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Abstract

Long chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA), are 

essential for normal vision and neurodevelopment. DHA accretion in utero occurs primarily in the 

last trimester of pregnancy to support rapid growth and brain development. Premature infants, 

born before this process is complete, are relatively deficient in this essential fatty acid. Very low 

birth weight (VLBW) infants remain deficient for a long period of time due to ineffective 

conversion from precursor fatty acids, lower fat stores, and a limited nutritional provision of DHA 

after birth. In addition to long- term visual and neurodevelopmental risks, VLBW infants have 

significant morbidity and mortality from diseases specific to premature birth, including 

bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), and retinopathy of 

prematurity (ROP). There is increasing evidence that DHA has protective benefits against these 

disease states. The aim of this article is to identify the unique needs of premature infants, review 

the current recommendations for LCPUFA provision in infants, and discuss the caveats and 

innovative new ways to overcome the DHA deficiency through postnatal supplementation, with 

the long term goal of improving morbidity and mortality in this at risk population.
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Introduction

Long chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) 

and arachidonic acid (ARA), are essential for normal growth, vision, neurodevelopment and 

overall health. In utero LCPUFA accretion occurs primarily during the last trimester of 

pregnancy, when maternal levels are high and growth and brain development are rapid. 

Premature infants born before this process is complete are relatively deficient in DHA, the 

most variable of these essential LCPUFAs.(1) Additionally, DHA status in very low birth 

weight infants (VLBWs) remains low due to inadequate fat stores, ineffective conversion 

from precursor fatty acids and a limited nutritional supply.(2) Evidence demonstrates that 

LCPUFA supplementation improves neurodevelopmental and visual outcomes in this high 

risk population.(3–15) New evidence is emerging to suggest that the benefits of DHA 

supplementation extend beyond the brain. In vitro, animal model, and a few human studies 

demonstrate a role for improved LCPUFA provision in prevention of diseases specific to 

premature infants, including bronchopulmonary dysplasia (BPD)(11, 16–22), necrotizing 

enterocolitis (NEC)(23–27), and retinopathy of prematurity (ROP).(28–34) The purpose of 

this review article is to encourage further discussion about the recommended provision of 

DHA specifically for premature infants and the need for further study of specific dose, 

timing, safety and benefits in this high risk population.

The Role of Essential LCPUFAs

Essential LCPUFAs are important components of the phospholipid bi-layer of cell 

membranes, contributing to structural integrity and function throughout the body. In vitro 

and animal studies demonstrate their many functions. In the brain and retina, they have 

highly specialized functional roles making them important for normal signal transduction, 

neurotransmission and neurogenesis. In tissues throughout the body, they are released from 

membranes by phospholipases for conversion to important hormones, eicosanoids, lipoxins 

and resolvins that mediate inflammation, immune function, platelet aggregation and lipid 

homeostasis. They also serve as local signaling molecules and transcription regulators of 

genes involved in inflammation, development and metabolism. Their ubiquitous 

arrangement and multifaceted functionality make LCPUFAs extremely important for normal 

growth, development, and overall health.

Humans can synthesize saturated and monounsaturated FAs but lack the enzymes required 

to synthesize omega-3 and omega-6 LCPUFAs de novo. Thus, they are essential and must 

be taken in through diet. DHA and ARA (22- and 20-carbon LCPUFAs, respectively) may 

be obtained directly through the diet – oily fish for DHA, meat and eggs for ARA - or from 

their 18-carbon precursor FAs, α-linolenic acid (ALA) and linoleic acid (LA).(Figure 1.) 

The most common essential FA found in the Westernized diet is LA, an omega-6 FA 
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abundant in vegetable oils, nuts and seeds. LA can be converted to the ARA, also an 

omega-6 FA. ARA is found throughout the body in phospholipid membranes and upon 

activation serves as a precursor to prostaglandins, thromboxane and leukotrienes. The 

nutritionally less abundant omega-3 FA precursor is ALA, found in flaxseed, canola, 

walnuts and soy. ALA can be converted to eicosapentaenoic acid (EPA) and DHA, but only 

in small amounts. These omega-3 LCPUFAs are rapidly and preferentially incorporated into 

cell membranes where they serve important functional and structural roles in the brain and 

retina and have anti-inflammatory and metabolic signaling functions in other tissues. An 

appropriate balance of these pathways is necessary for normal immune function and clotting, 

however, in excess leads to inflammation.

