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Abstract. Robust cell detection serves as a critical prerequisite for
many biomedical image analysis applications. In this paper, we present
a novel convolutional neural network (CNN) based structured regression
model, which is shown to be able to handle touching cells, inhomoge-
neous background noises, and large variations in sizes and shapes. The
proposed method only requires a few training images with weak annota-
tions (just one click near the center of the object). Given an input im-
age patch, instead of providing a single class label like many traditional
methods, our algorithm will generate the structured outputs (referred
to as proximity patches). These proximity patches, which exhibit higher
values for pixels near cell centers, will then be gathered from all testing
image patches and fused to obtain the final proximity map, where the
maximum positions indicate the cell centroids. The algorithm is tested
using three data sets representing different image stains and modalities.
The comparative experiments demonstrate the superior performance of
this novel method over existing state-of-the-art.

1 Introduction

In microscopic image analysis, robust cell detection is a crucial prerequisite for
biomedical image analysis tasks, such as cell segmentation and morphological
measurements. Unfortunately, the success of cell detection is hindered by the
nature of microscopic images such as touching cells, background clutters, large
variations in the shape and the size of cells, and the use of different image
acquisition techniques.

To alleviate these problems, a non-overlapping extremal regions selection
method is presented in [2] and achieves state-of-the-art performance on their
data sets. However, this work heavily relies on a robust region detector and thus
the application is limited. Recently, deep learning based methods, which ex-
ploit the deep architecture to learn the hierarchical discriminative features, have
shown great developments and achieved significant success in biomedical image
analysis [11,10]. Convolutional neural network (CNN) attracts particular atten-
tions among those works because of its outstanding performance. Ciresan et al.
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Fig. 1. The CNN architecture used in the proposed structured regression model. C, M
and F represents the convolutional layer, max pooling layer, and fully connected layer,
respectively. The purple arrows from the last layer illustrate the mapping between the
final layer’s outputs to the final proximity patch.

adopt CNN for mitosis detection [4] in breast cancer histology images and mem-
brane neuronal segmentation [5] in microscopy images. Typically, CNN is used
as a pixel-wise classifier. In the training stage, local image patches are fed into
the CNN with their labels determined by the membership of the central pixel.
However, this type of widely used approach ignores the fact the labeled regions
are coherent and often exhibit certain topological structures. Failing to take this
topological information into consideration will lead to implausible class label
transition problem [7].

In this paper, we propose a novel CNN based structured regression model for
cell detection. Our contributions are summarized as two parts: 1) We modify
the conventional CNN by replacing the last layer (classifier) with a structured
regression layer to encode topological information. 2) Instead of working on the
label space, regression on the proposed structured proximity space for patches
is performed so that centers of image patches are explicitly forced to get higher
value than their neighbors. The proximity map produced with our novel fusion
scheme contains much more robust local maxima for cell centers. To the best
of our knowledge, this is the first study to report the application of structured
regression model using CNN for cell detection.

2 Methodology

We formulate the cell detection task as a structured learning problem. We re-
place the last (classifier) layer that is typically used in conventional CNN with a
structured regression layer. Our proposed model encodes the topological struc-
tured information in the training data. In the testing stage, instead of assigning
hard class labels to pixels, our model generates a proximity patch which pro-
vides much more precise cues to locate cell centers. To obtain the final proximity
map for an entire testing image, we propose to fuse all the generated proximity
patches together.

CNN-Based Structured Regression. Let X denote the patch space, which
consists of d× d× c local image patches extracted from c-channel color images.
An image patch x ∈ X centered at the location (u, v) of image I is represented
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by a quintuple {u, v, d, c, I}. We define M as the proximity mask corresponding
to image I, and compute the value of the ij-th entry in M as

Mij =

{
1

1+αD(i,j) if D(i, j) ≤ r,

0 otherwise,
(1)

where D(i, j) represents the Euclidean distance from pixel (i, j) to the nearest
human annotated cell center. r is a distance threshold and is set to be 5 pixels.
α is the decay ration and is set to be 0.8.

