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Abstract Recent technological advances with the scalp

EEG methodology allow researchers to record electric

fields generated in the human brain using a large number of

electrodes or sensors (e.g. 64–256) distributed over the

head surface (multi-channel recording). As a consequence,

such high-density ERP mapping yields fairly dense ERP

data sets that are often hard to analyze comprehensively or

to relate straightforwardly to specific cognitive or emo-

tional processes, because of the richness of the recorded

signal in both the temporal (millisecond time-resolution)

and spatial (multidimensional topographic information)

domains. Principal component analyses (PCA) and topo-

graphic analyses (combined with distributed source

localization algorithms) have been developed and suc-

cessfully used to deal with this complexity, now offering

powerful alternative strategies for data-driven analyses in

complement to more traditional ERP analyses based on

waveforms and peak measures. In this paper, we first

briefly review the basic principles of these approaches, and

then describe recent ERP studies that illustrate how they

can inform about the precise spatio-temporal dynamic of

emotion processing. These studies show that the perception

of emotional visual stimuli may produce both quantitative

and qualitative changes in the electric field configuration

recorded at the scalp level, which are not apparent when

using conventional ERP analyses. Additional information

gained from these approaches include the identification of a

sequence of successive processing stages that may not fully

be reflected in ERP waveforms only, and the segregation of

multiple or partly overlapping neural events that may be

blended within a single ERP waveform. These findings

highlight the added value of such alternative analyses when

exploring the electrophysiological manifestations of com-

plex and distributed mental functions, as for instance

during emotion processing.
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Limits of Conventional ERP Data Analysis

Given its millisecond time-resolution and direct relation-

ship to neuronal activity (i.e., post-synaptic dendritic

potentials of a large number of neurons activated synchro-

nously and arranged in a geometrical configuration such as

to yield a dipolar field), scalp electro-encephalogram (EEG)

is a highly valuable time-resolved brain-imaging technique

(see [1, 2]). Event-related brain potentials (ERPs) are

computed from the EEG by using, in the vast majority of

cases, the averaging of data as a signal extraction technique

(see [3, 4] for different techniques, including frequency and

single trials analyses). EEG epochs are time-locked to the

same event class (either a stimulus or a response), and then

averaged to yield a waveform carrying a mean amplitude

value at each time-point, whose successive negative and
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positive deflections over time are thought to reflect specific

stages of sensory, cognitive, or decision-related processes

[5].

According to published guidelines ([6], p. 141), ‘‘the

simplest approach is to consider the ERP waveform as a set

of waves, to pick the peaks (and troughs) of these waves,

and to measure the amplitude and latency at these deflec-

tions’’. These peak amplitude measurements are not

representing absolute values of electric brain activity, but

are obtained either relative to a pre-stimulus baseline

(baseline to peak analysis) or sometimes to an immediately

preceding or following peak (peak-to-peak analysis).

‘‘Relevant’’ electrophysiological events are therefore

selected a priori by searching for electrodes with potential

peaks that can be either negative or positive deflections

depending on the actual configuration of the underlying

generators. Although this ‘‘simple’’ ERP analysis method

has proven its immense powerfulness to shed light on the

time-course of various cognitive and emotional processes

in the human brain (see [5, 7] for recent reviews), the

experimenter using a conventional ERP technique has to

adhere to a number of prerequisites and be aware of some

of the limitations bound to this specific data analysis.

Among them, a key assumption underlying the ERP

analysis method is that potentially interesting aspects of

cortical brain processes are primarily reflected in these

maxima (peaks) but, by extension, not discernible when the

amplitude is low or close to zero [6]. However, this con-

jecture is not verified by neurophysiological data as low

EEG/ERP signal amplitude does not mean absence of

important neuronal events [2, 3]. In addition, difficulties

may arise because the latency of a peak may vary some-

what across different electrodes, a limitation that becomes

more obvious when increasing the number of channels.