The omega-6 and omega-3 FA families are not interchangeable, making intake from both 

groups essential. Additionally, the conversion to ARA and DHA from their respective 

precursors is through the same rate limiting and inefficient desaturase enzyme in the liver. 

Due to the pervasive lack of omega-3 in the typical Western diet, there is an increasing 

dietary imbalance of omega-6 to omega-3 LCPUFA which can induce a pro-inflammatory 

state, attributing to multiple disease states. In a DHA deficit, the specialized phospholipid 

membranes in the retina and brain can become replaced with substitute FAs altering function 

which may affect memory, attention and visual processing. Unfortunately, a typical 

Westernized diet contains an abundance of omega-6 with very little omega-3 FAs, driving 

this imbalance bias.

The DHA Gap of Prematurity

Because DHA cannot be synthesized de novo, the developing fetus is dependent on a 

maternal source. Most DHA accumulation occurs during the third trimester of pregnancy 

when growth and brain development are rapid.(35) Hormonal changes during pregnancy 

induce a hyperlipidemic state, increasing the availability of all circulating lipids; estrogen 

further increases conversion of precursor ALA to DHA, sustaining preferential uptake. FA 

transport across the placenta is both passive and active. Passive transport is directly 

dependent on maternal blood levels, while active transport occurs through FA transport 

proteins which are up-regulated during pregnancy to preferentially transport LCPUFAs to 

the fetal blood stream.

Infants born before this process is complete have interruption in normal LCPUFA accretion. 

Indeed, preterm infants have lower DHA levels than their term peers.(1) Furthermore, in 

very preterm infants (<28 weeks gestation) this deficit persists or worsens due to decreased 

adipose stores, a limited ability to convert precursor ALA to DHA and poor nutritional 

provision of preformed LCPUFA.(16) Relying on dietary intake to overcome this deficit is 

not plausible because this population often does not reach full enteral feedings until after 

several weeks of age, forcing them to rely heavily on parenteral nutrition early in life. 

Commercially available intravenous lipid emulsions provide essential precursor FAs only, 

rather than preformed DHA. This formulation may be sufficient to avoid essential FA 

deficiency in adults, but is inadequate to maintain DHA levels in very low birth weight 

(VLBW) infants due to decreased desaturase conversion and increased demands during 

rapid growth and neurodevelopment. These factors are unique to premature infants and 
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contribute to persistently low DHA levels, especially if complications of prematurity or 

illness further delay the advancement of feedings.

Even after full enteral feedings are reached, nutritional options available in the neonatal 

intensive care unit (NICU) provide extremely variable daily allowances of DHA that do not 

account for the relative deficits of premature infants. Calculated DHA provision for various 

neonatal diets is summarized in Table 1. Mother’s own milk is the recommended diet for all 

infants and provides both ARA and DHA. However, there is a wide variation in DHA 

content (from 0.06–1.4%) based on regional, individual dietary and lactation differences.(36, 

37) Milk from lactating mothers who deliver prematurely is higher in DHA than those who 

deliver at term.(38) Various human milk fortifiers that are routinely added to support the 

needs of premature infants also affect LCPUFA provision.(39) Alternatives to mother’s own 

milk include donor human milk and commercially available infant formula. Donor human 

milk is a source of LCPUFA. Pasteurization does not alter DHA concentrations (40) 

however, the overall fat content is typically lower (41) and DHA provision is variable 

between banks and may be very low.(40) Infant formula is now routinely supplemented with 

DHA at levels similar to the world-wide average breast milk levels (0.2–0.35 wt:wt%) and 

ARA at higher levels (0.4–0.6 wt:wt%). Despite supplementation, neither breast milk, nor 

formula, which offers a calculated range of 3–23 mg/day after full feedings are reached, can 

match the estimated uterine accretion rate of 42–75 mg/day of DHA.(2, 4, 35) Additionally, 

only 80% of DHA given enterally is absorbed in the intestine,(2) and feeding practices in the 

NICU may further decrease DHA provision. Continuous drip feedings through a gavage 

tube markedly decreases fat provision,(42) presumably as lipids adhere to the plastic tubing. 