The Mij can have values belongs to the interval V = [0, 1]. An image patch
x has a corresponding proximity patch on the proximity mask (shown in Fig.1).
We define s ∈ Vd′×d′

as the corresponding proximity patch for patch x, where
d′ × d′ denotes the proximity patch size. Note that d′ is not necessarily equal to
d. We further denote the proximity patch s of patch x as s = {u, v, d′,M}. It
can be viewed as the structured label of patch x = {u, v, d, c, I}.

We define the training data as {(xi,yi) ∈ (X ,Y)}Ni=1, whose elements are pairs
of inputs and outputs: xi ∈ X , yi = Γ (si), N is the number of training sam-
ples, and Γ : Vd′×d′ → Y is a mapping function to represent the vectorization
operation in column-wise order for an proximity patch. Y ⊂ Vp×1 represents the
output space of the structured regression model, where p = d′ × d′ denotes the
number of units in the last layer. Define functions {fl}Ll=1 and {θl}Ll=1 as the oper-
ations and parameters corresponding to each of the L layers, the training process
of the structured regression model can be formulated as learning a mapping func-
tionψ composed with {f1, ..., fL}, which will map the image spaceX to the output
space Y.

Given a set of training data {(xi,yi) ∈ (X ,Y)}Ni=1, {θl}Ll=1 will be learned by
solving the following optimization problem

arg min
θ1,...,θL

1

N
N∑
i=1

L(ψ(xi; θ1, ..., θL),y
i), (2)

where L is the loss function that is defined in the following.
Equation (2) can be solved using the classical back propagation algorithm. In

order to back propagate the gradients from the last layer (structured regression
layer) to the lower layers, we need to differentiate the loss function defined on one
training sample with respect to the inputs to the last layer. Let ai and oi represent
the inputs and the outputs of the last layer. For one training example (xi,yi), we
can have oi = ψ(xi; θ1, ..., θL). Denote yij, a

i
j and oij as the j-th element of yi, ai

and oi, respectively. The loss function L for (xi,yi) is given by

L(ψ(xi; θ1, ..., θL),y
i) = L(oi,yi) =

1

2

p∑
j=1

(yij + λ)(yij − oij)
2

=
1

2

∥∥∥(Diag(yi) + λI)1/2(yi − oi)
∥∥∥2

2
,

(3)

where I is an identity matrix of size p × p, and Diag(yi) is a diagonal matrix
with the j-th diagonal element equal to yij. Since the non-zero region in the
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proximity patch is relatively small, our model might return a trivial solution. To
alleviate this problem, we adopt a weighting strategy [13] to give the loss coming
from the network’s outputs corresponding to the non-zero area in the proximity
patch more weights. A small λ indicates strong penalization that is applied to
errors coming from the outputs with low proximity values in the training data.
Our model is different from [13] which applies a bounding box mask regression
approach on the entire image.

We choose the sigmoid activation function in the last layer, i.e., oij = sigm(aij).
The partial derivative of (3) with respect to the input of the j-th unit in the last
layer is given by

∂L(oi,yi)

∂aij
=

∂L(oi,yi)

∂oij

∂oij
∂aij

= (yij + λ)(oij − yij)a
i
j(1− aij). (4)

Based on (4), we can evaluate the gradients of (2) with respect to the model’s
parameters in the same way as [9]. The optimization procedure is based on
mini-batch stochastic gradient descent.

CNN Architecture. The proposed structured regression model contains sev-
eral convolutional layers (C), max-pooling layers (M), and fully-connected layers
(F). Figure 1 illustrates one of the architectures and mapped proximity patches
in the proposed model. The detailed model configuration is: Input(49 × 49 × 3)
− C(44 × 44 × 32) − M(22 × 22 × 32) − C(20 × 20 × 32) − M(10 × 10 ×
32)− C(8 × 8 × 32) − F(1024) − F(1024) − F(289). The activation function of
last F (regression) layer is chosen as the sigmoid function, and ReLu function is
used for all the other F and C layers. The sizes of C and M layers are defined
as width × height × depth, where width × height determines the dimensional-
ity of each feature map and depth represents the number of feature maps. The
filter size is chosen as 6 × 6 for the first convolutional layer and 3 × 3 for the
remaining two. The max pooling layer uses a window of size 2 × 2 with a stride
of 2.

