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To tackle the onset of big data, visual ana-

lytics (VA) seeks to marry the human in-

tuition of visualization with mathematical 

models’ analytical horsepower. A critical question 

is, how will humans interact with and steer these 

complex mathematical models? Initially, users ap-

plied direct manipulation to such models in the 

same way they applied it to simpler visualizations 

in the premodel era—by using control panels to 

directly manipulate model parameters. However, 

opportunities are arising for direct manipulation 

of the model outputs, where the users’ thought 

processes take place, rather than the inputs. Here 

we present this new agenda for direct manipula-

tion for VA.

Direct Manipulation for  
Information Visualization
Direct manipulation speci�es three principles for 

interaction design for information visualization:1

 ■ continuous representation of the object of in-

terest,

 ■ physical actions or labeled button presses in-

stead of complex syntax, and

 ■ rapid incremental reversible operations whose 

impact on the object of interest is immediately 

visible.

Typically, these principles are applied through a con-

trol panel, containing visual widgets such as sliders, 

buttons, or query �elds, coupled to the parameters 

of a visual representation in the main view. For ex-

ample, in Spot�re, analysts can choose attributes 

to map to available visual encodings (node color, 

size, shape, and so on); select variables for the x-, 

y-, and z-axes; and adjust sliders to �lter by ranges 

on speci�c data dimensions (see Figure 1). We con-

tend that for VA, with the introduction of complex 

mathematical models behind the visualizations, 

direct-manipulation interaction has the opportu-

nity to evolve beyond the use of control panels.

Spatializations for Sensemaking
Spatializations create a visual representation of in-

formation in which data items’ relative proximity 

approximately depicts their similarity. (That is, the 

“near ≈ similar” metaphor holds true.) For exam-

ple, in Figure 2, clusters of documents represent 

themes or topics of interest. Such spatializations 

can be generated manually or computationally.

Manual Generation 
Analysts can leverage manually generated spatial lay-

outs to aid their analyses. For example, by organizing 

spatial layouts, they can externalize their insights 

about a dataset on the basis of the information’s 

positions.2 They frequently organize such layouts 

according to complex schemas using mixed meta-

phors, often organized topically according to the 

semantics relevant to their current analysis needs.

Analysts use tools that support manually con-

structing spatializations to visually synthesize hy-

potheses.3 That is, they directly manipulate spatial 

structures (often mixing clusters, timelines, con-

nections, geography, order of discovery, process 

waypoints, and so on) that help reveal their sense-

making process. Such informal relationships in 
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the spatial layout are bene�cial because they don’t 

require analysts to overformalize relationships 

too early in the process. This process of gradually 

increasing relationships’ formality is called incre-

mental formalism.4

Computational Generation 
Computationally generated spatializations are 

driven by the recent emphasis on big data and in-

volve complex mathematical models. These models, 

combined with user intuition and visualizations, 

Figure 1. Typical use of direct manipulation. The Spot�re scatterplot view can represent several dimensions 

of the data through spatial position and visual encodings; users manipulate it through buttons and sliders on 

control panels.

Figure 2. The In-Spire Galaxy View represents documents as dots. Each cluster of dots represents a group of 

similar documents.
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form the basis for VA, in which analysts operate 

dynamic tools that facilitate analysis and sense-

making of large, complex datasets.5 Models lever-

aged in VA tools include, but aren’t limited to, those 

for entity extraction, topic modeling, link analysis, 

dimensionality reduction, clustering, and labeling.

These models employ various distance metrics to 

measure the similarity between data objects. Ana-

lysts can use these metrics to spatialize data. For 

example, unstructured text can be represented as 

a “bag of words”—high-dimensional data in which 

each dimension is a unique keyword or phrase in 

the text. For example, in In-Spire’s Galaxy View 

layout, nearby points represent similar documents 

(see Figure 2).6 This helps analysts recognize rela-

tionships between documents and between clus-

ters of documents.

Designing User Interaction for Spatializations
For computationally generated spatializations, 

the question arises of how to design user interac-

tion. The complex statistical models that com-

pute similarity using a combination of algorithms 

have numerous parameters to tune on the basis 

of the analysis’s context. For example, for visual 

text analysis, users must directly adjust keyword 

weights (measures of importance for each keyword 

and how much it in�uences the overall layout), 

add or remove documents and keywords, or pro-

vide more information on how to parse the docu-

ments for keyword entities upon import.