This concern has led some researchers to identify peaks

using a measurement of Global Field Power (GFP), which

is defined as the spatial root mean squared across all

electrodes and which is reference-independent ([8], see

Fig. 2 of [9]). GFP has the clear advantage of providing a

global and spatially unbiased measure of the electric field

strength at the scalp, which is related to the amount of

synchronously active neurons in the brain [10]. The GFP

measure is therefore a general estimate of the electric

signal amplitude at each time point despite slight variations

of individual peak latencies across different electrode

positions [11].

Another problem associated with the conventional ERP

method concerns the location of the reference electrode

(the so-called ‘‘reference-problem’’ in ERP literature; see

[11, 12], see Fig. 1 of [9]). Waveform analyses (and

amplitude measurements of peaks thereof) are heavily

influenced by the reference. The amplitude of a compo-

nent’s peak identified at one electrode location can

radically change (and sometimes even cross the zero

baseline and switch polarity) as a function of the position

of the reference electrode. Changing the reference also

changes statistical outcomes. By contrast, analysis methods

that consider the spatial distribution of the ERP, such as

microstate segmentation [8, 13] and (spatial) PCA [14], are

reference-independent. This is because the configuration of

the scalp topography is independent of the specific refer-

ence electrode [13, 15]. When calculating the voltage

distribution (using interpolation methods such as spherical

splines; see [16]), the resulting equipotential lines

(reflecting subtle borders and changes in the distribution of

the electric field over the scalp surface) remain exactly the

same, and unlike conventional ERPs, the electric ‘‘land-

scape’’ remains unaffected by changes in the recording

montage (see [11] for a recent demonstration). For tech-

nically oriented considerations related to the inverse

solution problem itself (e.g., the violation of the quasi-

stationary state assumption), the average reference of the

surface potential is usually calculated and used for sub-

sequent data analysis looking at the spatial distribution of

the ERPs [8, 9, 11, 17].

Hence, to circumvent some of the difficulties associated

with the conventional ERP analysis method [6] but also to

deal more effectively with the increasing complexity of the

current ERP data sets nowadays routinely obtained with

multiple channels [18], modern data-driven analyses (such

as microstate segmentation and PCA) have been developed

and used to study the spatio-temporal dynamics of various

domains of human cognition [19–21] and emotion [22, 23].

Microstate segmentation is also sometimes called topo-

graphic pattern analysis [9]. In both cases, it refers to a

whole set of ERP data analyses (allowing to test for and

tease apart differences in strength, topography, latency and

component sequence), as we introduce and illustrate in the

next sections.

Importantly, microstate segmentation and PCA provide

the clear advantage of minimizing the amount of user-

dependent biases and a priories (e.g., assuming that rele-

vant aspects of cognitive or emotional processes would

mainly be reflected in peaks, see [6]). Both microstate

segmentation and PCA can give new insights on the time-

course and structure of brain activity associated with spe-

cific cognitive or emotional events, without the need to

restrict a priori the ERP analysis to a few time points only

(e.g., where the amplitude is visibly high) and/or to a few

electrode positions only [14, 19], as in conventional ERP

analysis [6].

Below, we will first shortly present the basic principles

of the microstate segmentation [8, 9, 19, 24, 25], whose

primary aims are to identify dominant topographic scalp

maps in multi-channel ERP data sets, and to compare the

strength and expression of these maps over time and across
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experimental conditions. To illustrate the value of this

approach, we will then present a recent study using ERP

segmentation to investigate the neural mechanisms of

attentional capture by emotional (threat-related) stimuli

[26, 27]. In the second section of this review, we will then

briefly present the rationale of temporal (and spatial) PCA

[14] before turning to concrete empirical studies that

illustrate how PCA can inform about the precise neuro-

physiological dynamics of visual emotion processing [28–

30]. Specifically, we will focus on the dissociation between

the effects of valence and arousal, which correspond to

intrinsically mingled components of emotion (see [29]).