Given these factors, enteral doses may need to be closer to 65 mg/d which approximates 1–

1.5 wt:wt% of FAs in human milk or formula to meet the needs of premature infants.(2) For 

these reasons, a critical reevaluation of the proper dose and mechanism of delivery to 

overcome the “DHA gap of prematurity” is critical to support the normal health and 

development of this at risk population.(3–6, 8, 11)

The DHA Gap, Vision and Neurodevelopment

In 1992, Lucas reported findings that breastfed infants had a higher IQ than formula fed 

infants, which stimulated much interest in the importance of nutrition for visual and 

cognitive development.(43) Agostoni found a correlation between the fat content in breast 

milk and improved neurodevelopment at 12 months of age.(1) At the time, DHA was one 

important nutrient found in breast milk, but not formula, and animal studies supported the 

important structural and functional role in vision and brain development. A flurry of formula 

supplementation studies followed for term and then preterm babies. Findings from these 

studies support, but do not demonstrate a conclusive benefit from LCPUFA supplementation 

for term infants.(44) As expected from current knowledge about the “DHA gap of 

prematurity”, subsets of premature infants demonstrate improvements in visual and 

neurodevelopmental outcomes.(3–5, 8, 10, 11, 13) Study results are mixed and dependent 

upon diet variability, regional differences, dose, timing, and sensitivity of outcome 

measurements for each particular study as illustrated in Table 2 and 3. Overall most experts 

in the field support the need to adequately remedy the DHA deficit in this most at-risk 

population.
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Studying DHA related neurodevelopmental outcomes in infants is fraught with difficulty. 

Short term outcomes have typically been measured by the Bayley’s Scales of Infant 

Development (BSID) including the Mental Developmental Index (MDI) and Psychomotor 

Developmental Index (PDI). This is a well standardized and validated test of overall infant 

development that is frequently utilized in neonatal follow up clinics. However, critics 

suggest this test may not be a sensitive indicator of hippocampal or specific learning 

dysfunction including difficulty with perceptual organization, distractibility, processing 

speed and inattention at school age, which are common in very premature infants (45) and 

are improved with increased DHA status.(13, 46) Similarly, visual acuity tests that are 

administered at a very young age (ranging from Teller cards to Visual Evoked Potentials 

(VEP), have similar sensitivity and specificity variability. Testing at school age may be a 

better indicator but is costly and often associated with loss to follow up, confounding and 

bias factors that may be introduced after infancy.

Although meta-analysis does not conclusively demonstrate a significant effect of LCPUFA 

formula supplementation on infant cognition (47), this conclusion should be cautiously 

considered, especially for premature infants. Combining the results of various formula 

supplementation studies is fraught with limitations because of dose-related variability that 

was inadvertently introduced with timing and administration methods. Although there were 

many well-performed, randomized controlled trials, LCPUFA provision in intervention 

formulas was variable between the studies (DHA 0.2–1.0% of total FAs). Many studies were 

designed to provide the amount of DHA found in world-wide term human milk (0.32%). As 

previously discussed, this amount may meet the needs of healthy, full-term babies but 

cannot begin to meet the deficit seen in very premature infants. Indeed, preterm human milk 

typically has higher DHA content then term human milk to support the infant’s needs.(38) 

Additionally, DHA supplementation through formula is reliant on enteral intake which is 

widely variable in very premature infants. In our institution, the average length of time for 

an infant born at ≤28 weeks gestation to reach full enteral feedings is 29.5 days (Range: 14–

