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Abstract
Identifying genes associated with cancer development is typically accomplished by comparing
mean expression values in normal and tumor tissues, which identifies differentially expressed
(DE) genes. Interindividual variation (IV) in gene expression is indirectly included in DE gene
identification because given the same absolute differences in means, genes with lower variance
tend to have lower P values. We explored the direct use of IV in gene expression to identify
candidate genes associated with cancer development. We focused on prostate (PCa) and lung (LC)
cancers and compared IV in the expression level of genes shown to be cancer related with that in
all other genes in the human genome. Compared with all those other genes, cancer-related genes
tended to have greater IV in normal tissues and a greater increase in IV during the transition from
normal to tumorous tissue. Genes without significantly different mean expression values between
tumor and normal tissues but with greater IV in tumor than in normal tissue (note: the DE-based
approach completely ignores those genes) had stronger associations with clinically important
features like Gleason score in PCa or tumor histology in LC than all other genes were. Our results
suggest that analyzing IV in gene expression level is useful in identifying novel candidate genes
associated with cancer development.
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1. Background
Genome-wide profiling of gene expression is frequently used to identify cancer-related
genes. The traditional approach compares the mean expression in tumor and normal tissues
and identifies differentially expressed (DE) genes, which are usually considered candidate
genes associated with cancer initiation and/or progression.1-3 Interindividual variation (IV)
in the expression level, which is usually estimated as variance, is used indirectly in such
analyses as part of the corresponding statistical test.

A number of studies suggest that IV in gene expression in tumor and in normal tissue of the
type in which the tumor originated plays a crucial role in cancer heterogeneity at the level of
clinical features. This is evident from studies conducted on breast cancer,4 for example, as
well as other types of cancer.5 A number of genes with strong IV in expression level, e.g.,
HER-2, ER, and p53, have been shown to play an essential role in breast cancer initiation
and progression.6,7 This suggests that identification of genes with strong IV in expression
level will be useful in the detection of cancer-related genes. No studies on the link between
the variation in gene expression and a gene’s probability of being cancer related have yet
been conducted. With this study, we aimed to fill the gap between the analysis of IV in gene
expression and the identification of candidate DE genes. Using lung and prostate cancer (LC
and PCa) as examples, we demonstrated that taking into account the IV in gene expression
may help identify novel candidate genes that are missed by the classical approach of
analyzing the DE genes.

2. Methods
A relatively large sample is required to obtain a reliable estimate of IV. To meet this
requirement, we used the publicly available gene expression data from the two largest LC
and PCa studies included in the Gene Expression Omnibus (GEO) database. The LC data
came from the study by Hou et al.,8 and the PCa data, from the study by Chandran et al.9

Table 1 briefly summarizes those datasets.

To identify PCa- and LC-related genes, we used the KnowledgeNet approach,10 which
combines literature mining with gene-classification data from the Gene Ontology
database.11 For functional annotation, we used the Database for Annotation, Visualization,
and Integrated Discovery (DAVID).12 DAVID tests the null hypothesis that genes are
uniformly distributed across pathways and biologic functions. The resulting P values
characterize the strength of the statistical evidence for clustering: the lower the P value, the
stronger the evidence that the genes are overrepresented in a specific pathway.

Most comparisons were made between KnowledgeNet-identified cancer-related genes and
all other genes in the dataset. To test for tissue specificity for each type of cancer, we
separately compared LC- and PCa-related genes with all other genes in the dataset.
Correlation analysis was used to test for a relationship between Gleason score and IV. To
assess an association between IV and histologic type of lung cancer, we used ANOVA.
Student’s t test was used to compare mean expression values. Log-transformed and
normalized expression values were used. Because there was no significant correlation
between variance and mean expression values in the processed gene expression data, we
used variance in the gene expression as a measure of IV. For each probe, we computed the
ratio between the variance in the tumor and that in normal tissue separately for cancer-
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related and all other genes. We used SAS software (SAS Institute, Inc., Cary, North
Carolina, USA) for performing the statistical analyses.

3. Results
3.1. Cancer-related genes have higher IV in normal tissues than all the other genes have

We identified 200 genes related to LC and 205 related to PCa (see the Appendix for a
complete list). Some overlap exists between LC and PCa genes: there are only 167 unique
LC genes and 162 unique PCa genes.