General Principles of Microstate Segmentation

The general statistical principles of the microstate

segmentation have been described extensively elsewhere

[9, 11, 13, 19, 20, 31]. Therefore, here we only provide a

brief overview of this approach to ERP data analysis,

before presenting an application in the context of emotional

attention [23, 32]. Note that all steps of analysis

described here can be performed using a dedicated soft-

ware, CARTOOL, developed by Denis Brunet (http://

brainmapping.unige.ch/Cartool.htm). The rationale of

microstate segmentation is to objectively summarize the

complex topographic information embedded in high-den-

sity ERPs, and to offer a high degree of interpretational

power with regards to the nature and extent of putative

electrophysiological differences between experimental

conditions (strength, topography, latency shift or compo-

nent sequence, see [9] for a thorough presentation and

discussion).

When interpolating local amplitude values recorded at

each channel to topographic voltage maps (e.g., for

instance with spherical splines, see [16]) and then

inspecting the succession of these topographic maps fol-

lowing stimulus or response onset, a highly reproducible

observation is that evoked activities appear to remain stable

for several tens of milliseconds, before a more or less sharp

qualitative change in the electric field configuration may

occur and lead to another topographic map, which may in

turn remain stable for a certain duration (a phenomenon

originally referred to as ‘‘functional microstates’’, see [8,

13, 19, 33, 34]). The rationale of the microstate segmen-

tation is to isolate these periods of temporal stability (and

by extension changes) in the manner that the global electric

field is distributed over the scalp surface and over time

points, by using a formal statistical approach applied to the

whole topography information rather than to values from

single electrodes [11]. This stems from the fact that dif-

ferent map topographies reflect different configurations of

electric sources in the brain, that is, different neural

networks [35–37]. As a caveat, it is important to note that

the symmetrical statement is not true: different sources in

the brain do not necessarily translate as different topogra-

phies on the scalp [8, 25].

A straightforward way to compare scalp map topogra-

phies was already proposed some time ago in the pioneer

neurophysiological work of Lehmann and Skrandies [8]

and involves calculating a Global Dissimilarity index

across successive maps. Global dissimilarity is obtained by

computing the square root of the mean of the squared

differences between all corresponding electrodes, once

these maps have been recalculated against the average

reference and normalized to unitary strength (i.e., divided

by its own GFP, see [8], see Appendix 1 of [9]). Global

dissimilarity is inversely related to the spatial correlation

between two maps (i.e., low global dissimilarity values

indicate similar topographies, while high global dissimi-

larity values indicate topography changes). Using this

measure of topographic similarity-dissimilarity, it is pos-

sible to compute the stability of successive maps over time

(and thus identify functional microstates), as well as to

statistically compare the different scalp topographies

between experimental conditions [9]. Differences in global

dissimilarity are evidenced using non-parametric boot-

strapping procedures (including Monte Carlo MANOVA,

see [27, 31, 38, 39] cognitive applications); an analysis

colloquially referred to as TANOVA (topographic

ANOVA). Importantly, using global dissimilarity, it may

be possible to reveal topographic changes over the scalp

that do not necessarily coincide in time with any reliable

changes in the global strength of the signal, or that may

arise during time-periods where the ERP amplitude is

actually low or close to baseline. Thus, the occurrence of

important topographic changes at time-points with low

(local or global) amplitude in ERP signals clearly refutes

the classic assumption that only peaks (or maxima) are

relevant electrophysiological phenomena (as hypothesized

by the conventional analysis).

By combining the statistical comparison of topographies

using global dissimilarity with the comparison of field

strength using the Global Field Power, unequivocal con-

clusions about the nature of the electrophysiological

differences can be made. Thus, these measures can inform

about the actual electrophysiological correlates of specific

cognitive or emotional processes in the brain, and tease

apart genuine amplitude/strength effects from qualitative

changes in the configuration of intracranial generators [8,

9, 13, 36]. It has to be emphasized that the conventional

ERP peak analysis cannot distinguish topographic from

strength differences. Amplitude differences at certain

electrodes may be due to differences in the configuration of

the electric field as well as differences in strength of the

same topography.
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Global dissimilarity is useful to inform about time points

where reliable change in the distribution of the electric

field may occur following either the stimulus or the

response onset (or any other time segment of interest).

