrated Circuits IIS, IMPRS, UCLA

F CC 864C 418 x x x x x x

Li et al. (2012) [84] University of Chicago D CC 75C 328 x x x x x

Chen et al. (2014) [75] University of Manchester D MLO 50C 50 x x

Nielsen et al. (2014) [64] University of Copenhagen, Nordic Bioscience,
Biomediq, RadboudUMC, Mayo Clinic

F CC/MLO 471P,C 692 x x x

Li et al. (2014) [71] University of Chicago D CC 75C 328 x x x x

Karemore et al. (2014) [89] University of Copenhagen, RadboudUMC F MLO 245P 250 x x x

Zheng et al. (2015) [51] University of Pennsylvania D MLO 106C 318 x x x x x

Sun et al. (2015) [53] University of Texas, China Northeastern University,
University of Oklahoma, TTUHS,
Guiyang Medical University

D CC 141P 199 x x x x

Tan et al. (2015) [77] University of Texas, University of Oklahoma,
University of Pittsburgh

D CC/MLO 812P 1084 x x x x x

Tan et al. (2015) [78] University of Oklahoma, University of Pittsburgh D CC/MLO 430P 440 x x x x x

Predicting the risk of carrying a high-risk genetic mutation

Huo et al. (2000) [80] University of Chicago F CC 15 143 x x x x

Huo et al. (2002) [55] University of Chicago, University of Pennsylvania F CC 30 142 x x x x

Li et al. (2004) [54] University of Chicago, University of Pennsylvania F CC 30 60 x x x x x

Li et al. (2005) [81] University of Chicago F CC 30 142 x x x x x

Li et al. (2007) [82] University of Chicago F CC 30 142 x x

Li et al. (2008) [83] University of Chicago F CC 30 142 x x

Li et al. (2012) [84] University of Chicago D CC 53 328 x x x x x

Li et al. (2014) [71] University of Chicago D CC 53 328 x x x x

Gierach et al. (2014) [85] University of Chicago, NCI-NIH,
Washington Radiology Associates,
Genentech, USUHS, UCL, WRNMC, Westat Inc.

F CC 137 100 x x x x x

The Table describes the image data used in each study, including type of mammograms and dataset size, as well as methodological details for the computerized

texture analysis, the technique of breast sampling, and algorithm implementation of texture features

IMPRS International Max Planck Research School for Optics and Imaging, IPOFG Instituto Português de Oncologia Francisco Gentil, LSHTM London School of

Hygiene and Tropical Medicine, Moffitt Moffitt Cancer Center and Research Institute, NCI-NIH National Cancer Institute, National Institutes of Health, RadboudUMC

Radboud University Nijmegen Medical Centre, TTUHS Texas Tech University Health Sciences, UCL University College London, UCLA University of California at Los

Angeles, UNAM Universidad Nacional Autónoma de México, USUHS Uniformed Services University of the Health Sciences, WRNMC Walter Reed National Military

Medical Center

Mammograms: F Digitized screen-film, D Full-field digital, CC cranio-caudal, MLO mediolateral-oblique; Dataset: A cancer cases (Pprior, unaffected, images, Cimages

from the contralateral, unaffected, breast at the time of cancer diagnosis) or other high-risk population (i.e., BRCA1/2 carriers), B controls; Breast sampling:

S1 retro-areolar region or the entire breast/dense tissue as a single region of interest (ROI), S2 multiple ROIs covering the entire breast; Types of texture

features: T1 gray-level histogram, T2 co-occurrence, T3 run-length, T4 structural/pattern, T5 multi-resolution/spectral
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which splits the entire breast into multiple square

patches was proposed by Zheng et al. [51, 52] showing

that, with respect to single ROI methodologies, this breast

sampling technique may improve risk assessment, with

performance being maximized when smaller patches

(6.3 × 6.3 mm2) are used. Multiple ROIs defined at various

scales of breast tissue density were used by Sun et al. [53],

where it was shown that fusing features from different

density scales may prove to be another effective way to

enhance the cancer prediction performance.