We found that compared with all other genes, LC-related genes had a higher IV in normal
lung tissue but not in normal prostate tissue. Likewise, the PCa-related genes had a higher
IV in normal prostate tissue but not in normal lung tissue (Figure 1).

In addition, we assessed whether the genes with higher IV in normal tissue were expressed
differently in tumorous and adjacent normal tissues. We estimated the correlation between
the IV in normal tissue and the absolute difference in gene expression between tumor and
adjacent normal tissues (Figure 2). The correlation between those two variables was positive
for both LC (R = 0.43, N = 54,675, P << 10−6) and PCa (R = 0.26, N = 37,690, P << 10−6).
The observed correlations can not be explained by the effect of sampling from a population
with a higher variance. Indeed, aside from the correlation between the IV in normal tissue
and absolute differences in expression levels, we have also noted a positive correlation
between the IV in normal tissue and absolute values of t-statistics for both LC (R = 0.23, N
= 54,675, P << 10−6) and PCa (R = 0.06, N = 37,690, P << 10−6). These positive
correlations are counterintuitive because if we assume the same level of differentiation, e.g.
the same level of fold change for high and low IV genes the absolute values of t-statistics are
expected to be lower (not higher as we have observed) for genes with higher IV.

3.2. Genes with the highest IV in normal tissues cluster in a small number of functional
categories

We performed functional annotation of the top 5% of the genes with the highest IV. The
analysis was done separately for normal lung and normal prostate tissues. The top 5% was
used because our previous analyses indicated that this percentage is optimal in terms of
robustness of clustering and in the proportion of false positives included in the annotation
list.13,14 For LC genes, the top functional categories were “extracellular region,”
“inflammation,” “angiogenesis,” “chemotaxis,” and “cell adhesion,” whereas for the PCa
genes, they were “actin cytoskeleton” and “cell adhesion.” It is interesting that we
previously identified those same functions by analyzing the genes that are expressed
differently in normal versus tumorous tissue.13-15 The overlap at the functional level was
partially driven by the overlap at the gene level, though at the functional level it was more
prominent, similarly as it was found in our previous study.15 .

3.3. IV is higher in tumor than it is in adjacent normal tissue
Overall, the IV in gene expression in tumorous tissue was higher than it was in adjacent
normal tissue: for lung cancer, the mean ratio between variance in tumor and that in normal
tissue was 3.29 ± 0.04, and for prostate cancer, it was 1.28 ± 0.01. In both cases, the mean
ratio was greater than 1, which is to be expected under the null hypothesis.

3.4. For the cancer-related genes, IV increases more than it does in the other genes
For the LC-related genes, the ratio of the IV between lung tumor and adjacent normal tissue
was 5.76 ± 0.82. All other (not LC-related) genes showed a smaller ratio: 3.28 ± 0.04. The
increase is tissue specific: for the PCa-related genes, the ratio of the IV between lung tumor
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and normal lung was 4.21 ± 0.56, which was not significantly different for all other genes in
the dataset: t test = 1.66, N = 37,690, P < 0.21 (Figure 3, left).

For the PCa-related genes, the mean ratio of the IV between tumorous and adjacent normal
prostate tissue was 1.41 ± 0.06, which is significantly higher than the mean ratio for all other
genes (1.24 ± 0.01; t test = 2.17, N = 37,690, P < 0.01). Again, the difference between those
two ratios was tissue specific: the mean ratio for LC-related genes in prostate tissue was
1.33 ± 0.05, which was not statistically significant from that for all other genes: t test = 0.66,
N = 37,690, P < 0.84 (Figure 3, right).

3.5. Cancer-related genes can be identified by analyzing the IV
We took the top 1% of the genes that had the highest increase in IV in prostate tumor
compared with that in the adjacent normal tissues. From among those genes, we identified a
subset of 96 that had no significant differences in mean expression level between normal
and tumorous tissues (i.e., P >0.05). It is important to note that those genes are ignored by a
traditional analysis that compares mean expression values.

To assess whether the IV can be used to identify cancer-related genes, we estimated the
correlation between the expression level of those 96 genes in tumor and the Gleason score
(GS) in PCa patients. GS is a key clinical characteristic that is associated with PCa
progression and patients’ survival.16 We found that the absolute value of the Spearman’s
correlation coefficient (ρ) was 0.14 ± 0.01 for the 96 genes, which was significantly higher
than that for other genes in the human genome: ρ = 0.10 ± 0.01, P < 0.001. The top genes we
identified as being strongly associated with GS are CD74, EEF1A1, HLA-F, MAPK12,
NFYC, RCL1, RPL9, RPS23, RPS3A, TFDP1, TREM2, and ZNF789.