However, this analysis does not allow defining unique map

configurations and does not formally test whether a specific

map configuration is suppressed (or conversely whether it

is prolonged or delayed) in one condition (or time-period)

as compared with another condition (or time-period). For

instance, the global dissimilarity measure alone is not

sufficient to determine whether topographic differences are

explained by a single or multiple configuration transfor-

mation, by a simple latency shift, or by a sequence change

for a given topography across conditions. But clear answers

to these important questions can be obtained using a pattern

analysis of the ERP scalp topographies [25]. In brief, pat-

tern analysis can efficiently summarize ERP data by a

limited number of distinctive field configurations (so-called

microstates, [13]). The spatio-temporal segmentation

algorithm is derived from a k-mean spatial cluster analysis

[25] and identifies the most dominant scalp topographies

appearing in the group-averaged ERPs of each condition

and over time. K-mean is a classical and general clustering

algorithm. The optimal number of topographic maps

explaining the whole data set is determined objectively for

example by cross validation [25]. Cross validation criterion

was first introduced by Pascual-Marqui et al. [25] as a

modified version of the predictive residual variance (see

Appendix 1 in [9] for details and mathematical equations).

Its absolute minimum gives the optimal number of seg-

ments. Here we focus on the k-mean clustering used in

conjunction with cross validation because a large number

of high-density ERP mapping studies to date have applied

this method [11]. However, it must be noted that there are

newer alternative clustering algorithms, such as the

agglomerative hierarchical clustering that has been spe-

cifically designed for the analysis of EEG/ERPs (see [9] for

a discussion and comparison of different clustering meth-

ods; see [40] a recent cognitive application).

The dominant scalp topographies (identified in the

group-averaged data) are then fitted to the ERPs of each

individual subject using spatial fitting procedures to

quantitatively determine their representation across sub-

jects and conditions. This procedure thus provides fine-

grained quantitative values, such as the duration of the map

(including its precise onset and offset times), the global

explained variance (or goodness of fit), and the strength of

the map, which are critical indices of the significance of a

given scalp topography [19]. This information is not

available otherwise in a classical component analysis.

Parametric statistical tests can then be performed on these

variables (duration, goodness of fit, or strength) in order to

compare different experimental conditions or time-periods,

and eventually disclose the electrophysiological correlates

associated with one specific condition or time-period.

Once the complex ERP topographic time-series is

reduced to a smaller number of dominant scalp maps using

this pattern analysis, a final (but optional) step in the pat-

tern analysis may apply a source localization algorithm to

estimate the location of intracranial generators at the origin

of the dominant maps recorded on the scalp surface.

Alternatively, sources estimation can also be performed

directly using the single-subject data over the time-period

when a given map predominates and/or when topographies

significantly differ and/or when the GFP differs. A wide

range of source localization algorithms have been proposed

to address the source localization problem (see [11, 41] for

reviews). A common method involves distributed linear

inverse solutions. This class of inverse models is based on a

reconstruction of the brain electric activity at each point of

a 3D grid of solution points (i.e., much larger than the

number of measurement points on the surface), wherein

each point represents the center of gravity of a local current

dipole with a certain strength and orientation [11]. Because

the problem is highly underdetermined, a priori constraints

are needed to derive a unique solution. Such constraints are

based on minimizing the overall intensity [42], maximizing

the smoothness (LORETA, [43]), or integrating biophysi-

cal laws about the regression of electric activity in space

(LAURA, [44]). Unlike dipole solutions [45], distributed

inverse solutions compute multiple simultaneously active

sources without any a priori assumption on the number and

position of the underlying cortical generators (see [27, 31]

for emotion and cognitive applications, respectively).

Reliable differences in the active sources between topo-

graphic maps (or time-periods) can be evidenced using

parametric or non-parametric statistical tests. It is impor-

tant to emphasize that any source localization applied to

these segmentation maps is thus based on the statistical

evidence that the electric fields were different [8, 11], a

requirement which is not always met when using a con-

ventional ERPs analysis.