The texture descriptors used in breast cancer risk assess-

ment to date can be broadly classified into five feature

groups (Table 2), each of which reveals different aspects of

the mammographic texture (Fig. 2): 1) grey-level intensity/

histogram features [54–56]; 2) co-occurrence (Haralick/

Markovian) descriptors [57]; 3) run-length features [58, 59];

4) structural/pattern measures [46, 60–65]; and 5) multi-

resolution/spectral features [53, 61, 64, 66, 67]. Gray-level

intensity histogram features are common first-order statis-

tics which describe the distribution of gray-level intensity

within the breast tissue. The co-occurrence features also

consider the spatial relationships of pixel intensities in

different directions and are based on the gray-level co-

occurrence matrix (GLCM) which encodes the relative

Fig. 1 Regions of interest (ROIs) used in texture analysis. a single ROIs selected in the retro-areolar breast area, b the entire breast and the largest

rectangular box inscribed within the breast, studied as single ROIs, c multiple ROIs at multiple scales of density, and d multiple ROIs defined by a

lattice covering the entire breast

Table 2 Parenchymal texture descriptors for breast cancer risk assessment; texture descriptors which have been examined in

association with breast cancer risk, classified to five feature groups

Grey-level histogram features [51, 53–56, 60, 66, 71, 72, 77, 80, 81, 84, 85]

min intensity skewness 5th percentile energy

max intensity kurtosis 5th percentile mean root mean square variation

standard deviation entropy 95th percentile

mean intensity sum intensity 95th percentile mean

Co-occurrence features [51, 53–56, 66, 71, 77, 78, 80, 81, 84, 85]

cluster shade entropy inverse difference moment difference entropy

correlation inertia sum variance homogeneity

Haralick correlation difference moment sum average product moment

energy coarseness difference variance triangular symmetry

Run-length measures [51, 56, 66, 73, 76–78]

long run emphasis gray-level non-uniformity high gray level run emphasis run percentage

short run emphasis run-length non-uniformity low gray level run emphasis number of runs

Structural/Pattern measures [51, 54, 56, 60, 61, 64, 66, 72, 74, 77, 78, 81, 82, 84, 85, 89]

fractal dimension local binary pattern Hessian matrix Weber local descriptors

lacunarity Law’s masks edge enhancing index directional gradient

Multi-resolution/Spectral features [53–56, 61, 64, 66, 71, 75, 78, 80, 81, 83–85, 89]

Fourier power spectrum wavelet/Gabor Gaussian Kernels power-law spectrum
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frequency of neighboring intensity values. Run-length fea-

tures capture the coarseness of texture in specified di-

rections by measuring strings of consecutive pixels (i.e.,

runs) which have the same gray-level intensity along

specific linear orientations. Fine textures tend to con-

tain more short runs with similar gray-level intensities,

while coarse textures have longer runs with different

gray-level intensities. Structural features capture the

architectural composition of the parenchyma by charac-

terizing the tissue complexity, the directionality of

flow-like structures in the breast, and intensity varia-

tions between central and neighboring pixels. Finally,

multi-resolution/spectral features use spatial frequency

transforms, such as Fourier, wavelet/Gabor, and the Power

spectrum, to characterize intrinsic periodic texture struc-

tures that repeat over multiple scales.

Towards a new breast cancer risk assessment
paradigm based on mammographic texture
descriptors
The proposed methodologies have been applied primarily

to digitized film-screen mammograms and more recently

on full-field digital mammograms. Texture descriptors

have been evaluated in a few prospective and a larger

number of retrospective case–control studies, where their

discriminatory capacity in breast cancer prediction was

typically assessed in terms of the area under the ROC

curve (AUC) measuring their ability to distinguish be-

tween cancer cases and controls (Table 3). The potential

of mammographic texture in breast cancer risk assess-

ment has also been investigated in studies with BRCA1/2

mutation carriers, where the AUC was evaluated in terms

of the performance of the texture features in predicting a

woman’s risk of carrying this high-risk genetic mutation.

Although hereditary breast cancers account for 5–10 % of

incident breast cancers, women who inherit a mutated

form of the BRCA1/2 gene have up to 87 % risk of devel-

oping breast cancer by the age of 70 years [68]. As such,

and considering that mammographic PD has not been as-

sociated with BRCA1/2 mutation status [69–71], the abil-

ity of texture to identify potential BRCA1/2 carriers could

have important value in risk stratification.