One such spatialization for streaming text data 

is Streamit, in which users explore a dataset by 

directly manipulating keyword weights.7 Similarly, 

iPCA (see Figure 3) is an interactive visualization 

tool that uses principal component analysis (PCA) 

to reduce high-dimensional data to a 2D plot.8 

Users employ sliders and other visual controls to 

directly adjust numerous model parameters, such 

as individual eigenvalues, eigenvectors, and other 

PCA components. In this way, they can observe 

how the visualization changes. This lets them gain 

insight into a dataset, assuming they know enough 

about the underlying PCA model to understand 

the implications of changing model parameters.

The straightforward application of direct ma-

nipulation suggests creating graphical controls for 

each parameter. This use of control panels might 

have been appropriate for early information vi-

sualizations in which the controls mapped natu-

rally to dimension �lters and plot axes. However, 

it might be problematic for more complex models 

used in VA applications.

This approach has three fundamental usabil-

ity problems. First, many analysts aren’t experts 

in complex mathematical models and thus don’t 

understand the meaning of the parameters for the 

interactive controls. Second, analysts think about 

and understand the documents at the semantic 

level, yet the interactive controls for the models 

operate at the lower syntactic level of the model 

parameters. This creates a mismatch. Third, when 

analysts haven’t yet gained a good understanding 

of the documents and their insights are still infor-

mal, they don’t yet have a basis for expressing their 

inputs into the formal model parameters. These 

problems arise because the focus of direct manipu-

lation in the computationally generated spatializa-

tions (the model parameters) differs signi�cantly 

from that in manually generated spatializations 

(the documents).

Suppose an analyst recognizes a small set of 

documents in a spatialization that she believes 

are related to a semantic topic X of her interest, 

but the current layout doesn’t re�ect her hypoth-

esized similarity. She directly increases the weight 

of term X in the control panel (for example, by di-

rectly manipulating the layout parameters). How-

ever, this has no effect because X doesn’t appear 

in the documents.

Alternatively, she could move the documents 

together herself (for example, by directly manipu-

lating the layout output). She could then receive 

feedback from the models concerning other inter-

esting keywords that do relate to those documents. 

Also, the layout could be automatically updated to 

include other relevant documents. This would en-

able her to gain insight that helps to better formal-

ize her understanding of X.

This approach presents an opportunity to evolve 

the design of user interaction beyond control pan-

els to achieve direct-manipulation VA. The need 

exists to cooperatively integrate computationally 

Figure 3. iPCA (Interactive Principle Component 

Analysis) provides a dimension reduction algorithm 

that users manipulate through buttons and sliders in 

a control panel.8 (Source: Remco Chang; used with 

permission.)
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generated spatializations with those manually 

generated. This would shift the focus of interac-

tion from control panels for model input param-

eters to direct manipulation of the model outputs 

as represented by the spatialization itself.

Direct Manipulation of Spatializations
A trend is emerging in how VA systems that use 

complex statistical models handle interaction. This 

trend stems from letting users directly manipulate 

the data in a spatialization to guide and improve 

the layout according to their interests or inter-

pretations. For example, to indicate that two data 

points in a spatialization differ more than is com-

putationally indicated, users can move them apart 

directly in the view. So, the model learns about the 

dissimilarity and updates the spatialization to re-

�ect the desired structure of the data. Thus, users 

can employ familiar direct-manipulation interac-

tions within familiar spatialization metaphors, en-

abling them to interact with complex, unfamiliar 

mathematical models.

Within the spatial metaphor, we see three levels 

of interactivity that motivate this emerging con-

cept of direct-manipulation VA. These levels are 

based on the extent to which machine learning 

steers the model.

The �rst level is direct manipulation of spatial 

constraints. These interactions let users place (and 

move) spatial constraints directly in the spatial-

ization. For example, the Dust & Magnet tool lets 

users place a series of “magnets” representing spe-

ci�c data dimensions or keywords in the spatial-

ization.9 Data objects rich in those dimensions are 

more attracted to the magnets. Such direct ma-

nipulation enables users to guide the spatialization 

layout by placing additional query-like attractors 

in the space.