Using Topography Segmentation to Study Attentional

Capture by Threat Cues

In a recent ERP study [26], we used a modified version of

the classic dot-probe task [46, 47] in normal (non-anxious)

adult participants while we recorded high-density EEG to

track the time-course of spatial orienting toward the loca-

tion of emotional stimuli. Cues were faces with fearful or

neutral expression, appearing briefly prior to a single

neutral target (a white bar) presented at the same location

as one of the faces. On each trial, two faces were first

shown together, for a duration of 100 ms, one in the left
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visual field (LVF) and one in the right visual field (RVF),

one neutral and one with a fearful expression. The faces

were then replaced by a small bar-probe (duration of

150 ms), oriented either vertically or horizontally,

appearing at the position previously occupied by one of the

faces. All stimuli (faces and bar-probe) were presented in

the upper visual field to allow us to measure early retino-

topic responses in ERPs [48]. Participants were asked to

perform a go/no-go matching task in which they had to

judge, on each trial, whether the orientation of the bar-

probe (in the LVR or RVF) matched that of the thicker

line-segment within the fixation cross (see [23, 26] for

methodological details). Only ERPs for no-go trials (ruling

out any confounding motor-related activity) were analyzed.

The bar-probe could appear either on the side of the fearful

face (valid condition) or on the side of the neutral face

(invalid condition), in an unpredictable (50% each) and

randomized manner. However, faces were entirely irrele-

vant to the participants’ task. Moreover, since participants

had to fixate the central cross, emotional cues appeared at

unattended locations, allowing us to assess any reflexive

biases in the spatial distribution of attention to peripherally

presented probes. We used only short-time intervals

between the face pair and the bar onset (100–300 ms,

systematically randomized) to tap exogenous mechanisms

of spatial orienting [49].

Our main question was whether sensory responses to the

peripheral bar-probes would be enhanced when replacing a

fearful (valid) face, rather than a neutral (invalid) face, as

predicted if spatial attention was involuntarily oriented

toward that particular location (emotional attention, see

[23, 32]). Our main comparison therefore concerned the

amplitude (and latency) of ERP generated by the exact

same bar-probe as a function of the different emotional

values of the preceding face context.

Conventional analyses [6] on the exogenous visual

ERPs confirmed that fearful faces (relative to neutral faces)

significantly modulated the early sensory processing of bar-

probes appearing at the same location. The lateral occipital

P1 component peaking at 135 ms post-stimulus onset was

significantly enhanced when the target-bar replaced a valid

fearful face as compared with an invalid neutral face

(Fig. 1a), even though the bars were always physically

identical but differed only due to the preceding emotional

face. Source estimation methods based on the LORETA

constraint [43] further confirmed that the P1 component

was generated in the extrastriate visual cortex, including

the middle occipital gyrus and inferior temporal gyrus [26].

Noteworthy, the effect of fearful faces on ERPs to sub-

sequent target-bars was selective for the lateral occipital P1

component, but did not affect other exogenous visual

components, such as the earlier C1 component arising from

the primary visual cortex (see [48]) or the subsequent N1

component presumably generated by higher extrastriate

areas within occipito-parietal cortex [50].

These results therefore suggest an amplification of sen-

sory responses to a neutral visual stimulus (bar-probes)

taking place at early processing stages within extrastriate

visual cortex, induced by the preceding fearful face at the

same location. This effect is consistent with a gain control

mechanism of spatial attention [51], which is thought to

enhance visual processing via top-down signals from

fronto-parietal areas. The gain control mechanism operates

by amplifying the signal-to-noise ratio for attended stimuli

in extrastriate visual cortex while suppressing the inter-

fering signal generated by unattended stimuli. In this

model, top-down signals are therefore thought to be acti-

vated prior to target onset in the case of preparatory/

endogenous attention, or at an early latency post-stimulus

onset in the case of reflexive/exogenous attention, so as to

enhance the ongoing neural responses in extrastriate cortex

[52]. However, using a conventional ERP analysis [26], we

did not find any reliable evidence for a differential effect

that could precede the P1, which would potentially origi-

nate in fronto-parietal areas responsible for the control of

spatial attention and somehow induce the subsequent

increase observed at the P1 level.

