
Beyond ‘Caveman Communities’:

Hubs and Spokes for Graph Compression and Mining

U Kang and Christos Faloutsos

Carnegie Mellon University

{ukang, christos}@cs.cmu.edu

Abstract—Given a real world graph, how should we lay-
out its edges? How can we compress it? These questions are
closely related, and the typical approach so far is to find clique-
like communities, like the ‘cavemen graph’, and compress
them. We show that the block-diagonal mental image of the
‘cavemen graph’ is the wrong paradigm, in full agreement
with earlier results that real world graphs have no good cuts.
Instead, we propose to envision graphs as a collection of hubs
connecting spokes, with super-hubs connecting the hubs, and
so on, recursively.

Based on the idea, we propose the SLASHBURN method
(burn the hubs, and slash the remaining graph into smaller
connected components). Our view point has several advantages:
(a) it avoids the ‘no good cuts’ problem, (b) it gives better
compression, and (c) it leads to faster execution times for
matrix-vector operations, which are the back-bone of most
graph processing tools.

Experimental results show that our SLASHBURN method
consistently outperforms other methods on all datasets, giving
good compression and faster running time.

Keywords-Graph Compression, Graph Mining, Hubs and
Spokes

I. INTRODUCTION

How can we compress graphs efficiently? How can we

find communities in graphs? The two questions are closely

related: if we find good communities, then we can compress

the graph well since the nodes in the same community

have redundancies(e.g. similar neighborhood) which help us

shrink the size of the data (and thus, also shrink the I/O and

communication costs for graph processing). Similarly, good

compression implies good communities. The traditional re-

search focus was on finding homogeneous regions in the

graph so that nodes inside a region are tightly connected to

each other than to nodes in other regions. In other words,

the focus was to search for ‘caveman communities’ where

a person in a cave knows others in the same cave very

well, while knows very little about persons in different

caves as shown in Figure 1(a). In terms of the adjacency

matrix, the goal was to find an ordering of nodes so that the

adjacency matrix is close to block-diagonal, containing more

‘square’ blocks as in Figure 1(b). Spectral clustering [1],

[2], co-clustering [3], cross-associations [4], and shingle-

ordering [5] are typical examples for such approaches.

However, real world graphs are much more complicated

and inter-connected than caveman graphs. It is well known

that most real world graphs follow power-law degree distri-

butions with few ‘hub’ nodes having very high degrees and

majority of the nodes having low degrees [6]. These hub

nodes break the assumption of caveman-like communities

since the hubs are well connected to most of the nodes in

graphs, effectively combining all the caves into a huge cave.

Thus, it is not surprising that well defined communities in

real world networks are hard to find [7].

In this paper, we propose a novel approach to finding

communities and compressions in graphs. Our approach,

called SLASHBURN, is to exploit the hubs and the neigh-

bors(‘spokes’) of the hubs to define an alternative commu-

nity different from the traditional community. SLASHBURN

is based on the observation that real world graphs are easily

disconnected by hubs, or high degree nodes: removing hubs

from a graph creates many small disconnected components,

and the remaining giant connected component is substan-

tially smaller than the original graph. The communities

defined using hubs and spokes correspond to skinny blocks

in an adjacency matrix as shown in Figure 1(d), in contrast

to the square blocks in caveman communities as shown in

Figure 1(b). We show that these hubs and spokes can be

carefully ordered to get a compact representation of the

adjacency matrix, which in turn leads to good compression.

Our contributions are the following:

1) Paradigm shift. Instead of looking for near-cliques

(‘caves’), we look for hubs and spokes for a good

graph compression. Our approach is much more suit-

able for real world, power-law graphs like social

networks.

2) Compression. We show that our method gives good

compression results when applied on real world

graphs, consistently outperforming other methods on

all datasets.

3) Speed. Our method boosts the performance of matrix-

vector multiplication of graph adjacency matrices,

which is the building block for various algorithms like

PageRank, connected components, etc.