The second level is direct manipulation of pa-

rameter weighting. Such data-centric interactions 

leverage metric-learning techniques to adjust the 

weighting schema of the dimensions or features 

used in distance metric calculations.10 Speci�cally, 

updates to the weighting scheme re�ect the fea-

tures emphasized by the user’s interaction (the 

weight of relevant features of interest increases, 

and the weight of other features decreases). The 

weights are adjusted incrementally on the basis of 

heuristics associated with each type of interaction. 

For example, ForceSpire tightly couples several in-

teractions related to text analytics, such as reposi-

tioning documents, highlighting text, annotating, 

and searching, to the underlying dimension reduc-

tion model.10 For instance, highlighting a phrase 

in a document that contains a set of keywords 

increases those keywords’ weight in the distance 

metric.

The third level is direct manipulation for model 

steering. These interactions leverage machine 

learning to calculate the amount of change to each 

feature in the weighting schema. Basically, the VA 

application receives an updated spatial layout from 

the user and, given that layout, inverts the model 

to determine the updated model parameters. This 

might require an optimization search process to 

�nd the best overall �t. Then, the application can 

apply the updated parameters in the forward ap-

plication of the model to show how the updated �t 

changes the layout. For example, observation-level 

interaction11 and Dis-Function12 let users move 

groups of data points in a multidimensional-scaling 

layout closer together or farther apart to guide ma-

chine learning and explore alternative structures 

in the data.

In summary, all these interactions let users in-

teract directly with the information in context. 

Over continuous use, the spatialization updates to 

re�ect the incremental insights the user generated 

(see Figure 4). This creates a symbiotic relationship 

between the user’s sensemaking process and the 

system’s machine learning.

Opportunities and Challenges
The following areas provide opportunities and pose 

challenges for research on direct-manipulation VA.

Figure 4. A ForceSpire spatialization’s progression. As 

the user gains insight, ForceSpire’s model learns to 

emphasize relevant features.
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Model Steering
The steering of mathematical models has become 

a popular way to adapt those models’ visual output 

to the user’s domain, task, and work�ow. Users 

can augment the statistical determination of im-

portant features and characteristics in a dataset. 

Because the resulting visualizations include the 

user’s domain expertise, they become more appli-

cable to the domain.

Figure 5 highlights the changes to the visualiza-

tion pipeline necessary to support such direct ma-

nipulation. In the traditional pipeline (see Figure 

5a), control panels directly adjust model input pa-

rameters. In the new pipeline (see Figure 5b), direct 

manipulation of the spatialization requires invert-

ing the model to interpret the action’s intent, as 

we mentioned before. The pipeline maps the inter-

action backward by interpreting the actions and 

adjusting the parameter data—for example, learn-

ing dimension weights. There are many possible 

approaches to this interpretation step. Addition-

ally, using multiple models would further compli-

cate the pipeline, necessitating a many-to-many 

mapping of interactions to models.

This area involves two main challenges. First, 

how do you invert models and map interactions 

to the parameter-learning process? Second, how do 

you incorporate multiple models into the visual-

ization pipeline?

Feature Selection
A common stage of spatialization is feature selec-

tion. Features can be selected algorithmically from 

most forms of data, such as extracting keywords 

from text, extracting visual and audio signatures 

from images and sound, and so on. The purpose 

is to represent otherwise unstructured data as 

high-dimensional. For example, a VA application 

could use a number of natural-language-processing 

models to select keywords or key phrases from un-

structured text. These models determine keywords 

that are statistically more expressive than others, 

for that dataset. A frequent additional step selects 

features to optimize the signal-to-noise ratio.

This area involves two challenges. First, how do 

you incorporate users’ domain expertise, which 

includes features that might not be in the dataset? 

Second, how do you interactively combine features 

from different data types (for example, text, audio, 

and video)?

Feature Extraction
Another common stage of spatialization is feature 

extraction. A high-dimensional representation must 

be reduced to a low-dimensional spatialization. This 

process typically applies a weighting schema to the 

set of selected dimensions to emphasize each di-

mension differently when projecting it onto the 

2D layout. Because the low-dimensional represen-

tations are inherently ambiguous representations 

of high-dimensional data, interactions in these 

low-dimensional spaces can also be ambiguous. 

Multiple inferences might be possible, requiring 

assumptions or more user input.