42 days). Thus, the length of time that VLBWs receive little to no enteral, preformed DHA, 

may introduce significant bias. Breastfeeding introduces even more confounding because 

extremely variable levels of DHA are present in human milk dependent on regional, dietary, 

lactation and storage factors.(36, 39) Many of the formula supplementation studies allowed 

breast feeding even in the “control group” that was getting non-supplemented formula, and 

breast milk FA levels are rarely reported in such studies. In fact, the most convincing study 

demonstrating DHA related improvements in both the MDI and PDI required that 80% or 

more of the infant’s diet be either supplemented or non-supplemented formula rather than 

breast milk.(3) Thus, with formula supplementation studies, “dosing” is difficult to 

accurately ascertain, and the provision may have been too low and started too late for the 

preterm population.

Despite limitations, some significant visual and neurodevelopmental benefits have been 

demonstrated from improved DHA provision in preterm infants (3–5, 8–11, 13) especially 

using more specific learning assessment tools or higher and more reliable supplementation 

methods. Tanaka, et al. demonstrated that breastfed premature infants had significantly 

higher DHA blood levels that directly correlated to improved attention, impulsivity and 

processing speed at 5 years of age.(48) Henriksen, et al showed that VLBW infants 
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supplemented with 32 mg DHA and 31 mg ARA in addition to DHA containing breast milk 

(0.7%) led to better problem solving and recognition memory by event-related potentials at 

6 months of age. (4) Further follow up of this cohort revealed improved attention at 20 

months of age.(13) Although formula supplementation studies have been less convincing 

(12, 47) because of the aforementioned limitations, subsets of premature infants fed formula 

with added DHA and ARA had better neurocognitive function, visual attention, visual 

evoked response time and visual acuity than premature infants fed non-supplemented 

formula (3, 5–8, 10–12) and effects persisted later in life.(9)

The DHA Gap and Additional Health Risks of Prematurity

The beneficial effects of DHA may go well beyond building better brains. VLBW infants 

are at a unique risk for inflammatory mediated diseases that dramatically increase the 

morbidity and mortality of prematurity. There is growing evidence that DHA 

supplementation decreases the incidence and severity of several health risks including NEC, 

BPD and ROP. The optimal balance of LCPUFAs may also decrease the risk of late onset 

sepsis (16) and in animal models may improve bone health.(49)

Necrotizing Enterocolitis (NEC) is an inflammatory bowel disease that threatens the life 

and long-term health of 5–10% of VLBW infants. NEC carries a 15–30% mortality for these 

tiny infants and those who survive are at risk for recurrent strictures and bowel obstruction, 

mal absorption, failure to thrive from short bowel syndrome, parenteral nutrition associated 

liver disease and central line infections. In a randomized controlled trial, Carlson showed 

that premature infants who were fed DHA supplemented formula had a decreased incidence 

of NEC compared to peers who were fed unsupplemented formula.(27) Although this was 

not a primary outcome measure of the study, it sparked interest in the mechanism for 

protection. Since that time, multiple animal models of NEC have demonstrated LCPUFA 

modulated reduction in both incidence and severity of bowel disease through multiple 

pathways associated with intestinal inflammation and necrosis.(23–26) The protective 

effects of DHA are multifactorial. Local cell membrane phospholipids play a structural role 

in protecting the integrity of intestinal cells and alterations in LCPUFA content is important 

in bacterial translocation and intracellular fluid shifts associated with cell stress signaling 

that initiates NEC.(23) LCPUFAs in phospholipid membranes also serve as precursor 

molecules for eicosanoid production; they are integral in modulating inflammatory cell 

signaling, gene expression and transcription of key regulators in inflammatory and 

endotoxin translocation.(23–26) Despite promising animal studies, results are mixed and 

meta-analyses in humans have not confirmed the protective benefit of DHA against NEC. In 

part, this may also be due to limited sample sizes, variable timing and dosing of DHA 

supplementation and similar confounding as described above.(12) Overall, evidence is 

increasing to support the benefits of DHA in NEC protection.