The rest of the paper is organized as follows. Section II

precisely describes the problem and our proposed method

for laying out edges for better compressing graphs. We give

experimental results in Section III, showing the compression



(a) Caveman graph C (b) Adjacency Matrix of C (c) Adjacency Matrix of (d) AS-Oregon after

AS-Oregon graph SLASHBURN

Figure 1. Caveman graph, real-world graph, and the result from our proposed SLASHBURN ordering. Real world graphs are much more complicated
and inter-connected than caveman graph, with few ‘hub’ nodes having high degrees and majority of nodes having low degrees. Finding a good ‘cut’ on
real world graphs to extract homogeneous regions(like the square diagonal blocks in the caveman adjacency matrix (b)) is difficult due to the hub nodes.
Instead, our proposed SLASHBURN finds novel ‘skinny’ communities which lead to good compression: in (d), the edges are concentrated to the left, top,
and diagonal lines while making empty spaces in most of the areas.

Symbol Definition

G A graph.

V Set of nodes in a graph.

E Set of edges in a graph.

A Adjacency matrix of a graph.

n Number of nodes in a graph.

GCC Giant connected component of a graph.

k Number of hub nodes to slash per iteration in SLASHBURN.

w(G) Wing width ratio of a graph G, meaning the ratio of the

number of total hub nodes to n.

b Block width used for block based matrix-vector

multiplication.

Table I
TABLE OF SYMBOLS

and running time enhancements. After discussing related

works on Section IV, we conclude in Section V.

To enhance the readability of this paper, we listed the

symbols frequently used in this paper in Table I.

II. PROPOSED METHOD

In this section, we give a formal definition of the problem,

describe our proposed method, and analyze its complexity.

A. Problem Definition

Given a large graph, we want to layout its edges so

that the graph can be compressed well, and graph mining

queries can be answered quickly. Specifically, we consider

the application of large scale matrix-vector multiplication

which is the building block of many graph mining algorithms

including PageRank, diameter estimation, and connected

components [8], [9]. The state-of-the art method for the large

scale matrix-vector multiplication is the block multiplication

method [8], where the original matrix is divided into b by

b square matrix blocks, the original vector is divided into

Figure 2. Block method for large scale matrix-vector multiplication. The
original 6 by 6 matrix is divided into 2 by 2 square matrix blocks(M0 to
M8), the original length 6 vector is divided into length 2 vector blocks(v0
to v2), and the blocks are multiplied to get the resulting vector(w0 to w2).

length b vector blocks, and the matrix-vector blocks are

multiplied.

For example, see Figure 2 for the block multiplication

method where a 6 by 6 matrix is multiplied with a length 6
vector using 2 by 2 matrix blocks and length 2 vector blocks.

We assume that each block is stored independently from

each other, without requiring neighbor or reciprocal blocks

to decode its edges, since such independency among blocks

allows more scalable processing in large scale, distributed

platforms like MAPREDUCE [10].

In this scenario, it is desired that the adjacency matrix has

clustered edges: smaller number of denser blocks is better

than larger number of sparser blocks. There are two reasons

for this. First, smaller number of denser blocks reduces

the number of disk accesses. Second, it provides better

opportunity for compression. For example, see Figure 3.

The left matrix is the adjacency matrix of Figure 1(a) with

a random ordering of nodes, while the right matrix is the

adjacency matrix of the same graph with a compression-

friendly ordering where nodes 1 to 6 are assigned to the left

clique, and nodes 7 to 12 are assigned to the right clique.

Assume we use 2 by 2 blocks to cover all the nonzero

elements inside the matrix. Then the right matrix requires



Figure 3. Importance of ordering. Left: adjacency matrix of Figure 1(a)
with a random ordering of nodes. Right: adjacency matrix of the same
graph, but with a compression-friendly ordering, where nodes 1 to 6 are
assigned to the left clique, and nodes 7 to 12 are assigned to the right
clique. If we use 2 by 2 blocks to cover all the nonzero elements inside the
matrix, the right matrix requires smaller number of denser blocks which
lead to better compression.

smaller number of blocks than the left matrix. Furthermore,

each block in the right matrix is denser than the one in

the left matrix, which could lead to better compression of

graphs.

Formally, our main problem is as follows.

Problem 1: Given a graph with the adjacency matrix A,

find a permutation π : V → [n] such that the storage cost

function cost(A) is minimized.

The notation [n] means the ordering of n nodes. Following

the motivation that smaller number of denser blocks is better

for compression than larger number of sparser blocks, the

first cost function we consider is the number of nonempty,

b by b square blocks in the adjacency matrix:

costnz(A, b) = number of nonempty blocks, (1)

where b is the block width. The second, and more precise

cost function uses the required number of bits to encode

the adjacency matrix using a block-wise encoding(divide the

matrix into blocks, and encode each block using standard

compression algorithms like gzip). The required bits are

decomposed into two parts: one for the nonzero elements

inside blocks, the other for storing the meta information

about the blocks.