Structured Prediction Fusion and Cell Localization. Given a testing im-
age patch x = (u, v, d, c, I), it is easy to get the corresponding proximity mask
as s = Γ−1(y), where y ∈ Y represent the model’s output corresponding to x.
In the fusion process, s will cast a proximity value for every pixel that lies in the
d′ × d′ neighborhood area of (u, v), for example, pixel (u + i, v + j) in image I
will get a prediction sij from pixel (u, v). In other words, as we show in Fig.2(B),
each pixel actually receives p′ × p′ predictions from its neighboring pixels. To
get the fused proximity map, we average all the predictions for each pixel from
its neighbors to calculate it’s final proximity prediction. After this step, the cell
localization can be easily obtained by finding the local maximum positions in
the average proximity map.

Speed Up. Traditional sliding window method is time consuming. However,
we have implemented two strategies to speed up. The first one comes from the
property that our model generates a d′ × d′ proximity patch for each testing
patch. This makes it feasible to skip a lot of pixels and only test the image
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Fig. 2. (A): The training data generation process. Each original image has a proxim-
ity mask of the same size and each local image patch has an proximity patch used
as the structured label. (B) The fusion process. Each pixel receives predictions from
it’s neighborhoods. For example, the red dot collects all the predictions from its 25
neighboring pixels and an average value will be assigned as final result. In this figure,
we only display 4 out of 25 proximity patches.

patches at a certain stride ss (1 ≤ ss ≤ d′) without significantly sacrificing the
accuracy. The second strategy, called fast scanning [6], is based on the fact that
there exists a lot of redundant convolution operations among adjacent patches
when computing the sliding-windows.

3 Experimental Results

Data Set and Implementation Details. Our model is implemented in C++
and CUDA based on the fast CNN kernels [8], and fast scanning [6] is imple-
mented in MATLAB. The proposed algorithm is trained and tested on a PC
with an Intel Xeon E5 CPU and a NVIDIA Tesla k40C GPU. The learning rate
is set as 0.0005 and a dropout rate of 0.2 is used for the fully connected layers.
The λ is set as 0.3 in (3).

Three data sets are used to evaluate the proposed method. First, The Can-
cer Genome Atlas (TCGA) dataset, from which we cropped and annotated 32
400×400 H&E-stained microscopy images of breast cancer cells, the magnifica-
tion is 40×. The detection task in this data set is challenging due to highly
inhomogeneous background noises, a large variability of the size of cells, and
background similarities. The second dataset is obtained from [2] that contains
22 phase contrast images of HeLa cervical cancer cell. These images exhibit
large variations in sizes and shapes. The third dataset contains 60 400×400
Ki67-stained neuroendocrine tumor (NET) images of size 400×400, the magni-
fication is 40×. Many touching cells, weak staining, and fuzzy cell boundaries
are presented in this dataset. All of the data are randomly split into halves for
training and testing.

Model Evaluation. Figure 3 shows the qualitative detection results on three
datasets. For quantitative analysis, we define the ground-truth areas as circular
regions within 5 pixels of every annotated cell center. A detected cell centroid
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(a) H&E breast cancer (b) Ki-67 stained NET (c) Phase-contrast HeLa

Fig. 3. Cell detection results on three sample images from the three data sets. Yellow
dots represent the detected cell centers. The ground truth annotations are represented
by green circles for better illustrations.
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(a) H&E breast cancer
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(b) Ki-67 stained NET

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

o
n

 

 

SR−1
SR−5
PWR
PWC

(c) Phase-contrast HeLa

Fig. 4. Precision-recall curves of the four variations of the proposed algorithm on three
data sets. SR-5 achieves almost the same results as SR-1. The proposed SR-1 signifi-
cantly outperforms the other two pixel-wise methods using CNN.

is considered to be a true positive (TP ) only if it lies within the ground-truth
areas; otherwise, it is considered as a false positive (FP ). Each TP is matched
with the nearest ground-truth annotated cell center. The ground-truth cell cen-
ters that are not matched by any detected results are considered to be false
negatives (FN). Based on the above definitions, we can compute the precision
(P ), recall(R), and F1 score as P = TP

TP+FP , R = TP
TP+FN and F1 = 2PR

P+R ,
respectively.