Bronchopulmonary dysplasia (BPD) is a significant lung disease that complicates 

prematurity due to arrested alveolarization in developing lungs exposed to mechanical 

ventilation, oxygen, and other inflammatory mediators before normal development is 

complete. BPD, as defined by an ongoing oxygen requirement at 36 weeks adjusted 

gestational age, affects up to 32% of premature babies and 50% of VLBW infants. Many 
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animal studies reveal mechanisms by which omega-3 LCPUFA may protect against chronic 

inflammatory lung disease in premature infants.(17–22) In addition to previously mentioned 

anti-inflammatory mechanisms, additional protective properties in the lung are mediated 

through the PPAR pathways, of which DHA is a known ligand.(17, 19, 21) PPAR agonists 

accelerate lung maturation and prevent hyperoxia induced lung injury by stimulating 

development of Type II, surfactant producing pneumocytes and vasoproliferation in the 

lung.(21) Transgenic mice able to convert omega-6 to omega-3 LCPUFAs have markedly 

decreased endotoxin-induced lung inflammation.(22) Similarly, omega-3 LCPUFA 

supplementation reduces endotoxin- and Pseudomonas-induced lung injury through 

modification of both pro- and anti-inflammatory molecules related to BPD.(17, 18) These 

anti-inflammatory properties are associated with improved bacterial clearance, reduced lung 

injury, and increased survival after infection.(17) Even structural alveolar changes found in 

hyperoxia exposed and intrauterine growth restricted (IUGR) mouse pups are diminished 

through maternal supplementation with DHA.(19, 20) This evidence suggests beneficial 

DHA modulation of early lung development despite stressors known to induce defective 

alveolarization that translates to less BPD in premature infants.

A retrospective analysis by Martin demonstrated that premature infants less than 30 weeks 

GA with reduced blood DHA levels had a 2.5 fold increased risk of chronic lung disease.

(16) Furthermore, a blinded, multi-center, controlled trial randomized premature infants to 

receive “standard” (through routine feeding) or “high dose” DHA with breast milk 

concentrations of ≥ 1 wt:wt% of total FA content (through maternal supplementation with 

500 mg DHA-rich tuna oil capsules). Overall, VLBW infants weighing <1250 g at birth, and 

all preterm male infants (including those over 1250 g at birth), who received the “high dose” 

DHA feedings had significantly less BPD.(50) Finding additional innovative ways to 

administer DHA to infants on early mechanical ventilation or oxygen exposure during 

critical periods of pulmonary development may further reduce lung disease in this at risk 

population.

Retinopathy of Prematurity (ROP), caused by abnormal vascular development of the 

retina, is the leading cause of visual impairment and blindness in premature infants. There 

are various factors that precipitate ROP at two critical stages of retinal development. 

Premature infants are born into a state of relative hyperoxia compared to fetuses still 

developing in utero. This oxidative stress down regulates vascular endothelial growth factor 

which can precipitate obliteration of the developing microvasculature in the retina. 

Eventually, this down regulation of vessels, alongside increasing metabolic demand causes a 

relative hypoxic state with overcompensation of angiogenic hormones and a second phase of 

rapid neovascularization. The abnormal vascular growth in this second stage may invade the 

vitreous placing traction on the retina.

DHA supplementation decreases the severity of ROP in VLBW infants.(29) The retina 

contains the highest concentration of DHA of all tissues, where it incites cytoprotective, 

angiogenic regulation and neuroprotective mechanisms.(28) Maternal supplementation with 

omega-3 LCPUFA demonstrates a decrease in both the primary oxygen-induced vaso-

obliteration and the secondary neovascularization abnormalities associated with oxygen 

induced retinopathy in nursing mouse pups.(31, 32) Preventative effects are, in part, 
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mediated through increased production of neuroprotectins and resolvins which diminish the 

vasoconstrictive effects of thromboxane A2 (a platelet ARA metabolite) and modulate 

excessive neovascularization in the second stage of ROP development.(30) Recent studies 

translate the protective effects of omega-3 LCPUFAs against ROP in VLBW infants.(29, 33, 