• Nonzeros inside blocks. Bits to compress nonzero ele-

ments inside blocks.

• Meta information on blocks. Bits to store the row and

column ids of blocks.

Using the decomposition, we define a cost function

costit(A, b) assuming a compression method achieving the

information theoretic lower bound [11], [4]:

costit(A, b) = |T | · 2log
n

b
+

∑

τ∈T

b2 ·H(
z(τ)

b2
), (2)

where n is the number of nodes, T is the set of nonempty

blocks of size b by b, z(τ) is the number of nonzero elements

within a block τ , and H(p) = plog 1
p
+(1−p)log 1

1−p
is the

binary Shannon entropy function. The first term |T | · 2log n
b

in Equation (2) represents the bits to encode the meta

information on blocks. Since each block requires two log n
b

bits to encode the block row and the block column ids,

the total required bits are |T | · 2log n
b

. The second term in

Equation (2) is the bits to store nonzeros inside blocks: we

use information theoretic lower bound for encoding the bits,

since it gives the minimum number of bits achievable by

any coding methods. Note b2 is the maximum possible edge

counts in a b by b block, and
z(τ)
b2

is the density of the block.

The two cost functions defined in Equation (1) and (2) will

be evaluated and compared on different ordering methods in

Section III.

B. Why Not Classic Partitioning?

In general, directly minimizing the cost functions is a

difficult combinatorial problem which could require n! trials

in the worst case. Traditional approach is to use graph

partitioning algorithms to find good ‘cuts’ and homogeneous

regions so that nodes inside a region form a dense commu-

nity, and thereby leading to better compressions. Examples

include spectral clustering [1], [2], co-clustering [3], cross-

associations [4], and shingle-ordering [5]. However, such

approaches don’t work well for real world, power law graphs

since there exists no good cuts in such graphs [7], which we

also experimentally show in Section III.

The reason of the ‘no good cut’ in most real world

graphs is explained by their power-law degree distributions

and the existence of ‘hub’ nodes. Such hub nodes combine

the communities to blend into each other, making the cut-

based algorithms fail. Rather than resorting to the cut-based

algorithms that are not designed to work on power-law

graphs, we take a novel approach to finding communities

and compressions, which we explain next.

C. Graph Shattering

As described in the previous section, finding homoge-

neous regions in real world graphs is infeasible due to hub

nodes. Our main idea to solve the problem is to exploit

the hubs to define an alternative community different from

the traditional community. Remember that most real-world

graphs have a power law in its degree distribution: there

exist few hub nodes with very high degrees, while majority

of the nodes having low degrees, as shown in Figure 4(a).

In contrast, random graphs have degree distributions whose

tails drop exponentially: this means there doesn’t exist hubs

with extremely high degrees, as shown in Figure 4(b).

We start with an observation that real-world graphs are

easily shattered by removing hub nodes from them: while

majority of the nodes still belong to the giant connected

component, a nontrivial portion of the nodes belong to

small disconnected components by the removal. The nodes

belonging to the small disconnected components after the



(a) AS-Oregon after 1 iteration (b) .. after 1 more iteration (c) .. after 1 more iteration

Figure 5. SLASHBURN in action: adjacency matrices of AS-Oregon graph after applying SLASHBURN ordering. After 1 iteration, the nodes are decomposed
into k-hubset, GCC, and the spokes. The spokes are only connected to k-hubset, while completely disconnected to the GCC, which makes large empty
spaces in the bottom-right area of the adjacency matrix. The same process applies to the remaining GCC recursively. Notice that the nonzero elements in
the matrix are concentrated to the left, top, and diagonal lines of the matrix, making an arrow-like shape. Compared to the original adjacency matrix in
Figure 1(c), the final matrix has much larger empty spaces, enabling better compression.
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Figure 4. Degree distributions of power-law vs. random graphs. The left
graph is a real-world graph showing a power law degree distribution with
few hub nodes having very high degrees, and majority of nodes having low
degrees. The right graph is a random(Erdős-Rényi) graph having the same
number of nodes and edges as the left graph. The random graph has an
exponential tail in its degree distribution without distinct hubs.

removal of the hub nodes can be regarded as satellite nodes

connected to the hub nodes. In other words, those satellite

nodes have links only to the hub nodes, and completely

disconnected from the rest of the nodes in the graph. This

is the exact property we are utilizing.