A similar approach was used to identify LC-related genes. We took 107 genes with the
highest increase in IV and no significant difference in mean expression between normal and
tumorous tissues. Those genes were more likely than all other genes in the dataset to be
differently expressed in different histologic types of LC: adenocarcinoma, squamous cell
carcinoma, and large-cell carcinoma. The average F statistic was 10.4 ± 0.9 for the LC-
related genes with increased IV in expression and 4.3 ± 0.1 for the average gene. The top
genes we identified as having a different level of expression in different histologic types of
LC are DCX, CADPS, DLK1, GRIA2, HESRG, KRTDAP, MTMR7, SEZ6L, STXBP5L, and
TPTE.

4. Discussion
Our results showed that (i) cancer-related genes have greater IV in normal tissues and (ii)
there is a greater increase in IV in the transition from normal to tumorous tissue than there is
for other (non–cancer-related) genes. We believe that tumor heterogeneity may explain both
these observations. Ample evidence exists to show that both LC17-19 and PCa20-22 are
heterogeneous at the gene expression level. This may underlie both the increased IV in the
expression of cancer-related genes and the increased IV in gene expression in the transition
from normal to tumorous tissue. Indeed, to be able to influence cancer risk, a gene must be
important for cancer development and also must have substantial IV in its expression level.
Different tumors may “use” different genes for progression. If, for example, some tumors
are driven by increased expression of gene A and other tumors by increased expression of
gene B, then the IV in expression will be increased in tumor samples for both genes.

It is more difficult, however, to explain why an elevated IV in normal tissue is higher in
cancer-associated genes than it is in all other genes in the human genome. In our preliminary
analysis (results not shown), we found that a significant fraction of genes in normal prostate
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tissue show a bimodal distribution in gene expression. For example, the distribution of the
expression of the KLK3 gene, which is crucial for prostate tumorigenesis, is bimodal in
normal prostate tissue, with non-overlapping low and high expression variants. In tumor
samples, however, only the high expression variant is present. This suggests that normal
tissue with a high level of KLK3 expression is more likely to develop tumor than is that with
a low level of its expression. Bimodal distribution is also a reason for the high variance of
KLK3 expression in normal prostate tissue. In general, we believe that selection for this kind
of preexisting variation in gene expression during carcinogenesis may cause differences in
gene expression between normal and cancerous tissues and result in the observed
association.

Our findings that interindividual heterogeneity at the gene expression level is higher in
tumors than in normal tissue suggest that there are multiple paths from the normal to
tumorous gene expression patterns. This observation does not contradict clonal expansion
hypothesis that assumes a survival of meanest (most aggressive) from originally
heterogeneous cell population. Our results simply suggest that there are many ways to be
“mean” and different tumors are “mean” in different ways, which is demonstrated by the
analysis at the gene expression level.

Overall, we found that the association between IV and ABS(T-N) was stronger for LC than
it was for PCa (Figure 2). One possible explanation for the differences may be differences in
tumor biology. Prostate tumors are usually diagnosed by screening, and many of them are
slow-growing tumors, allowing the use of a watchful waiting strategy in many cases.23 Lung
cancer, however, is typically diagnosed through symptoms and is often incurable after its
detection.24 So it is possible that for PCa we are in fact comparing the gene expression in
normal tissue with that in early stages of tumorigenesis, whereas in the case of LC, we are
comparing gene expression in normal tissue and advanced tumors. This idea is supported by
our observation of a stronger correlation between the IV in adjacent normal tissue and the
absolute differences in expression levels between primary normal and metastatic prostate
tumors (correlation coefficient ρ = 0.39, N = 37,690, P << 10−6), which is significantly
higher than the correlation between the IV in normal tissue and the absolute difference in
gene expression between tumor and adjacent normal tissues (Figure 2, R = 0.26, N = 37,690,
P << 10−6).

Our results also indicate that a more effective approach than is currently used for identifying
cancer-related genes will include both the traditional approach of comparing the mean gene
expression levels and an analysis of the IV. The key remaining question is how best to
combine these approaches.