34) Two recent prospective, randomized trials showed that premature infants weighing less 

than 1250 g who received intravenous fish-oil containing emulsion rather than a 

conventional parenteral lipid source in the first days of life had a lower incidence (34) and 

significantly decreased severity of ROP.(33)

Current Dietary Provision of DHA for Infants

The dietary provision of lipids for infants is extremely important due to the rapid growth and 

development that occurs during the first year of life. Breast milk is the optimal nutrition for 

all infants and contains all essential FAs, including preformed DHA. Because DHA levels 

found in human milk are dependent upon maternal intake and blood levels, the current 

consensus by experts in the field is that pregnant and lactating women should receive at least 

200 mg/day of DHA through diet or a safe alternative supplement.(51) This 

recommendation is supported by the World Association of Perinatal Medicine, the Early 

Nutrition Academy, and the Child Health Foundation. The consensus group also 

recommends that if formula is substituted, it should contain between 0.2–0.5% of total FAs 

as DHA and an equal or greater amount of ARA to support infant growth and development.

(51) Many formula supplementation studies show that LCPUFA blood levels do not reach 

those of breastfed infants with the addition of precursor FAs alone (i.e., ALA and LA)(52), 

and the addition of only DHA and not ARA to formulas may be associated with a decreased 

growth rate.(3)

Recommendations by the Child Health Foundation task force established the importance of 

dietary LCPUFA provision for infants and prompted the addition of DHA and ARA to 

commercialized infant formulas. However, the optimal daily DHA intake is yet unknown. 

Using the average breast milk content as the standard dietary provision of LCPUFA for all 

infants is problematic because DHA content in human milk varies a great deal. A meta-

analysis including 65 studies and 2474 women around the world found the mean level of 

DHA to be 0.32 + 0.22% (range: 0.06–1.4%, median 0.26%)(36). Studies demonstrate that 

DHA concentration varies with maternal dietary fish intake (37), socioeconomic status (53) 

and dietary supplementation.(54) LCPUFA levels also vary with duration of breastfeeding 

(55), freezing/storage (56) and between preterm and term milk (38). Overall, US women 

tend to have DHA levels below the world wide mean, presumably due to their typically low 

fish intake.(36) Additionally, breast milk is designed to meet the needs of a normal term 

infant, but may not account for needs at earlier developmental time points or to make up for 

relative deficiencies noted in newborns at-risk for deficiency (premature, small for 

gestational age, infants born to diabetic mothers).(1, 2, 57, 58)

Overcoming the DHA Gap of Prematurity

Currently, LCPUFAs are provided to premature infants through infant formula or human 

milk fortifier supplements. This content appears to meet the routine needs of term infants, 
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but is not adequate to remedy the DHA deficit found in premature infants. This may be the 

reason outcome studies show more conclusive benefit with DHA provision at a higher range 

or supplementation in addition to dietary sources.(4, 11) Formulas supplemented with an 

algal DHA source have been shown to be safe and well-tolerated, but a higher DHA dose 

(>0.32%) may be necessary to correct the relative deficiency and to optimize the benefits for 

VLBW infants.

A relatively new strategy for increasing DHA provision to premature infants is through its 

addition to commercialized human milk fortifiers used to increase calories, protein and 

mineral content of human milk and meet the needs of VLBW infants. Until 34 to 35 weeks 

gestation, when babies develop a coordinated suck and swallow, they are typically given 

enteral feedings through a feeding tube. Until that time, mothers pump and freeze their milk 

which is then thawed and fortified with human milk fortifier for feedings. With the growing 

focus on DHA, some fortifiers have now added DHA in an attempt to meet the needs of 

VLBW infants. This unique dosing method provides a higher daily DHA dose, but still 

requires establishment of full enteral feedings and is not uniform due to widely variable 

DHA levels in mother’s milk that may be further altered by freezing and storing.

To date, no DHA supplementation study has attempted to “normalize” the DHA status of 

preterm infants throughout the critical first weeks of postnatal development (i.e., achieve 

levels found in term babies). The route and dose provided through either infant formula or 

breast milk with fortifier relies on the variable ability of the infant’s gastrointestinal system 

to handle full enteral feedings. Thus, this approach is unreliable for providing sufficient 

DHA for catch up. Many VLBWs are not fed completely by enteral route for several weeks 

or longer, and routinely available intravenous lipids do not contain preformed omega-3 FAs. 