To precisely describe our method, we define related terms.

Definition 1 (k-hubset): The k-hubset of a graph G is the

set of nodes with top k highest centrality scores.

We use the degree of a node as the centrality score in this

paper, but any centrality(e.g., closeness, betweenness [12],

PageRank, eigendrop [13], etc.) can be used for the score.

Removing k-hubset from a graph leads to the definition of

k-shattering.

Definition 2 (k-shattering): The k-shattering of a graph

G is the process of removing the nodes in k-hubset, as well

as edges incident to k-hubset, from G.

Let’s consider the following shattering process. Given a

graph G, we perform a k-shattering on G. Among the re-

maining connected components, choose the giant connected

component(GCC). Perform a k-shattering on the GCC, and

do the whole process recursively. Eventually, we stop at a

stage where the size of the GCC is less than or equal to k.

A natural question is, how quickly is a graph shattered? To

measure the speed of the shattering process, we define the

wing width ratio w(G) of a graph G.

Definition 3: The wing width ratio w(G) of a graph G

is k·i
n

where k is the number used for the k-shattering, i is

the number of iterations until the shattering finishes, and n

is the number of nodes in G.

Intuitively, the wing width ratio w(G) corresponds to the

width of the blue wing of the typical spyplot (visualization

of the adjacency matrix; see Figure 5(c)); notice that for

all real world graphs, the corresponding spyplots look like

ultra-modern airplanes, with the blue lines being their wings.

w(G) is the ratio of ‘wing’ width to the number of nodes

in the graph. A low w(G) implies that the graph G is

shattered quickly, while a high w(G) implies that it takes

long to shatter G. As we will see in Section III-C, real-

world, power-law graphs have low w(G). Our proposed

SLASHBURN method utilizes the low wing width ratio in

real world graphs.

D. Slash-and-Burn

In this section, we describe SLASHBURN, our proposed

ordering method for compressing graphs. Given a graph G,

the SLASHBURN method defines a permutation π : V → [n]
of a graph so that nonzero elements in the adjacency matrix

of G are grouped together. Algorithm 1 shows the high-level

idea of SLASHBURN.

The lines 1 and 2 removes(‘slash-and-burn’) top k highest

centrality scoring nodes, thereby decomposing nodes in G

into the following three groups:



Algorithm 1: SLASHBURN

Input: Edge set E of a graph G = (V,E),
a constant k(default = 1).

Output: Array Γ containing the ordering V → [n].
1: Remove k-hubset from G to make the new graph G′.

Add the removed k-hubset to the front of Γ.

2: Find connected components in G′. Add nodes in

non-giant connected components to the back of Γ, in

the decreasing order of sizes of connected components

they belong to.

3: Set G to be the giant connected component(GCC) of

G′. Go to step 1 and continue, until the number of

nodes in the GCC is smaller than k.

• k-hubset: top k highest centrality scoring nodes in G.

• GCC: nodes belonging to the giant connected compo-

nent of G′. Colored blue in Figure 6.

• Spokes to the k-hubset: nodes belonging to the non-

giant connected component of G′. Colored green in

Figure 6.

Figure 6 shows a graph before and after 1 iteration of

SLASHBURN. After removing the ‘hub’ node at the center,

the graph is decomposed into the GCC and the remaining

‘spokes’ which we define to be the non-giant connected com-

ponent connected to the hubs. The hub node gets the lowest

id(1), the nodes in the spokes get the highest ids(9∼16)) in

the decreasing order of the connected component size they

belong to, and the GCC takes the remaining ids(2∼8). The

same process applies to the nodes in GCC, recursively.

Figure 5(a) shows the AS-Oregon graph after the lines

1 and 2 are executed for the first time with k = 256. In

the figure, we see that a k-hubset comes first with GCC

and spokes following after them. The difference between

(spokes1) and (spokes2) is that the nodes in (spokes2) are

connected only to some of the nodes in k-hubset, thereby

making large empty spaces in the adjacency matrix. Notice

also that nodes in (spokes1) make a thin diagonal line,

corresponding to the edges among themselves. A remarkable

result is that the remaining GCC takes only 45% of the

nodes in the original graph, after removing 256(=1.8 %)

high degree nodes. Figure 5(b) and (c) shows the adjacency

matrix after doing the same operation on the remaining

GCC, recursively. Observe that nonzero elements in the

final adjacency matrix are concentrated on the left, top, and

diagonal lines of the adjacency matrix, creating an arrow-

like shape. Observe also that the final matrix has huge empty

spaces which could be utilized for better compression, since

the empty spaces need not be stored.