To better capture these precise spatio-temporal dynam-

ics thought to reflect a gain control mechanism following

target onset, we therefore turned to topographical seg-

mentation methods [8, 19] that allowed the identification of

subtle changes in the topographic configuration of scalp

EEG over time, arising despite the absence of any reliable

local modulation (at a few electrode positions) or global

modulation (GFP) of ERP amplitude. More precisely, we

tested whether any differential neural activity (e.g., within

the fronto-parietal network) might precede the amplifica-

tion of P1 responses to bar probes by emotional cues, and

thus correspond to the causal source of attentional biases in

spatial attention [27].

Firstly, this new analyses indicated that EEG activity dur-

ing the time range of the P1 component evoked by bar-probes

(120–160 ms) did not exhibit any differences in topographic

configuration across the different conditions of face cues.

There was only a significant increase in the strength of the

topography map corresponding to the P1 (as indicated by a

higher GFP), when targets followed a valid fearful face as

compared with an invalid fearful face (Fig. 1b). But the

topography map itself did not differ between conditions,

supporting a genuine amplification or ‘‘gain mechanism’’

acting on the same neural network in extrastriate cortex, rather

than activation of a different network.

Secondly, and more critically, this topographic analysis

revealed the existence of an early (\100 ms post bar-probe

onset) and stable (40–80 ms) topographical map that reli-

ably distinguished valid from invalid targets, and arose just

Brain Topogr (2008) 20:265–277 269

123



prior to the topographical maps corresponding to P1

(Fig. 1c). Crucially, this topographic modulation was evi-

denced during a sustained time-period (40–80 ms) shortly

after target onset, when the ERP signal was low and even

close to the baseline level (preceding the C1 and P1/N1

waveforms elicited by targets, see Fig. 1a), therefore

Fig. 1 Illustration of segmentation analysis in a dot-probe task with

emotional face cues. (a) Grand average waveforms in the fear valid (blue

waveform) and invalid (red waveform) condition (from electrode PO8).

The black vertical line bar indicates the onset of the bar probe (target). The

P1 waveform (interval highlighted by a pink shaded area) was larger for

fear valid as compared with fear invalid trials, although the target stimulus

was the same in these two conditions [26]. In the time-window preceding

the P1 ERP component, the signal was actually close to zero baseline at

occipital electrodes in both conditions (interval highlighted by a green

shaded area), although a significant difference in scalp topography was

observed between the two conditions. (b) Voltage maps for the P1 in the

fear valid and fear invalid conditions (in the 130–140 ms interval

following bar-probe onset) showing a more prominent P1 scalp

topography in the former than the latter condition but without any

qualitative change in the dipolar configuration of this map across

conditions (amplitude modulation only). (c) Voltage maps in the fear

valid and fear invalid conditions in the 40–80 ms interval following bar-

probe onset, showing a significant modulation of the global scalp

configuration (with no change in amplitude). (d) Statistical parametric

mapping provided by LAURA indicated that brain regions that were more

activated by fear valid than fear invalid trials in the 40–80 ms post bar-

probe onset were mainly located in the left posterior parietal cortex, in a

region close to the intraparietal sulcus (p \ 0.001, uncorrected; see [27])
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making it difficult to be captured by a conventional ERP

analysis. The neural sources of this distinctive map could

then be estimated by the LAURA algorithm and was found

to be clearly different from extrastriate occipital sources

associated with the subsequent P1 (120–160 ms). Instead,

this early map involved cortical generators in posterior

temporal and posterior parietal regions (Fig. 1d). The

selective activation in the two latter regions could poten-

tially reflect initial top-down signals and guide subsequent

sensory processing in extrastriate visual cortex [52], con-

sistent with the predictions of a gain control mechanism of

spatial attention [51].