The challenge here is, how do you accurately 

interpret the interaction in the spatialization 

and apply the high-dimensional representation or 

weighting scheme to it?

Mixed Metaphors
As we mentioned before, users employ different 

contexts and metaphors to refer to information 

in different regions of spatializations.2,13 Common 

metaphors include topical clusters, timelines, geo-

spatial layouts, social networks, and process his-

tory. Users frequently mix these metaphors in the 

same workspace as either separate areas or nested 

schemas. These metaphors might be well de�ned 

or ambiguous and might evolve.4

This mixed-metaphor use of spatializations 

poses challenges to layout and clustering models 

that are generally designed to compute one type 

of layout across the entire visualization. So, you 

might need to combine multiple types of models 

in complex ways. For example, you could combine 

iCluster, which enables direct manipulation of a 

cluster membership model,14 with ForceSpire to 

enable dynamic layouts of clusters in space, in 

much the same way analysts currently do manu-

ally. The space’s continuity and �exibility could 

represent probabilistic membership.

This area involves two challenges. First, how do 

you detect, interpret, compute, and visualize mixed 

models that represent mixed metaphors? Second, 

Data

(a)

(b)

Algorithm Visualization User

Hard data
Algorithm
(project)

Spatialization

User
(perceive)

Soft data
Algorithm
(interpret)

User
(interact)

Figure 5. Changing the visualization pipeline to support direct-

manipulation visual analytics. (a) In the traditional pipeline, users 

interact directly with the algorithm (the blue arrow) or data (the red 

arrow). (b) In the new, bidirectional pipeline, users interact directly 

with the spatial metaphor; interaction must be interpreted through the 

model (the purple arrows).
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how do you learn which model best captures the 

user’s interaction, on the basis of the layout?

Multiscale Models
To support big data, VA can leverage multiple mod-

els that deal with information at multiple scales 

(see Table 1). For small amounts of data, you could 

display all the data points on the screen by using 

dimensionality reduction (DR) models to organize 

space. At larger scales, cluster models can aggre-

gate data into fewer groups that could then be 

fed to DR models. At even larger scales, informa-

tion retrieval (IR) algorithms become essential for 

streaming or sampling data to dynamically display 

only relevant data.

You can apply a consistent direct-manipulation 

approach across all levels of scale by implement-

ing a system of mutual learning across models. 

For example, the IR model can query for data rele-

vance based on the dimension weights that the DR 

model learned. Likewise, the IR model can learn 

from user actions such as placing uninteresting 

data in the trash.

This area involves two challenges. First, how do 

you coordinate direct manipulation to steer models 

across multiple levels of scales for big data? Second, 

how do you enhance algorithm performance to 

support real-time direct manipulation of big data?

Implicit and Explicit User Interaction
With direct-manipulation VA, the system must 

infer user intentions from user interactions. How-

ever, one action could have multiple possible in-

tentions. For example, dragging a document out 

of a cluster might indicate that it didn’t belong 

in that cluster, that the user is establishing a new 

cluster with new nearby documents, or nothing 

at all. More implicit or explicit user input might 

be needed to accurately represent the user’s actual 

reasoning process. The amount of approximate or 

speci�c input needed might vary.

These options imply the possibility of many pa-

rameters for the interaction. Too much explicit 

input might pull the analyst out of his or her cog-

nitive zone. Analysts should be able to focus on 

the task, not the tool, using interaction to support 

their reasoning process.

This area involves two challenges. First, how can 

the user interface balance explicit and implicit user 

interaction for model feedback? Second, how can 

users easily undo or revise direct-manipulation 

interactions?

Multiparameter Interaction
Novel input modalities might offer more powerful 

ways for users to express their complex intentions. 

For example, multitouch interfaces can provide 

richer interaction for individuals and groups by 

providing more simultaneous input points with 

which to express parameters. For instance, in the 

machine-learning step, a user could move a data 

point with one hand while specifying target data 

points with the other hand to indicate which simi-

larity relationships he or she intends. The added 

Table 1. Using multiscale models to address big-data challenges for direct-manipulation visual analytics (VA).

Level of scale

Display Database Cloud

Usage description The system lays out the data 

according to the user’s spatial-

organization feedback.

The system aggregates clusters 

of data in the layout according to 

the user’s grouping feedback.