An advantage of our SLASHBURN method is that it works

on any power-law graphs without requiring any domain-

specific knowledge or a well defined natural ordering on the

graph for better permutation. Finally, we note that setting k

(a) Before SLASHBURN (b) After SLASHBURN

Figure 6. [Best viewed in color.] A graph before and after 1 iteration of
SLASHBURN. Removing a hub node creates many smaller ‘spokes’, and
the GCC. The hub node gets the lowest id(1), the nodes in the spokes get
the highest ids(9∼16)) in the decreasing order of the connected component
size they belong to, and the GCC takes the remaining ids(2∼8). The next
iteration starts on the GCC.

to 1 often gives the best compression by making the wing

width ratio w(G) minimum or close to minimum. However,

setting k to 1 requires many iterations and longer running

time. We found that setting k to 0.5% of the number of

nodes gives good compression results with small number of

iterations on most real world graphs.

E. Analysis

We analyze the time and the space complexities of the

SLASHBURN algorithm.

Lemma 1 (Time Complexity of SLASHBURN):

SLASHBURN takes O(|E| + |V |log|V |)i time where

i = |V |·w(G)
k

is the number of iterations.

Proof: In Algorithm 1, step 1 takes O(|V |+ |E|) time

to compute the degree of nodes, and to remove k-hubset.

Step 2 requires O(|E| + |V |log|V |) time since connected

components require O(|V | + |E|) time, and sorting takes

|V |log|V | time. Thus, 1 iteration of SLASHBURN takes

O(|E| + |V |log|V |) time, and the lemma is proved by

multiplying the number i of iterations to it.

Lemma 1 implies that smaller wing width ratio w(G) will

result in faster running time. We note that real world, power-

law graphs have small wing width ratio, which we show

experimentally in Section III-C.

For space complexity, we have the following result.

Lemma 2 (Space Complexity of SLASHBURN):

SLASHBURN requires O(V ) space.

Proof: In step 1, computing the degree requires O(V )
space. In step 2, connected component requires O(V ) space,

and sorting requires at most O(V ) space. The lemma is

proved by combining the space requirements for the two

steps.

III. EXPERIMENTS

In this section, we present experimental results to answer

the following questions:
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(a) costnz(A, b): number of nonempty blocks (b) costit(A, b): information theoretic cost

Figure 7. Compression comparison of ordering methods. DegSort: degree sort, CA: cross association, and Spectral: spectral clustering. For all the cost
functions, SLASHBURN performs the best. (a): SLASHBURN reduces the number of nonempty blocks by up to 20× compared to the random ordering, and
by up to 6.1× compared to the second best orderings. (b): SLASHBURN reduces the bits per edge by up to 2.1× compared to the random ordering, and
by up to 1.2× compared to the second best orderings.

Name Nodes Edges Description

LiveJournal 4,847,571 68,993,773 Friendship social network

Flickr 404,733 2,110,078 Social network

WWW- 325,729 1,497,134 WWW pages in nd.edu
Barabasi

Enron 80,163 312,725 Enron email

Epinions 75,888 508,960 Who trusts whom

AS-Oregon 13,579 74,896 Router connetions

Table II
SUMMARY OF GRAPHS USED. AS-OREGON IS AN UNDIRECTED GRAPH,

WHILE ALL OTHERS ARE DIRECTED GRAPHS.

Q1 How well does SLASHBURN compress graphs com-

pared to other methods?

Q2 How does SLASHBURN decrease the running time of

large scale matrix-vector multiplication?

Q3 How quickly can we shatter real world graphs? What

are the wing width ratio of real world, power-law

graphs?

We compare SLASHBURN with the following six meth-

ods.

• Random. Random ordering of the nodes.

• Natural. Natural ordering of the nodes, that is, the

original adjacency matrix. For some graphs, the nat-

ural ordering provides high locality among consecutive

nodes (e.g. lexicographic ordering in Web graphs [14]).

• Degree Sort(DegSort). Ordering based on the decreas-

ing degree of the nodes.