Associations of parenchymal texture with breast cancer in

case–control studies

Byng et al. [60] were the first to evaluate automatically

calculated parenchymal texture descriptors directly as

independent risk factors for breast cancer. The authors re-

ported on data from a prospective case–control study using

354 incident cases diagnosed with histologically verified in-

vasive breast carcinoma at least 1 year after their entry in

the Canadian National Breast Screening Study, and 354

age-matched controls with at least 7 years of negative

follow-up. Two grey-level intensity histogram texture fea-

tures were estimated in screen-film mammograms; specific-

ally, skewness averaged over individual 6.2 × 6.2 mm2

patches in the breast and the fractal dimension estimated

by considering the entire breast as a single ROI. For both

features, the results showed moderate relative risk (RR)

after adjustments for the effects of other risk factors, i.e.,

age at menarche, menopausal status, age at first time preg-

nancy, number of live births, family history of breast carcin-

oma, height, and weight (RR = 3.35 and RR = 3.35 for

skewness and fractal dimension, respectively), while no

Fig. 2 Characterization of parenchymal patterns using computerized texture analysis. Examples of feature maps showing the distribution of texture

values in the breast, generated by the application of the lattice-based strategy of Zheng et al. [51] to an MLO-view full-field digital mammogram.

(a) Grey-level histogram, (b) Co-occurrence, (c) Run-length, (d) Structural, and (e) Multi-resolution
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Table 3 Breast cancer prediction capacity of automated characterization of the parenchymal patterns

Study Dataset Model Discriminatory capacity (AUC)

Year Participating Institutions A B m $Texture $PD $Texture + PD ^Texture ^PD ^Texture + PD

Distinguishing between cancer cases and healthy women

Wu et al.

(2008) [76]

University of Michigan 128C 549 No LDACV 0.73

Manduca et al.

(2009) [66]

Mayo Clinic, Moffitt 246P 522 Yes LRCV [0.58, 0.60] 0.58 Age, BMI

[0.61, 0.62] 0.60 [0.62, 0.63]

Wei et al.

(2011) [73]

University of Michigan 136C 246 No LDA 0.74* 0.61 0.76 Age, BMI, family history of

breast cancer, #of previous

breast biopsies

0.78

Nielsen et al.

(2011) [61]

University of Copenhagen,

Nordic Bioscience, Delft University

of Technology, RadboudUMC, Mayo Clinic

245P 250 No LRCV 0.63 0.60 0.66*

Brandt et al.

(2011) [74]

University of Copenhagen, RadboudUMC,

Synarc Imaging Technologies

245P 245 Yes kNNCV 0.63 0.56

Häberle et al.

(2012) [56]

Erlangen University Hospital, Fraunhofer

Institute for Integrated Circuits IIS,

IMPRS, UCLA

864C 418 Yes LRCV 0.75 0.51 0.75 Age, BMI, family history of

breast cancer, parity, age at

first term pregnancy

0.79 0.66 0.79

Li et al. (2012) [84] University of Chicago 75C 328 No BANNCV 0.73

Li et al. (2012) [84] University of Chicago 67C 268 Yes BANNCV 0.70

Chen et al.

(2014) [75]

University of Manchester 50C 50 No LR 0.71 0.62 0.68

Nielsen et al.

(2014) [64]

UCPH, Nordic Bioscience, Biomediq,

RadboudUMC, Mayo Clinic

245P 250 No LRCV Age, BMI, menopause,

hormonal use

0.60 0.63 0.66

Nielsen et al.

(2014) [64]

UCPH, Nordic Bioscience, Biomediq,

RadboudUMC, Mayo Clinic

226C 442 Yes LRCV Age, BMI, menopause,

hormonal use

0.61 0.63

Li et al. (2014) [71] University of Chicago 67C 268 Yes BANNCV 0.70* 0.57 0.68

Karemore et al.

(2014) [90]

UCPH, RadboudUMC 245P 250 Yes kNNCV 0.59

Zheng et al.

(2015) [51]

University of Pennsylvania 106C 318 Yes LRCV 0.85* 0.59 0.86

Sun et al.

(2015) [53]

University of Texas, China Northeastern

University, University of Oklahoma, TTUHS,

Guiyang Medical University

141P 199 No SVMCV 0.73 Age, BMI, family history of

breast cancer, hormonal use,

age at first term pregnancy

0.77

Tan et al.

(2015) [77]

University of Texas, University of Oklahoma,

University of Pittsburgh

ANNCV age

812P 1084 No 0.71 0.78

Tan et al.

(2015) [78]

University of Oklahoma, University of

Pittsburgh

430P 440 No ANNCV [0.64, 0.73]

Predicting the risk of carrying a high-risk genetic mutation

Huo et al.