Due to these factors, the average accumulation of DHA during the first month of life in a 

very preterm infant is roughly 50% of the expected in utero accretion.(2) New parenteral 

products are being developed to provide improved LCPUFA balance by IV route until full 

enteral provision can be accomplished. Investigated results of parenteral interventions are 

highly anticipated. An alternative approach could be the direct enteral provision of DHA, 

independent of diet. This potentially cost-effective method would allow early intervention 

even before the infant reaches full feedings or fortification. Daily enteral dosing can be 

easily adjusted, is independent of the need for invasive intravenous access and may be 

continued beyond parenteral nutrition needs. Although there may be benefits to either 

parenteral or enteral supplementation, careful evaluation of potential adverse consequences 

or unintended alterations to the balance of the omega-6: omega-3 ratio will be required.

The need for supplemental DHA in the premature infant is clear. VLBW infants rapidly 

become and remain DHA deficient for an extended period of time due to ineffective 

conversion from precursor fatty acids, lower fat stores, and a limited nutritional provision of 

DHA after birth. Optimizing LCPUFA provision postnatally may not only improve vision 

and neurodevelopment in VLBW infants, but may also reduce the morbidity and mortality 

from BPD, NEC, and ROP.
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Figure 1. 
Omega-3 and Omega-6 long-chain polyunsaturated fatty acid synthesis from precursor 

essential fatty acids.
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Table 1

DHA Provision from Various Neonatal Nutrition Options and estimated in utero accretion*

In utero accretion* 42 mg/d

20 kcal/oz 22 kcal/oz 24 kcal/oz 26 kcal/oz

Worldwide human milk** (w/unsupplemented HMF fortifier) 23.0 mg/d 21.0 mg/d 19.2 mg/d 17.7 mg/d

North American human milk**(w/unsupplemented HMF 
fortifier)

10.1 mg/d 9.2 mg/d 8.4 mg/d 7.7 mg/d

Pasteurized donor human milk† (w/unsupplemented HMF 
fortifier)

4.2 mg/d 3.8 mg/d 3.4 mg/d 3.2 mg/d

DHA supplemented liquid HMF‡ 0 mg/d 8.2 mg/d additional 13.8 mg/d additional NA

Term formula҂ 17.7 mg/d NA NA NA

Preterm formula҂ NA 19.7 mg/d 20.4 mg/d NA

HMF, human milk fortifier; DHA, docosahexaenoic acid; NA, not applicable

The calculated daily DHA provision is based on nutritional provision at a full feeding goal of 120 kcal/kg/d which is 180 ml/kg/d of 20 kcal/oz, 
164 ml/kg/d of 22 kcal/oz, 150 ml/kg/d of 24 kcal/oz or 138 ml/kg/d of 26 kcal/oz nutrition. Estimated provision does not account for intestinal 
absorption (80%) or continuous drip feedings which further decreases availability.(2, 42)

*
Peak in utero accretion rate in the last 5 weeks of pregnancy.(35)

**
Based on an average of 4 g/100 ml fat content, a worldwide mean DHA content of 0.32 wt:wt% and a North American mean DHA content of 

0.14 wt:wt% in mother’s own milk.(36)

†
Based on lower fat content of 3.2 g/100 ml (41) and mean DHA content of 0.073%(40) in pasteurized donor human milk of Midwestern mothers.

‡
Enfamil Human Milk Fortifier Acidified Liquid® has 3 mg DHA per 5 ml vial to be mixed 1 vial with 50 ml of human milk to make 55 ml of 22 

kcal/oz feeding (3 mg/DHA) or 2 vials with 50 ml of human milk to make 60 ml of 24 kcal/oz feeding (6 mg DHA).