• Cross Association(CA). Cross-association [4] based

ordering so that nodes in a same group are numbered

consecutively.

• Spectral Clustering. Normalized spectral cluster-

ing [1], also known as the normalized cut. Order

nodes by the second smallest eigenvector score of a

generalized eigenvector problem.

• Shingle. Shingle ordering is the most recent method for

compressing social networks [5]. It groups nodes with

similar fingerprints(min-wise hashes) obtained from the

out-neighbors of nodes.

The graphs used in our experiments along with their

descriptions are summarized in Table II.

A. Compression

We compare the ordering methods based on the cost

of compression using the two cost functions defined in

Equation (1) and (2) of Section II:

• costnz(A, b): number of nonempty blocks.

• costit(A, b): required bits using information-theoretic

coding methods.

Figure 7 shows the costs of ordering methods. Fig-

ure 7(a) shows the number of nonempty blocks(costnz(A)),
and Figure 7(b) shows the bits per edge computed using

costit(A, b). The exact numbers are listed in Table III

and IV, respectively. Notice that for all the cost func-

tions, SLASHBURN performs the best. For the number of

nonempty blocks, SLASHBURN reduces the counts by up to

20× compared to the random ordering, and by up to 6.1×
compared to the second best orderings. For the bits per edge,

SLASHBURN reduces the bits by up to 2.1× compared to

the random ordering, and by up to 1.2× compared to the

second best orderings.

The amount of compression can be checked visually.

Figure 8 show the spyplots, which are nonzero patterns in

the adjacency matrices, of real world graphs permuted from

the different ordering methods. Random ordering makes

the spyplot almost filled; natural ordering provides more



Graph Random Natural Degree Cross Spectral Shingle SLASHBURN

Sort Association Clustering

LiveJournal (bw=4096) 1401856 1060774 885153 * * 960642 873469

Flickr (bw=4096) 9801 4950 5091 6149 5042 3366 994

WWW-Barabasi (bw=4096) 6400 2774 2647 1997 2671 2751 384

Enron (bw=1024) 6241 4220 1922 1442 4220 1498 339

Epinions (bw=1024) 5624 4010 2703 3124 4010 4381 768

AS-Oregon (bw=256) 2845 2232 1552 1463 2197 2142 239

Table III
NUMBER OF NONEMPTY BLOCKS FOR THE COMPETING ORDERING METHODS. ‘BW’ DENOTES THE BLOCK WIDTH, AND THE WINNERS ARE IN BOLD

FONTS. FOR THE LIVEJOURNAL DATA, CROSS ASSOCIATION AND SPECTRAL CLUSTERING(MARKED *) COULD NOT BE PERFORMED SINCE THE

ALGORITHMS ARE TOO HEAVY TO RUN ON SUCH A LARGE GRAPH. NOTICE THAT SLASHBURN, FORMATTED IN BOLD FONTS, OUTPERFORMS ALL

OTHERS. THE RESULTS WERE SIMILAR FOR OTHER BLOCK WIDTHS.

Graph Random Natural Degree Cross Spectral Shingle SLASHBURN

Sort Association Clustering

LiveJournal 19.89 16.82 16.87 * * 18.52 16.67

Flickr 17.71 16.27 11.19 11.45 16.27 13.02 10.73

WWW-Barabasi 17.58 10.43 11.25 10.32 8.5 12.06 8.41

Enron 15.82 12.62 9.94 9.63 12.62 11.08 9.43

Epinions 14.93 11.24 9.93 9.96 11.24 11.93 9.61

AS-Oregon 12.74 11.71 8.92 9.14 11.34 10.09 7.71

Table IV
BITS PER EDGE FOR THE COMPETING ORDERING METHODS, ACCORDING TO THE INFORMATION THEORETIC LOWER BOUND. FOR THE LIVEJOURNAL

DATA, CROSS ASSOCIATION AND SPECTRAL CLUSTERING(MARKED *) COULD NOT BE PERFORMED SINCE THE ALGORITHMS ARE TOO HEAVY TO RUN

ON SUCH A LARGE GRAPH. NOTE THAT THE RESULT FROM SLASHBURN, FORMATTED IN BOLD FONTS, OUTPERFORMS ALL OTHERS.

empty space than random ordering, meaning that the natural

ordering exploits some form of localities. Degree sort makes

the upper-left area of the adjacency matrix more dense.