(2000) [80]

University of Chicago 15 143 No LDA [0.59, 0.82]

Huo et al.

(2000) [80]

University of Chicago 15 30 Yes LDA [0.53, 0.87]

Huo et al.

(2002) [55]

University of Chicago,

University of Pennsylvania

30 142 No LDA 0.91

Huo et al.

(2002) [55]

University of Chicago,

University of Pennsylvania

30 60 Yes LDA 0.92
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additional contribution to risk was found in models that in-

corporated breast density measures. Similar conclusions

were reported by Torres-Mejia et al. [72] who estimated

the same texture features and lacunarity, a measure of the

degree of structural variation in image intensities within the

breast, from prospectively collected data of 111 breast can-

cer cases and 3100 controls.

The promising results of these early studies were followed

by retrospective studies using more complex parenchymal

texture descriptors [61, 64, 73–76]. Wei et al. [73] investi-

gated the associations of breast cancer risk with run-length

features, using two different implementations of run-length

statistics: namely, the conventional approach for calculating

the runs of pixels in one direction and an extension for the

two-dimensional space [76]. The authors found that the

run-length measures calculated in the retroareolar region

of the breast could serve as an additional risk factor that

could not be explained by established breast cancer risk

factors (i.e., age, BMI, family history of breast cancer,

and number of previous biopsies) and breast density. A

mammographic texture resemblance (MTR) marker

based on multi-scale Gaussian features was proposed by

Nielsen et al. [61]. This marker demonstrated high case–

control discriminatory performance (AUC= 0.60–0.63) in

two independent cohorts within the Dutch screening pro-

gram [61] and the Mayo Mammography Health Study [61,

64], while performance was optimized by an aggregate

marker combining MTR with density measures (AUC=

0.66). Gaussian derivative features at multiple scales were

examined in a cross-sectional study with MLO-view film

mammograms of 245 cancer cases and 245 controls from

the Nijmegen risk-assessment study [74]. In this work, de-

rivative features were extracted using an anatomically ori-

ented breast coordinate system and, compared to breast

PD, demonstrated enhanced breast cancer prediction ability

(AUC= 0.63 versus 0.56). Finally, a preliminary study on

the dual-tree complex wavelet transform showed that wave-

let features alone may have value in risk assessment [75].

In an attempt to identify highly discriminative texture

descriptors from multiple feature groups and develop

optimal combinations that maximize the case–control

classification performance, research groups have also

explored comprehensive sets of multi-parametric fea-

tures reflecting various aspects of mammographic tex-

ture [51, 53, 56, 66, 77, 78]. Following an evaluation of

more than 1000 co-occurrence, run-length, Laws, wave-

let, and Fourier features in prior film mammograms of

246 cases and 522 controls, Manduca et al. [66] identi-

fied individual features which, when estimated at a

coarse scale of a single ROI covering the entire breast,

provided strong prediction for future breast cancer

(odds ratio per 1 SD = 1.36–1.50, AUC = 0.61–0.62). In

another retrospective study with 864 cancer cases and

418 controls, a three-step variable selection process

Table 3 Breast cancer prediction capacity of automated characterization of the parenchymal patterns (Continued)

Li et al. (2004) [54] University of Chicago,

University of Pennsylvania

30 60 Yes LDACV [0.69, 0.92]

Li et al. (2005) [81] University of Chicago 30 142 No ROCA [0.66, 0.86]

Li et al. (2005) [81] University of Chicago 30 60 Yes ROCA [0.67, 0.86]

Li et al. (2007) [82] University of Chicago 30 142 No ROCACV [0.74, 0.93]

Li et al. (2007) [82] University of Chicago 30 60 Yes ROCACV [0.77, 0.91]

Li et al. (2008) [83] University of Chicago 30 142 No ROCA 0.90

Li et al. (2008) [83] University of Chicago 30 60 Yes ROCA 0.89

Li et al. (2012) [84] University of Chicago 53 328 No BANNCV 0.82

Li et al. (2012) [84] University of Chicago 34 136 Yes BANNCV 0.81

Li et al. (2014) [71] University of Chicago 34 136 Yes BANNCV 0.81* 0.53 0.81

Gierach et al.

(2014) [85]

University of Chicago 137 100 No BANNCV 0.68 0.59 0.72

Gierach et al.