5. Conclusions
The results of this analysis suggest that when combined with the traditional, mean-based
approach to identifying cancer-related genes, the IV-based approach can facilitate the
detection of cancer-related genes that are missed by the traditional approach.
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Appendix A

List of the prostate cancer (PCa)– and lung cancer (LC)–related genes identified by the
KnowledgeNet approach, including their EntrezGene numbers.

Cancer Gene Symbol EntrezGene confidence score(SD)

PCa AR 367 2.663

PCa KLK3 354 0.785

PCa CDKN1B 1027 0.493

PCa AMACR 23600 0.478

PCa IGFBP3 3486 0.464

PCa PTEN 5728 0.401

PCa TP53 7157 0.387

PCa NOS3 4846 0.385

PCa CDH1 999 0.382

PCa SRD5A2 6716 0.362

PCa ELAC2 60528 0.326

PCa EGFR 1956 0.311

PCa BCL2 596 0.304

PCa TGFBI 7045 0.301

PCa NKX3-1 4824 0.277

PCa IL6 3569 0.258

PCa GSTP1 2950 0.249

PCa IGF1 3479 0.245

PCa GDF15 9518 0.207

PCa VEGFA 7422 0.186

PCa MAPK8 5599 0.181

PCa VDR 7421 0.178

PCa CDKN1A 1026 0.174

PCa ESR2 2100 0.166

PCa TRPS1 7227 0.165

PCa PTGS2 5743 0.161

PCa MSH2 4436 0.157

PCa MSR1 4481 0.156

PCa SDC1 6382 0.154

PCa ACPP 55 0.153

PCa SKP2 6502 0.15

PCa CD82 3732 0.148

PCa KLK11 11012 0.146

PCa ITGB3 3690 0.145

PCa PPARG 5468 0.142

PCa ERBB3 2065 0.138

PCa MET 4233 0.138

PCa MTA1 9112 0.138

PCa PCA3 50652 0.138
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Cancer Gene Symbol EntrezGene confidence score(SD)

PCa LEP 3952 0.137

PCa PSCA 8000 0.137

PCa PRKCE 5581 0.135

PCa BMP5 653 0.134

PCa HIF1A 3091 0.134

PCa SMAD4 4089 0.132

PCa ERBB2 2064 0.131

PCa STAT3 6774 0.128

PCa JUND 3727 0.127

PCa FOLH1 2346 0.125

PCa STEAP1 26872 0.125

PCa BMP2 650 0.124

PCa ALOX15B 247 0.123

PCa ID1 3397 0.122

PCa MMP9 4318 0.122

PCa CXCL12 6387 0.12

PCa FGF8 2253 0.12

PCa PTHLH 5744 0.118

PCa RNF14 9604 0.118

PCa XRCC1 7515 0.117

PCa KLK2 3817 0.115

PCa TIMP1 7076 0.113

PCa ALOX12 239 0.112

PCa SLC30A4 7782 0.111

PCa OR51E2 81285 0.11

PCa GSK3B 2932 0.108

PCa ITGAV 3685 0.108

PCa RCBTB2 1102 0.107

PCa NAT2 10 0.106

PCa CHEK2 11200 0.105

PCa KLK10 5655 0.105

PCa PRKCA 5578 0.104

PCa MAP2K5 5607 0.102

PCa ANP32C 23520 0.101

PCa CCND2 894 0.101

PCa GSTM1 2944 0.099

PCa SRD5A1 6715 0.098

PCa RNASEL 6041 0.097

PCa CARM1 10498 0.096

PCa RXRA 6256 0.096

PCa CHGA 1113 0.094

PCa PIM1 5292 0.094
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Cancer Gene Symbol EntrezGene confidence score(SD)