Cross association makes many rectangular regions that are

homogeneous. Spectral clustering tries to find good cuts, but

obviously can’t find such cuts on the real world graphs. In

fact, for all the graphs except AS-Oregon in Figure 8, the

spyplot after the spectral clustering looks very similar to

that of the natural ordering. Shingle ordering makes empty

spaces on the top portion of the adjacency matrix of some

graphs: the rows of such empty spaces correspond to nodes

without outgoing neighbors, However, the remaining bottom

portion is not concentrated well. Our SLASHBURN method

collects nonzero elements to the left, top, and the diagonal

lines of the adjacency matrix, thereby making an arrow-

like shape. Notice that SLASHBURN requires the smallest

number of square blocks to cover the edges, leading to the

best compression as shown in Table IV.

B. Running Time

We show the performance implication of SLASHBURN

for large scale graph mining on distributed platform, using

HADOOP, an open source MAPREDUCE framework. We test

the performance of block-based PageRank using HADOOP

on graphs created from different ordering methods. For

storing blocks, we used the standard gzip algorithm to

compress the 0-1 bit sequences. Figure 9 shows file size vs.

running time on different ordering methods on LiveJournal

Figure 9. File size vs. running time of different ordering methods on
LiveJournal graph. The running time is measured for one iteration of
PageRank on HADOOP. Notice that SLASHBURN results in the smallest
file size, as well as the smallest running time.

graph. The running time is measured for one iteration of

PageRank on HADOOP. Notice that SLASHBURN results in

the smallest file size, as well as the smallest running time.

We note that LiveJournal is one of the dataset that is very

hard to compress. In fact, a similar dataset was analyzed in

the paper that proposed the shingle ordering [5]: however,

their proposed ‘compression’ method increased the bits per

edge, compared to the original graph. Our SLASHBURN

outperforms all other methods, including the shingle and the

natural ordering, even on this ‘hard to compress’ dataset.



Flickr:

(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

WWW-Barabasi:

(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

Enron:

(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

Epinions:

(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

AS-Oregon:

(a) Random (b) Natural (c) Degree (d) Cross (e) Spectral (f) Shingle (g) SLASHBURN

Sort Association Clustering

Figure 8. Adjacency matrix of real world graphs on different ordering methods. Random ordering requires the maximum number of square blocks to
cover the edges. Natural ordering requires smaller number of blocks, implying that the natural ordering exploits some form of localities. Degree sort makes
the upper-left area of the adjacency matrix more dense. Cross association makes homogeneous square regions. Spectral clustering tries to find good cuts,
but obviously can’t find such cuts on the real world graphs. Shingle ordering makes empty spaces on the top portion of the adjacency matrix of some
graphs. The rows of such empty spaces correspond to nodes without outgoing neighbors, However, the remaining bottom portion is not concentrated well.
In fact, for all the graphs except AS-Oregon, the spyplot after the spectral clustering looks very similar to that of the natural ordering. Our SLASHBURN

method concentrates edges to the left, top, and the diagonal lines of the adjacency matrix, thereby making an arrow-like shape. Notice that SLASHBURN

requires the smallest number of square blocks to cover the edges, leading to the best compression as shown in Table IV.



Graph Type Graph w(G)

Real world Flickr 0.078

Real world WWW-Barabasi 0.037

Real world Enron 0.044

Real world Epinions 0.099

Real world AS-Oregon 0.040

Erdős-Rényi ER-Epinions 0.611

Erdős-Rényi ER-AS-Oregon 0.358

Table V
WING WIDTH RATIO w(G) OF REAL WORLD AND

RANDOM(ERDŐS-RÉNYI) GRAPHS. NOTICE THAT w(G)’S ARE SMALL

FOR ALL THE REAL WORLD GRAPHS, MEANING THAT SLASHBURN

WORKS WELL ON SUCH GRAPHS. IN CONTRAST, RANDOM GRAPHS

HAVE HIGH w(G) (AT LEAST 6.2× LARGER THAN THEIR REAL WORLD

COUNTERPARTS), MEANING THAT IT CAN NOT BE SHATTERED QUICKLY.