(2014) [85]

University of Chicago, NCI-NIH,

Washington Radiology Associates,

Genentech, USUHS, UCL, WRNMC,

Westat Inc.

126 89 Yes BANNCV 0.71 0.55 0.72

Area under the ROC curve (AUC) achieved by risk assessment models when fed with mammographic texture and/or density measures

IMPRS International Max Planck Research School for Optics and Imaging, Moffitt Moffitt Cancer Center and Research Institute, NCI-NIH National Cancer Institute,

National Institutes of Health, RadboudUMC Radboud University Nijmegen Medical Centre, TTUHS Texas Tech University Health Sciences, UCL University College

London, UCLA University of California at Los Angeles, USUHS Uniformed Services University of the Health Sciences, WRNMC Walter Reed National Military

Medical Center

Dataset: A cancer cases (Pprior unaffected images, Cimages from the contralateral, unaffected, breast at the time of cancer diagnosis) or other high-risk population

(i.e., BRCA1/2 carriers), B controls, m matched subgroups; Model: LDA Linear Discriminant Analysis, LR Logistic Regression, kNN k-nearest neighbors, BANN Bayesian

Artificial Neural Network, ANN Artificial Neural Network, ROCA Receiver Operating Characteristic Analysis. PD percent density. CVcross-validated models; $unadjusted

models; ^models adjusted for established risk factors; *statistically significant from $PD at < 0.05
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separated 46 highly discriminative features from a total

number of 470 features initially calculated [56]. When

fed to multivariable logistic regression models adjusted

for established breast cancer risk factors, these features

demonstrated an AUC of 0.79 and an odds ratio of

2.88, while the additional inclusion of breast PD did

not lead to any further performance improvement.

Promising results from rich feature sets were also re-

cently reported for digital mammograms. In a study with

CC-view digital mammograms of 141 cases and 199 con-

trols, a total number of 765 features were computed from

ROIs defined at multiple density scales [53]. From these

features, an optimal set of 12 features was selected and

yielded an AUC of 0.73 in separating the two study sub-

groups using a support vector machine classifier. Zheng et

al. [51] retrospectively analyzed MLO-view digital mam-

mograms of 106 cases and 318 controls, where 30 candi-

date features were extracted from multiple adjacent ROIs

covering the entire parenchyma. The authors showed a

collective discriminatory capacity of AUC = 0.85, with the

fractal dimension, run-length, co-occurrence, and gray-

level histogram features being more frequently selected

than local binary and edge-enhancing index features in

classification models. Furthermore, preliminary compari-

sons of the parenchymal patterns of estrogen-receptor

positive (ER+) and negative (ER–) cancer cases measured

with the same methodology [51] showed that subtype-

specific breast cancer risk assessment based on mammo-

graphic textures may also be feasible [79]. Finally, to assess

the combined discriminatory ability of texture analysis in

CC and MLO views, Tan et al. [78] designed an artificial

neural network model to fuse the features extracted from

the two views. Following an evaluation of 79 features

calculated from a single ROI, corresponding to either

the entire breast or the dense tissue areas of the breast,

on 430 cases and 440 controls, the highest performance

of the proposed fusion model (AUC = 0.73) was ob-

tained for the run-length features of the dense tissue.

The authors also demonstrated a classification perform-

ance of similar magnitude (AUC = 0.71) for the same

fusion model when applied on texture features of the

entire breast for a larger dataset of 821 cancer cases

and 1084 controls [77].

Assessing the risk of carrying a high-risk gene mutation

The potential of mammographic texture in breast can-

cer risk assessment has also been demonstrated in

studies with BRCA1/2 carriers, where texture features

from a single 25.6 × 25.6 mm2 retro-areolar ROI in CC

mammographic views were shown to predict a

woman’s risk of carrying this high-risk genetic muta-

tion. The first study addressing this topic extracted a

comprehensive feature set of grey-level intensity statis-

tics, co-occurrence features, and multi-scale texture

measures based on Fourier transform analysis [80]. In

film mammograms of 30 BRCA1/2 carriers and 142

low-risk women, most features demonstrated high in-

dividual discriminatory capacity (AUC > 0.68), while

the collective performance of the features that were

deemed significant in multivariable models raised

AUC values of 0.91 and 0.92 in the entire database and

in an age-matched subgroup, respectively [55]. Using

the same image dataset, the authors also showed a

promising individual classification performance for

structural measures such as edge frequency (AUC =

0.78) [81], for different implementations of the fractal

dimension (AUC = 0.74–0.93) [81, 82], and for power

law spectral analysis (AUC = 0.90) [83].