PCa CCND1 595 0.092

PCa ANP32D 23519 0.091

PCa BAX 581 0.09

PCa ENG 2022 0.09

PCa NRP1 8829 0.09

PCa EZH2 2146 0.088

PCa FLT4 2324 0.088

PCa KLK14 43847 0.088

PCa NFKB1 4790 0.088

PCa BCL2L1 598 0.087

PCa HIP1 3092 0.087

PCa REPS2 9185 0.087

PCa KLK4 9622 0.086

PCa SSTR2 6752 0.084

PCa HGF 3082 0.083

PCa HOXC8 3224 0.083

PCa IGFBP7 3490 0.083

PCa IL8 3576 0.083

PCa NCOR2 9612 0.083

PCa DAB2IP 153090 0.082

PCa TMPRSS2 7113 0.082

PCa CYP1A1 1543 0.081

PCa GAGE1 2543 0.081

PCa GAGE12I 26748 0.081

PCa GAGE2C 2574 0.081

PCa GAGE2E 26749 0.081

PCa GAGE3 2575 0.081

PCa GAGE4 2577 0.081

PCa GAGE5 2576 0.081

PCa GAGE6 2578 0.081

PCa GAGE7 2579 0.081

PCa PAGE1 8712 0.081

PCa CFLAR 8837 0.079

PCa IGFBP2 3485 0.079

PCa ITGA6 3655 0.079

PCa NCOA3 8202 0.079

PCa CAV1 857 0.078

PCa LIMK1 3984 0.077

PCa ESR1 2099 0.076

PCa FASN 2194 0.076

PCa MMP14 4323 0.076

PCa MMP2 4313 0.076
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Cancer Gene Symbol EntrezGene confidence score(SD)

PCa STEAP2 261729 0.076

PCa TERT 7015 0.076

PCa CLU 1191 0.075

PCa RASSF1 11186 0.075

PCa C15orf21 283651 0.074

PCa MMP26 56547 0.074

PCa SULT2B1 6820 0.074

PCa ALOX5 240 0.073

PCa TRPV6 55503 0.073

PCa ITGA3 3675 0.072

PCa CTAG1B 1485 0.071

PCa GRN 2896 0.071

PCa PNN 5411 0.071

PCa PRKD1 5587 0.071

PCa SERPINB5 5268 0.071

PCa SFN 2810 0.07

PCa GHRH 2691 0.069

PCa TNFSF10 8743 0.069

PCa ALOX15 246 0.068

PCa MCAM 4162 0.068

PCa SPDEF 25803 0.067

PCa SSTR1 6751 0.067

PCa SSTR3 6753 0.067

PCa ST7 7982 0.067

PCa TIMP2 7077 0.066

PCa ZNF185 7739 0.066

PCa GHRHR 2692 0.065

PCa KLK13 26085 0.065

PCa KLK15 55554 0.065

PCa SFRP4 6424 0.065

PCa CDC25A 993 0.064

PCa CDKN2A 1029 0.064

PCa LSM1 27257 0.063

PCa PCAP 7834 0.063

PCa SREBF1 6720 0.063

PCa SREBF2 6721 0.063

PCa TRIM68 55128 0.063

PCa BTG2 7832 0.062

PCa CASP8 841 0.062

PCa EEF1A1 1915 0.062

PCa MED15 51586 0.062

PCa OGG1 4968 0.062
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Cancer Gene Symbol EntrezGene confidence score(SD)

PCa RARRES1 5918 0.062

PCa APOE 348 0.061

PCa CYP27B1 1594 0.061

PCa HPN 3249 0.061

PCa PPFIA2 8499 0.061

PCa TEGT 7009 0.061

PCa CPA4 51200 0.06

PCa EPHA2 1969 0.06

PCa IGFBP1 3484 0.06

PCa PROS1 5627 0.06

PCa EIF3H 8667 0.059

PCa SLC43A1 8501 0.059

PCa AKT1 207 0.058

PCa FXYD3 5349 0.058

PCa KLF6 1316 0.058

PCa TNFRSF11B 4982 0.058

PCa ITGB4 3691 0.057

PCa PLK1 5347 0.057

PCa RORA 6095 0.057

PCa WFDC1 58189 0.057

PCa CSMD1 64478 0.056

PCa NUDC 10726 0.056

PCa PMEPA1 56937 0.055

PCa TGFB1I1 7041 0.055

PCa CXCR4 7852 0.054

PCa PAWR 5074 0.054

PCa NCOA4 8031 0.053

PCa ADAMTS13 11093 0.052

PCa CSRP2 1466 0.052

PCa GJA1 2697 0.052

PCa GJB1 2705 0.052

PCa IL10 3586 0.052

PCa PARP1 142 0.052

PCa PDZD2 23037 0.052

PCa SEMG1 6406 0.052

PCa FLT1 2321 0.051

PCa MT3 4504 0.051

PCa TPTE2 93492 0.051

PCa VIM 7431 0.051

PCa FGF1 2246 0.05

LC EGFR 1956 2.69

LC GSTM1 2944 0.857
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Cancer Gene Symbol EntrezGene confidence score(SD)