The system uses the layout 

to query very large data and 

retrieve additional relevant data.

Data scale of manipulation 

(no. of data items)

<1 million <1 billion <1 trillion

Algorithms Dimensionality reduction Clustering

Classi�cation

Topic modeling

Information retrieval

Sampling

Streaming

Visualization Spatial layout

Visual proximity = similarity

Clusters

Hierarchy

Containment

Visual aggregate = similarity

Salience

Depth

Visual salience = similarity

Interaction Moving items Grouping items

Piling

Deleting items

Searching

Interactive feedback for 

machine learning

Similarities

Dimension weights

Object weights

Cluster counts and contents

Centroid landmarks

Labels

Object relevance

Keyword dimensions and weights
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bandwidth of these multitouch interactions can 

more accurately de�ne such manipulations’ ana-

lytical reasoning.

Large, high-resolution displays can provide more 

area with which to construct spatial relationships. 

They give the analyst real, meaningful space as a 

communication medium and as common ground 

between the human and model. For example, dis-

tances between documents can imply a similarity 

measure, whereas the absolute location of infor-

mation can serve as a landmark for themes and 

concepts. Direct-manipulation VA might be the 

killer app for these novel hardware technologies.

This area involves two challenges. First, how 

much user input is needed to convey intention to 

the models? Second, how can the system provide 

real-time visual feedback regarding the interpreted 

actions?

Bias
Model steering potentially introduces user biases 

into visualizations. Researchers have attempted 

to address this challenge. For example, captur-

ing interaction data over time10 can reveal new 

keywords added to the model. The distribution of 

weight between these user-derived keywords and 

those extracted from the data might indicate how 

much the user’s domain expertise in�uences the 

spatialization.

Furthermore, the temporal history of keyword 

weighting can indicate trends in the analysis. 

Converging trends in the weighting of entities 

might indicate con�rmation bias, whereas diverg-

ing weights might represent an analysis involving 

multiple hypotheses. In particular, it might be pos-

sible to quantify speci�c biases such as con�rma-

tion bias15 and alert users to them in real time. 

Biases are also opportunities to steer algorithms 

toward a user’s expression of interest, but down-

sides such as over�tting and missing other inter-

esting insights could occur. Such data could also 

be used to compare multiple analysts’ processes or 

support collaborative methods.

The challenge here is, how do you illuminate 

the potential bias associated with introducing the 

user’s domain expertise into the model?

Direct manipulation is familiar to informa-

tion visualization designers, given graphical 

controls over direct visual mappings (for example, 

x- and y- axes on scatterplots, dynamic queries of 

value thresholds, and so on). However, as visual-

izations employ increasingly complex mathemati-

cal models, interaction designers face the challenge 

of maintaining the intrinsic principles that make 

direct manipulation successful, while adapting it 

to control complex model parameters that might 

not clearly map to the visual representation. As 

we showed, for VA, the goal of providing direct 

manipulation isn’t fully realized through control 

panels for model parameters.

Direct manipulation of the visual representa-

tion itself (see Table 2) will enable users to test 

hypotheses, discover relationships, and input their 

domain expertise into the calculations used to 

produce the view. Tools should strive to strike a 

balance between fully automated and fully man-

ual solutions. In other words, a balance must ex-

ist between cognition and computation in VA. By 

leveraging the information-rich medium of a spa-

tial layout as the primary communication method 

between the user and system, researchers will be 

able to realize direct-manipulation VA. We hope 

that the research opportunities and challenges we 

presented will help establish a �rm science of in-

teraction in VA. 

References
 1. B. Shneiderman and C. Plaisant, Designing the User 

Interface: Strategies for Effective Human-Computer 

Interaction, 4th ed., Pearson, 2005.

 2. C. Andrews, A. Endert, and C. North, “Space to Think: 

Large, High-Resolution Displays for Sensemaking,” 

Proc. 2010 ACM Conf. Human Factors in Computing 

Systems (CHI 10), ACM, 2010, pp. 55–64.

 3. W. Wright et al., “The Sandbox for Analysis: 

Concepts and Methods,” Proc. 2006 ACM Conf. 

Human Factors in Computing Systems (CHI 06), ACM, 

2006, pp. 801–810.