C. Real World Graphs Shatter Quickly

How quickly can a real world graph be shattered into

tiny components? What are the differences of the wing

width ratio between real world, power-law graphs and ran-

dom(Erdős-Rényi [15]) graphs? Table V shows the wing

width ratio w(G) of real world and random graphs. We

see that real world graphs have coefficients between 0.037

and 0.099 which are relatively small. For WWW-Barabasi

graph, it means that removing 3.7 % of high degree nodes

can shatter the graph.

In contrast, random(Erdős-Rényi) graphs have higher

wing width ratio w(G). We generated two random graphs,

’ER-Epinions’, and ’ER-AS-Oregon’, which have the same

number of nodes and edges as ’Epinions’, and ’AS-Oregon’,

respectively. The wing width ratios of the two random graphs

are 0.611 and 0.358, respectively, at least 6.2× larger than

their real world counterparts.

IV. RELATED WORKS

The related works form three groups: structure of net-

works, graph partition and compression, and large graph

mining.

Structure of Networks. Research on the structure of

complex networks has been receiving significant amount of

attention. Most real world graphs have power law in its

degree distribution [6], a property that distinguishes them

from random graphs [15] with exponential tail distribution.

The graph shattering has been researched in the view-

point of attack tolerance [16] and characterizing real world

graphs [17]. Chen et al. [18] studied the statistical behavior

of a fragmentation measure from the removal of nodes in

graphs. None of the previous works relate the shattering and

the power law to the problem of node permutation for graph

compression.

Graph Partition and Compression. There has been a

lot of works on network community detection, including

METIS and related works [19], [20], edge betweenness [21],

co-clustering [3], [22], cross-associations [4], spectral clus-

tering [2], [23], and shingle-ordering [5]. All of them aimed

to find homogeneous regions in the graph so that cross edges

between different regions are minimized. A recent result [7]

studied real world networks using conductance, and showed

that real world graphs don’t have good cuts.

Graph compression has also been an active research topic.

Boldi [14] studied the compression of web graphs using

the lexicographic localities; Chierichetti et al. [5] extended

it to the social networks; Apostolico et al. [24] used BFS

based method for compression. Maserrat et al. [25] used

multi-position linearizations for better serving neighborhood

queries. Our SLASHBURN is the first work to take the power-

law characteristic of most real world graphs into advan-

tage for addressing the ‘no good cut’ problem and graph

compression. Furthermore, our SLASHBURN is designed

for large scale block based matrix vector multiplication

where each square block is stored independently from each

other for scalable processing in distributed platforms like

MAPREDUCE [10]. The previously mentioned works are not

designed for this purpose: the information of the outgoing

edges of a node is tightly inter-connected to the outgoing

edges of its predecessor or successor, making them inap-

propriate for square block based distributed matrix vector

multiplication.

Large Graph Mining. Large scale graph mining poses

challenges in dealing with massive amount of data: they ex-

ceed memory and even disks of a single machine. A promis-

ing alternative for large graph mining is MAPREDUCE [10],

a parallel programming framework for processing web-scale

data, and its open-source version HADOOP. MAPREDUCE

has two advantages. First, the data distribution, replication,

fault-tolerance, and load balancing are handled automati-

cally. Second, it uses the familiar concept of functional

programming: the programmer needs to define only two

functions, a map and a reduce.

There has been several works [22], [8], [9], [26], [27]

on large graph mining using MAPREDUCE. Among them,

PEGASUS [8] unifies several important graph mining op-

erations(PageRank, diameter, connected components, etc.)

into a generalized matrix-vector multiplication. They pro-

vided the block method for fast matrix-vector multiplication

framework. Our SLASHBURN is an algorithm for reordering

nodes in graphs so that the block method performs better.

V. CONCLUSION

In this paper, we propose SLASHBURN, a novel method

for laying out the edges of real world graphs, so that they can

be easily compressed, and graph mining algorithms based on

block matrix-vector multiplication can run quickly.

The main novelty is the focus on real world graphs,

that typically have no good cuts [7], and thus can’t create

good caveman-like communities and graph partitions. On



the contrary, our SLASHBURN is tailored towards jellyfish-

type graphs [28], with spokes connected by hubs, and

hubs connected by super-hubs, and so on, recursively. Our

realistic view-point pays off: the resulting graph lay-outs

enjoy

• faster processing times (e.g., matrix-vector multipli-

cations, that are in the inner loop of most typical

graph mining operations, like PageRank, connected

components, etc), and

• lower disk space requirements.

Future research directions include extending SLASHBURN

for better supporting time evolving graphs.
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