LC SKP2 6502 0.722

LC TP53 7157 0.684

LC CXCR4 7852 0.673

LC GSTP1 2950 0.619

LC CYP1A1 1543 0.568

LC ERBB2 2064 0.533

LC RASSF1 11186 0.462

LC CADM1 23705 0.445

LC MPO 4353 0.404

LC PTGS2 5743 0.343

LC CDKN2A 1029 0.343

LC IGFBP3 3486 0.329

LC KRAS 3845 0.306

LC IL1B 3553 0.305

LC GSTT1 2952 0.29

LC BIRC3 330 0.287

LC BIRC2 329 0.286

LC MMP2 4313 0.244

LC XIAP 331 0.235

LC KRT8 3856 0.229

LC FHIT 2272 0.229

LC VEGFA 7422 0.22

LC BCL2 596 0.219

LC OGG1 4968 0.217

LC CYP2A13 1553 0.21

LC PLAUR 5329 0.205

LC PLAU 5328 0.205

LC LGALS3 3958 0.205

LC CDH1 999 0.2

LC FASN 2194 0.189

LC MGMT 4255 0.188

LC NQO1 1728 0.185

LC RALBP1 10928 0.183

LC ING1 3621 0.183

LC LGALS3BP 3959 0.182

LC SEMA3B 7869 0.17

LC IGF1 3479 0.169

LC FAS 355 0.167

LC IL8 3576 0.166

LC MYO18B 84700 0.161

LC CDKN1B 1027 0.155

LC GRP 2922 0.154
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Cancer Gene Symbol EntrezGene confidence score(SD)

LC CTNNB1 1499 0.154

LC ASCL1 429 0.15

LC SLPI 6590 0.146

LC NKX2-1 7080 0.145

LC AREG 374 0.144

LC SOCS3 9021 0.142

LC MET 4233 0.142

LC CDH13 1012 0.142

LC SFTPB 6439 0.14

LC ERCC2 2068 0.14

LC CXCL12 6387 0.138

LC MMP9 4318 0.137

LC MAPK1 5594 0.137

LC CTAG2 30848 0.137

LC PTEN 5728 0.136

LC CASP8 841 0.136

LC SMARCA4 6597 0.135

LC RBL2 5934 0.133

LC TUBB2A 7280 0.131

LC PRKCE 5581 0.129

LC ITGA9 3680 0.128

LC RHOA 387 0.127

LC MAGEC2 51438 0.124

LC FEN1 2237 0.123

LC COX17 10063 0.116

LC ABCG2 9429 0.115

LC VEGFC 7424 0.113

LC RBM6 10180 0.108

LC PRKCA 5578 0.108

LC FGF2 2247 0.108

LC CDKN2B 1030 0.106

LC TYMS 7298 0.105

LC THPO 7066 0.104

LC DLC1 10395 0.103

LC JUP 3728 0.102

LC ELAVL4 1996 0.102

LC TOP1 7150 0.101

LC TSPYL2 64061 0.1

LC PLUNC 51297 0.099

LC CTSB 1508 0.099

LC CSF2 1437 0.098

LC TOP2A 7153 0.097
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Cancer Gene Symbol EntrezGene confidence score(SD)

LC RARB 5915 0.096

LC NME1 4830 0.095

LC MYC 4609 0.094

LC SFTPD 6441 0.093

LC XRCC1 7515 0.091

LC CAV1 857 0.091

LC IL10 3586 0.089

LC UBA7 7318 0.088

LC MVP 9961 0.088

LC AKR1C1 1645 0.088

LC TXN 7295 0.086

LC KIT 3815 0.086

LC ADH5 128 0.086

LC CYR61 3491 0.085

LC ALDH3A1 218 0.085

LC TERT 7015 0.084

LC SMAD2 4087 0.084

LC ZMYND10 51364 0.083

LC RB1 5925 0.083

LC CDKN1A 1026 0.083

LC PRDX1 5052 0.082

LC MYCL1 4610 0.082

LC RRM1 6240 0.081

LC TUSC1 286319 0.08

LC TP63 8626 0.08

LC EPHX1 2052 0.08

LC TNC 3371 0.079

LC PPARG 5468 0.079

LC IFRD2 7866 0.079

LC GRPR 2925 0.079

LC LRP1B 53353 0.078

LC CACNA2D2 9254 0.078

LC CYP3A4 1576 0.077

LC CASP9 842 0.077

LC OPRM1 4988 0.076

LC HGF 3082 0.076

LC MARCKSL1 65108 0.074

LC ABCB1 5243 0.074

LC CD34 947 0.073

LC RAD1 5810 0.072

LC HYAL2 8692 0.072

LC SEMA3F 6405 0.071
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Cancer Gene Symbol EntrezGene confidence score(SD)