 4. F. Shipman and C. Marshall, “Formality Considered 

Harmful: Experiences, Emerging Themes, and 

Directions on the Use of Formal Representations in 

Table 2. The principles of direct manipulation for information visualization are recast for VA.

Direct manipulation for information visualization1 Direct-manipulation VA

Continuous visual representations of objects 

and actions

Spatializations provide a common ground between models and cognition.

Users are shielded from the complexity of underlying models and parameters.

Physical actions or button presses instead of 

complex syntax

Interactions occur in the visual representation.

Interactions are tightly coupled between the spatialization and the underlying models.

Rapid, incremental, and reversible actions with 

immediately visible effects

Models incrementally learn from interactions throughout the analytic process.

Visual feedback of the updated model is displayed in the visual metaphor.



 IEEE Computer Graphics and Applications 13

Interactive Systems,” Computer Supported Cooperative 

Work, vol. 8, no. 4, 1999, pp. 333–352.

 5. F. Tyndiuk et al., “Cognitive Comparison of 3D 

Interaction in Front of Large vs. Small Displays,” 

Proc. 2005 ACM Symp. Virtual Reality Software and 

Technology (VAST 05), ACM, 2005, pp. 117–123.

 6. J.A. Wise et al., “Visualizing the Non-visual: Spatial 

Analysis and Interaction with Information for Text 

Documents,” Proc. 1995 IEEE Symp. Information 

Visualization (InfoVis 95), IEEE CS, 1999, p. 51.

 7. J. Alsakran et al., “Streamit: Dynamic Visualization 

and Interactive Exploration of Text Streams,” Proc. 

2011 IEEE Paci�c Visualization Symp. (Paci�cVis 11), 

IEEE, 2011, pp. 131–138.

 8. D.H. Jeong et al., “iPCA: An Interactive System for 

PCA-Based Visual Analytics,” Computer Graphics 

Forum, vol. 28, no. 3, 2009, pp. 767–774.

 9. J.S. Yi et al., “Dust & Magnet: Multivariate Information 

Visualization Using a Magnet Metaphor,” Information 

Visualization, vol. 4, no. 4, 2005, pp. 239–256.

 10. A. Endert, P. Fiaux, and C. North, “Semantic 

Interaction for Sensemaking: Inferring Analytical 

Reasoning for Model Steering,” IEEE Trans. 

Visualization and Computer Graphics, vol. 18, no. 12, 

2012, pp. 2879–2888.

 11. A. Endert et al., “Observation-Level Interaction with 

Statistical Models for Visual Analytics,” Proc. 2011 

IEEE Conf. Visual Analytics Science and Technology 

(VAST 11), IEEE, 2011, pp. 121–130.

 12. E.T. Brown et al., “Dis-Function: Learning Distance 

Functions Interactively,” Proc. 2012 IEEE Conf. Visual 

Analytics Science and Technology (VAST 11), IEEE, 

2012, pp. 83–92.

 13. A.C. Robinson, “Design for Synthesis in Geo-

visualization,” PhD thesis, Dept. of Geography, 

Pennsylvania State Univ., 2008.

 14. S. Drucker, D. Fisher, and S. Basu, “Helping Users 

Sort Faster with Adaptive Machine Learning 

Recommendations,” Human-Computer Interaction—

Interact 2011, LNCS 6948, Springer, 2011, pp. 

187–203.

 15. R. Heuer, Psychology of Intelligence Analysis, Center 

for the Study of Intelligence, 1999.

Alex Endert is a visualization scientist at the Paci�c 

Northwest National Laboratory. Contact him at alex.

endert@pnnl.gov.

Lauren Bradel is a PhD student in computer science at 

Virginia Tech. Contact her at lbradel1@vt.edu.

Chris North is an associate professor in Virginia Tech’s De-

partment of Computer Science. Contact him at north@vt.edu.

Contact department editor Theresa-Marie Rhyne at 

theresamarierhyne@gmail.com.

Showcase Your 

Multimedia Content 

on Computing Now!

IEEE Computer Graphics and Applications 

seeks computer graphics-related 

multimedia content (videos, animations, 

simulations, podcasts, and so on) to 

feature on its Computing Now page, 

www.computer.org/portal/web/

computingnow/cga.

If you’re interested, contact us at 

cga@computer.org. All content will be 

reviewed for relevance and quality.