These results were recently replicated and validated in

datasets with digital mammograms [71, 84] and larger

numbers of high-risk women [71, 84, 85]. A similar de-

sign of texture analysis in the retroareolar breast region

combined with a Bayesian Artificial Neural Network

(BANN) for the classification task was applied to 1)

film mammograms of 137 mutation carriers and 100

low-risk women [85], and 2) digital mammograms of 53

mutation carriers, 75 women with unilateral cancer,

and 328 low-risk women [71, 84]. The first analysis

conferred a two-fold increase in the odds of predicting

BRCA1/2 mutation status, and an AUC of 0.68 for tex-

ture features alone and 0.72 for the features plus breast

PD [85]. In the second analysis, AUC values of 0.82 and

0.73 were obtained between mutation carriers and low-

risk women, and between unilateral cancer and low-risk

women, respectively [84]; these evaluation results were

also retained in age-matched subgroup analysis (0.81

and 0.70, respectively) [84] without any significant im-

provement from the inclusion of breast PD (0.81 and

0.68, respectively) [71].

Beyond established risk factors in breast cancer risk

assessment

A comparison of the evaluation results published to

date (Table 3), focusing primarily on cross-validated ex-

periments, suggests that more comprehensive sets of

multi-parametric texture features [51, 53, 54, 56, 71, 77, 84]

may be more effective in predicting breast cancer than

a single feature group. However, the literature lacks ex-

tensive comparative studies on the same datasets and

generalized conclusions should, therefore, be limited.

While the implementation of texture analysis, including

both the location and size of ROIs [51, 52, 54] and the

specific texture measures, appears to have an effect on

texture classification performance, all studies have con-

sistently shown the highly promising, independent role

of automated texture analysis in breast cancer risk as-

sessment. Specifically, parenchymal texture descriptors

have demonstrated a strong cross-validated ability in
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predicting both risk for breast cancer (0.58 ≤AUC ≤ 0.85)

and BRCA1/2 mutation status (0.53 ≤AUC ≤ 0.93). More-

over, texture performance has been shown to be either

comparable or significantly higher than the performance

of breast PD (0.51 ≤AUC ≤ 0.62 and 0.53 ≤AUC ≤ 0.59,

respectively), as reported in studies where texture and

density measures were comparatively evaluated on the

same datasets [51, 56, 61, 66, 71, 73–75, 85].

In addition, a number of related findings suggest that

texture analysis is able to provide complementary infor-

mation about a woman’s risk of developing breast can-

cer which cannot be captured by breast PD and other

established risk factors. Texture descriptors have been

weakly or moderately correlated with breast PD [55, 61,

64, 71–73, 85–87], and weakly correlated with risk fac-

tors as reflected in the Gail and Claus risk scores [80,

86]. In addition, texture descriptors deemed as strong

predictors of breast cancer retained significance when

breast PD, age, BMI, family history of breast cancer,

parity, age at first term pregnancy, number of previous

breast biopsies, menopause, and hormonal use, all

shown to be associated with breast cancer risk, were

simultaneously considered in classification models

(Table 3). Finally, with age-matched datasets or model

adjustments for age, most studies evaluating the cap-

acity of parenchymal texture features in risk assessment

have ruled out possible confounding due to differences

in age, a major breast cancer risk factor, thereby show-

ing a strong potential for computerized texture descrip-

tors in augmenting breast cancer risk assessment.

Future directions
Moving forward, experiments evaluating the relative

performance of different implementations of texture

analysis, using the same evaluation methodology (i.e.,

dataset and classification model), are necessary to de-

velop more robust and reproducible quantitative mam-

mographic phenotypes of breast cancer risk. Future

studies to test the incremental value added by comput-

erized textural measures in predicting breast cancer will

require: (a) the design of large age-matched datasets;

(b) the selection of an effective classification model,

where different previously used models (Table 3) could

be comparatively examined; (c) model adjustments to

rule out possible confounding due to differences in

major risk factors; and (d) validation of the classifica-

tion performance in independent datasets.

In an attempt to add an anatomical meaning in texture

analysis which may also give additional discrimination

power to feature classification, increasing attention is

currently given to the incorporation of breast anatomy

in texture analysis pipelines. Brandt et al. [74] first intro-

duced an anatomically oriented breast coordinate system

which allows for anatomical correspondences across

mammograms of the same woman or different women.