In summary, our topographic ERP analysis revealed that

an early microstate (at 40–80 ms post-target onset) was

significantly more present in the valid condition, when

targets appeared at the same versus different location as a

fearful face; and that this distinctive configuration of neural

activity preceded another microstate (at 120–160 ms) cor-

responding to the P1, whose generators did not differ across

conditions but whose amplitude was enhanced for valid vs.

invalid targets (Fig. 1; see [27]). These ERP results are

consistent with the idea that a first sweep of activity in

posterior temporal and parietal regions might take place

rapidly after a visual target onset and possibly provide the

signal for subsequent top-down control of target processing

[52, 53]. Here, top-down signals from posterior parietal

regions were modulated by emotional significance of the

preceding face cue. In further support of this idea, we also

found that these two consecutive neural events were posi-

tively correlated (using Pearson correlation coefficient, see

Fig. 7 in [27]), suggesting a direct functional coupling

between the early posterior parietal activity (40–80 ms) and

the subsequent P1 activity (120–160 ms). Although specu-

lative, this enhanced coupling between parietal and

extrastriate activity might provide a plausible neural

mechanism underlying the facilitation in orienting spatial

attention toward targets appearing at the location of threat-

related cues (emotional attention, see [32]).

Microstate segmentation can usefully complement more

conventional ERP analyses in a variety of other experi-

mental situations where differences between conditions

may involve the addition of an extra processing stage or the

modulation of the duration of a specific neural process [54–

56]. Because emotional processing is typically associated

with a complex sequence of stages from appraisal mecha-

nisms to adaptive changes in cognitive systems and feeling

states [57], which are likely to unfold along both parallel

and serial pathways throughout widespread neural net-

works, we believe that segmentation and pattern analyses

can offer a powerful approach to dissect the temporal

dynamics of affective processes in the human brain and

their impact on other cognitive operations. Some limitations

of this segmentation method might however arise when

multiple processing stages overlap with each other in time

(see [4]), which would then lead to more variable config-

urations of electrical topography at the scalp due to the

combination of different, simultaneously active microstates.

However, the instantaneous summation of electric fields

would result in a distinct scalp map corresponding to the

linear sum of these different intracranial electric fields at

each instant in time. If these intracranial electric fields

would vary over time, then the topography should also vary

over time, a distinctive spatio-temporal dynamic that should

be easily captured in principle by a topographic pattern

analysis. In many cases, such temporal overlap might also

be simply disentangled by separating common and dis-

similar neural generators using a distributed source

localization analysis. In other cases, however, overlapping

processes might be better distinguished by other approa-

ches, such as alternative source models focusing on current

changes at the local scale [58]. Another powerful data-dri-

ven method to separate different though temporally

overlapping ERP components is provided by PCA, as

reviewed in the next section.

General Principles of PCA

Another family of data-driven analyses for high-density

(multi-channel) ERPs is provided by PCA, which shares

some similarities with the microstate segmentation

although we do not intend to directly compare these two

methods in depth in this review article. Different assump-

tions are required by these two analysis methods (e.g.,

orthogonality of brain processes with a Varimax rotated

PCA) and therefore, one method may be more informative

than the other depending on the specific hypotheses and

experimental context. Future work should more directly

assess the similarities and differences between these two

analysis methods (microstate segmentation versus spatial

PCA) when they are applied on the exact same high-den-

sity ERP data set. It is interesting to note that similar

concerns about the definition of a component (as applied by

the conventional ERP analysis, see [6]) were raised in the

PCA literature as well (see [14]). The underlying criticism

was that a peak at a specific latency is not a conservative

definition for a component of the ERPs, but that the asso-

ciation to a given cognitive or psychological function

should be taken into account as well. This can formerly be

assessed by measuring changes related to experimental

variables of interest, rather than a priori selecting and

focussing on peaks only. Using PCA, it is therefore

assumed that a component corresponds to a temporal pat-

tern of activity in a particular brain region (or set of brain

regions) that directly relates to a particular cognitive or

emotional process [14, 59].
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In the context of multi-channel ERP mapping, the goal

of PCA is to extract ERP components whose variance is

related to the experimental variables [60]. Basically, the

PCA can be viewed as a particular case of a broader col-

lection of analysis techniques called factorial analyses.