҂
Term formula represented by Enfamil Lipil®, Preterm formula 22 kcal/oz by Enfacare Lipil® and 24 kcal/oz preterm formula by Special Care 

Formula® as ready to feed product.
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Table 2

DHA intervention studies and neurodevelopmental outcomes in premature infants

Reference Intervention Population Outcome

O’Connor-2001 (5)
n=470

0.3% DHA to term
0.2% to 1 year

GA:<33 weeks
BW: 750–1800 g

9 points higher on PDI in <1250 g at 12 
months

Fewtrell-2004 (8)
n=238

0.5% to 9 months GA 25–34 weeks
BW:<2000 g

9 points higher MDI in boys at 18 
months

Isaacs-2011 (9)
n=107

Ongoing follow up at 10 years Improved verbal IQ*, full scale IQ*, 
vocabulary*, similarity* and word- pair 
learning scores‡ in formula fed only 
infants

Fang-2005 (10)
n=28

0.05% DHA for 25 weeks GA: 30–37 weeks 7 point higher MDI and 4 point higher 
PDI at 6 months
11 point higher MDI and 8 point higher 
PDI at 12 months

Clandinin-2005 (3)
n=361

0.3% to 12 months GA:<36 weeks 7 points higher PDI
5–10 points higher MDI at 18 months

Makrides-2009 (11)
n=657

1% to term vs. 0.3% GA:<33 weeks 4–5 points higher MDI in <1250 g and all 
girls

Smithers-2010 (12)
n=128/125

Ongoing follow up at 26 mo/3–5 yr No difference in communication (MCDI) 
at 26 mo. or behavior (SDQ and STSC) 
by 3–5 years

Henriksen-2008 (4)
n=141

32 mg DHA and 31 mg ARA/100 ml 
breast milk per day for average 63 
days

BW:<1500 g receiving 
breast milk (mother’s 
or donor)

Improved Ages and Stages problem 
solving scores at 6 months

Westerburg-2011 (13)
n=92

Ongoing follow up at 20 mo Improved free-play Duration of Focused 
Attention & Summary Attention Rating 
Score at 20 months

Van Wezel-Meijler-2002 (14)
n=42

0.34% DHA/0.68% ARA GA: <34 weeks
BW: <1750 g receiving 
formula only

No difference in MRI myelination scores 
at 3 and 6 mo. or MDI/PDI at 3, 6, 12 
and 24 months

Carlson-1996 (6)
n=59

0.2% DHA/0.6% ARA for 2 months BW: 747 g-1245 g Improved visual attention at 12 months 
by the Fagan Test of Infant Intelligence

DHA, Docosahexaenoic acid; ARA, Arachidonic acid; GA, Gestational age; BW, Birth weight; IQ, Intelligence quotient; PDI, Bayley’s Scale of 
Infant Development – Psychomotor Developmental Index; MDI, Bayley Scale of Infant Development – Mental Developmental Index; MCDI, 
MacArthur Communicative Development Inventory; SDQ, Strengths and Difficulties Questionnaire; STSC, Short Temperament Scale for Children

*
Wechsler Abbreviated Scale of Intelligence

‡
Children’s Memory Scale (CMS) word paired scores, a test of hippocampal function
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Table 3

DHA intervention studies and visual outcomes in premature infants

Reference Intervention Population Visual Test Outcome

Birch-1992 (7)
n=73

1% DHA for 4 months BW:1000–1500 g ERG/VEP
Teller cards

ERG and VEP better at 3 weeks, VEP improved at 4 
months

O’Connor-2001 (5)
n=470

0.3% DHA to term
0.2% to 1 year

GA: <33 weeks
BW: 750–1800 g

VEP
Teller cards

VEP better at 6 months

Carlson-1993 (15)
n=67

0.5% DHA BW: 725–1400 g Teller cards Better at 2 and 4, but not different at 6,9,12 months

Carlson-1993 (15)
n=67

0.2% DHA, 0.3% EPA BW: 748–1398 g Teller cards Better at 2 and 4, but not different at 6,9,12 months

DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic acid; GA, Gestational age; BW, Birth weight; ERG, Electroretinography; VEP, Visual 
Evoked Potential
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