In preliminary analyses using the proposed coordinate

system, the authors have demonstrated that anatomy-

driven Gaussian derivative features are able to (a) effect-

ively separate cancer cases and controls [74], (b) quantify

the effect of hormone replacement therapy as a change

in the breast parenchymal patterns [88], and (c) demon-

strate specific regions of the breast parenchyma where

breast cancer risk is mainly expressed [89]. More re-

cently, Gastounioti et al. [90–92] showed that the dis-

criminatory capacity of texture descriptors is further

enhanced by an anatomy-driven polar grid for anatom-

ical breast sampling and a breast-anatomy-weighted tex-

ture signature which considers the spatial position and

the underlying tissue composition of individual ROIs to

summarize the parenchymal texture properties of the

breast.

Another emerging technology is deep learning [93],

which may prove a valuable addition in texture analysis

for breast cancer risk assessment [94–96]. Deep learning

involves automated learning, from raw image data, of

hierarchical representations useful for pattern detection

and classification, in a supervised mode via neural net-

works with multiple hidden layers or in an unsuper-

vised mode via autoencoders. The few available studies

which have applied deep learning in the particular field

show a promising role in risk scoring (AUC = 0.61–

0.65) [94, 96]. Further, preliminary comparisons against

two previously presented methodologies with hand-

crafted texture features [56, 64] suggest that it may be

better to “let the data speak” instead of modeling prior

assumptions [94]. Additional experimentation with

deep learning, as well as future comparisons with the

state-of-the-art texture analysis techniques, is war-

ranted to better explore the potential of this novel

technology.

Digital breast tomosynthesis (DBT), an emerging x-ray

technology [97] in which quasi three-dimensional (3D)

images are reconstructed from a limited number of low-

dose x-ray source projections [98, 99], is increasingly be-

ing implemented clinically due to improvements in sen-

sitivity and specificity compared to imaging with digital

mammography alone [100]. By imaging the breast in 3D,

DBT alleviates the effect of tissue superimposition, offer-

ing superior tissue visualization, which in turn may allow

for better characterization of the breast parenchyma

compared to two-dimensional mammography [86, 87].

The extension of the parenchymal texture analysis de-

scriptors for volumetric texture analysis in DBT is,

therefore, an important future challenge towards devel-

oping superior texture features which can optimize

image-driven breast cancer risk assessment.

Another challenging future step which would establish

the predictive value of texture analysis is the validation
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of parenchymal texture measures in prospectively col-

lected data. Large-scale studies involving multiple

screening centers, imaging machines, and image acqui-

sition settings are also of major importance towards

validating their predictive capacity and robustness to

heterogeneous image data [101]. Furthermore, the lit-

erature lacks large-scale longitudinal studies monitor-

ing longitudinal changes in automated parenchymal

texture descriptors over successive mammograms,

which could elucidate the mechanisms of breast can-

cer development [11] and the causal relations between

the texture risk scoring and breast cancer [102, 103].

Finally, crucial questions to be addressed in such rich

datasets are the causes of inter-woman variation in

mammographic parenchymal patterns [104, 105] and

in the relation of texture risk markers to the subse-

quent location and grading of tumors, disease mortal-

ity, and treatment effects [20, 21].

The valuable risk markers provided by parenchymal

texture analysis could also leverage the relatively new,

yet promising, paradigms of radiomics [106] and radio-

genomics [107] for breast cancer, aiming to convert

breast images into comprehensive measurable data and

to delve into the interaction between these data and gen-

etic variants. These novel approaches may pave the way

to revealing correlations with the genomic diversity

present in breast cancer, understanding how biological

processes are reflected in quantitative breast imaging

phenotypes, and defining novel clinical biomarkers or

biological surrogates [108–111], thus improving person-

alized breast cancer screening, monitoring, and treat-

ment selection.

Conclusions
Automated breast parenchymal texture analysis has the

potential to elucidate imaging phenotypes of breast can-

cer risk, which is valuable in accelerating the translation

of individualized risk stratification into routine breast

cancer screening and prevention strategies. Future work

addressing technical challenges in this field and large

prospective studies are expected to further enhance and

establish the predictive value of parenchymal texture

measures for inclusion in breast cancer risk assessment

models in clinical practice.
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