LC NBN 4683 0.071

LC APEH 327 0.071

LC MIF 4282 0.068

LC IL10RA 3587 0.068

LC HYAL1 3373 0.067

LC AIFM1 9131 0.067

LC HIF1A 3091 0.066

LC DPP4 1803 0.066

LC MAX 4149 0.065

LC EPB41L3 23136 0.065

LC CASP5 838 0.065

LC CASP3 836 0.065

LC TUSC4 10641 0.064

LC REST 5978 0.064

LC PKM2 5315 0.064

LC LATS2 26524 0.064

LC HYAL3 8372 0.064

LC HPSE 10855 0.063

LC RET 5979 0.062

LC MUC16 94025 0.062

LC CEACAM5 1048 0.062

LC PTENP1 11191 0.061

LC IGF2 3481 0.061

LC TMEM115 11070 0.06

LC SLIT2 9353 0.06

LC NAT6 24142 0.06

LC MALAT1 378938 0.06

LC DMP1 1758 0.06

LC CYP2C9 1559 0.06

LC CYB561D2 11068 0.06

LC WEE1 7465 0.059

LC TAP1 6890 0.059

LC SPARC 6678 0.059

LC RAPGEF1 2889 0.059

LC FASLG 356 0.059

LC ENO2 2026 0.059

LC DMBT1 1755 0.059

LC CTSL1 1514 0.059

LC CCNB1 891 0.059

LC TPX2 22974 0.058

LC TGFB1 7040 0.058

LC SPON2 10417 0.058
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Cancer Gene Symbol EntrezGene confidence score(SD)

LC CD9 928 0.058

LC ATF2 1386 0.058

LC CCDC34 91057 0.056

LC PTGER1 5731 0.055

LC CPB2 1361 0.054

LC CHFR 55743 0.054

LC CD44 960 0.054

LC ZBTB1 22890 0.053

LC TMED8 283578 0.053

LC TEX10 54881 0.053

LC RSL1D1 26156 0.053

LC PDLIM5 10611 0.053

LC NOL11 25926 0.053

LC NBPF3 84224 0.053

LC MED10 84246 0.053

LC KIAA0101 9768 0.053

LC GAPDH 2597 0.053

LC FAM60A 58516 0.053

LC DIABLO 56616 0.053

LC C18orf10 25941 0.053

LC ATAD2 29028 0.053

LC TNFSF10 8743 0.052

LC PYCARD 29108 0.052

LC STAT3 6774 0.051

LC SCGB3A1 92304 0.051

LC MAP3K1 4214 0.051

LC AVP 551 0.051

LC ABCC5 10057 0.051

LC DDIT3 1649 0.05

LC ADCYAP1 116 0.05
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Figure 1.
(Left) Interindividual variance (IV) in normal lung (or prostate) tissue for the lung (or
prostate) cancer-related and all other genes. (Right) IV in the adjacent normal lung/prostate
tissue for the prostate/lung cancer-related and all other genes when tissue type is different
from gene type.
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Figure 2.
An association between IV in adjacent normal tissue and absolute differences in the
expression levels between normal tissue (N) and tumor (T). Each dot represents a probe. The
red line is a linear regression curve, and the blue line is a moving average computed for the
250 closest probes in terms of variance. There is a positive correlation between IV and
absolute differences in the expression levels between N and T in both lung (left) and prostate
(right) cancers.
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Figure 3.
Ratios of IVs between tumor and adjacent normal tissues: LC-related, PCa-related, and all
other genes. Left panel shows lung, and the right panel shows prostate tissues. Note that the
ratio for PCa genes in lung tissue seems to be slightly elevated, most likely due to overlap
between PCa- and LC-related genes. The same is true for LC genes in prostate tissue.
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Table 1

Summary of the studies used in our analysis

Cancer type GEO ID No. of adjacent
normal tissues

No. of tumor
tissues No. of probes

Lung 19188 65 91 54,675

Prostate 6919 63 66 12,553
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