We evaluated four variations of the proposed methods. (1, 2) Structured Re-
gression + testing with a stride ss (SR-ss), ss is chosen to be 1 for (1) and 5
for (2). (3) CNN based Pixel-Wise Classification (PWC), which shares the sim-
ilar architecture with the proposed method except that it utilizes the softmax
classifier in the last layer. (4) CNN based Pixel-Wise Regression (PWR), which
is similar to SR-1 but only predicts the proximity value for the central pixel of
each patch.

Figure 4 shows the precision-recall curves of the four variations of the proposed
method on each data set. These curves are generated by changing the threshold ζ
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Table 1. The comparative cell detection results on three data sets. μd, σd represent
the mean and standard deviation of Ed, and μn, σn represent the mean and standard
deviation of En.

Data Set Methods P R F1 μd ± σd μn ± σn

H&E breast cancer SR-1 0.919 0.909 0.913 3.151± 2.049 4.8750 ± 2.553

NERS [2] − − − − −
IRV [12] 0.488 0.827 0.591 5.817 ± 3.509 9.625 ± 4.47
LoG [1] 0.264 0.95 0.398 7.288 ± 3.428 2.75± 2.236
ITCN [3] 0.519 0.528 0.505 7.569 ± 4.277 26.188 ± 8.256

NET SR-1 0.864 0.958 0.906 1.885± 1.275 8.033± 10.956

NERS [2]0.927 0.648 0.748 2.689 ± 2.329 32.367 ± 49.697
IRV [12] 0.872 0.704 0.759 2.108 ± 3.071 15.4 ± 14.483
LoG [1] 0.83 0.866 0.842 3.165 ± 2.029 11.533 ± 21.782
ITCN [3] 0.797 0.649 0.701 3.643 ± 2.084 24.433 ± 40.82

Phase Contrast SR-1 0.942 0.972 0.957 2.069± 1.222 3.455± 4.547

NERS [2] 0.934 0.901 0.916 2.174 ± 1.299 11.273 ± 11.706
IRV [12] 0.753 0.438 0.541 2.705 ± 1.416 58.818 ± 40.865
LoG [1] 0.615 0.689 0.649 3.257 ± 1.436 29.818 ± 16.497
ITCN [3] 0.625 0.277 0.371 2.565 ± 1.428 73.727 ± 41.867

on the final proximitymaps before finding the localmaximum.We can see that SR-
5 achieves almost the same performance as SR-1, and both PWC and PWR don’t
work as well as the proposed structured regression model, especially for the H&E
breast cancer data set that exhibits highbackground similarity and large variations
in cell size. This demonstrates that the introduction of the structured regression
increases the overall performance. The computational cost for SR-1, SR-5 and fast
scanning are 14.5, 5 and 19 seconds for testing a 400 × 400 RGB image. In the
training stage, our model takes about 5 hours to converge in our machine.

Comparison with Other Works: We also compare our structured regression
model (SR) with four state-of-the-art, including Non-overlapping Extremal Re-
gions Selection (NERS) [2], Iterative Radial Voting (IRV) [12], Laplacian-of-
Gaussian filtering (LoG) [1], and Image-based Tool for Counting Nuclei (ITCN)
[3]. In addition to Precision, Recall, and F1 score, we also compute the mean and
standarddeviation of two terms: 1)The absolute differenceEnbetween the number
of true positive and the ground-truth annotations, and 2) the Euclidean distance
Ed between the true positive and the corresponding annotations. The quantitative
experiment results are reported in Table 1. It is obvious that our method provides
better performance than others in all three data sets, especially in terms ofF1 score.
Our method also exhibits strong reliability with the lowest mean and standard de-
viations in En and Ed on NET and phase contrast data sets.

3.1 Conclusion

In this paper, we propose a structured regression model for robust cell detec-
tion. The proposed method differs from the conventional CNN classifiers by
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introducing a new structured regressor to capture the topological information
exhibiting in the training data. Spatial coherence is maintained across the im-
age at the same time. In addition, our proposed algorithm can be implemented
with several fast implementation options. We have experimentally demonstrate
the superior performance of the proposed method compared with several state-
of-the-art. We also show that the proposed method can handle different types
of microscopy images with outstanding performance. In future work, we will
validate the generality of the proposed model on other image modalities.
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