Like microstate segmentation, PCA is essentially an

exploratory and descriptive method for summarizing

complex, multi-channel ERP data sets by reducing their

temporal and/or spatial dimensions. Thus, PCA can provide

useful insight into how ERPs components are affected by

the experimental manipulations (see [61, 62] for descrip-

tion of the PCA analysis; see [63–67] for additional

technical details). Without any a priori assumptions about

the shape or number of components in the data set, the

PCA will determine the complex relationships between a

large number of dependent variables (i.e., the voltage at

each time frame for a temporal PCA and the voltage at

each electrode for a spatial PCA) and summarize these

relations in terms of unobserved dependent variables (what

is usually called temporal or spatial factor in a PCA),

corresponding to the recorded components. Thus, PCA

provides a measure of the contribution of each factor to the

observed ERPs, and allows subsequent tests to determine

any statistical difference between conditions. The appli-

cation of PCA is not limited to ERPs and can also concern

raw EEG epochs (e.g., [68]), serve as a method to effi-

ciently filter the data (e.g., ocular artefact; [69]), or be used

for specific source localization purposes [66, 67].

In this review, we will concentrate on temporal PCA

(tPCA) but a similar underlying logic holds for spatial PCA

(see [14, 59, 66, 70] for additional information). The first

step of the tPCA is to compute the covariances (or corre-

lations) between all pairs of time points over all waveforms.

The idea is that time points covarying with each other

belong to the same factor. In other words, for time periods

that seem to behave similarly across the participants, the

conditions and the electrodes are summarized in a common

factor. To identify components, the PCA therefore looks for

time points that are reliably correlated, instead of arbitrarily

focussing on just peaks or valleys expressed in the wave-

form (unlike conventional ERP analysis).

It is important to emphasize that these new factors

represent weighted linear combinations of the original data,

a requirement in agreement with the Helmholtz’s principle

of superposition, thus respecting the electrophysiological

constraints of electrical spatio-temporal additivity. How-

ever, an infinite number of weighted linear combinations

may potentially account equally well for the observed data.

As a consequence, the next step is to obtain simpler

interpretations of the factors by performing a rotation

procedure. Many different rotation procedures have been

developed and used in the literature [63]. One of the most

commonly used rotations is the Varimax [61], which

provides the simplest data structure, and where the result-

ing factors are thought to be independent (orthogonal). The

simplicity of Varimax rotation is characterized by the fact

that the variance of the squared loadings is maximized.

Thus, the Varimax identifies main factors whose relative

contributions to the data tend to be large or small, not

intermediate. The obvious consequence for its application

to ERPs is that the resulting components tend to be either

large or small at any time points; that is, this method

minimizes the temporal overlap between different com-

ponents. This specificity makes tPCA (and the Varimax

rotation) particularly relevant to disentangle potentially

overlapping ERP components (see also Fig. 2 here below).

In addition, as already explained above, the extracted

factors are thought to be independent one another, which

may be useful when the goal is precisely to find out

components specifically associated with experimental

variables that are a priori assumed to be independent from

each other (for instance testing for main effects in a fac-

torial design). Note however that the independence

assumption may constitute a limitation, particularly when

exploring the underlying neural generators of the factors

with source localization algorithms (see [3] for a thorough

discussion). However, oblique rotations (e.g., Promax) can

be used to circumvent the orthogonality assumption. Using

Promax, each individual rotated factor is obtained regard-

less of its relationship with the other factors (see [63]).

Being no longer strictly independent, the resulting rotated

factors better meet the physiological assumptions required

by most inverse solution algorithms.

The result of a tPCA is a set of factor loadings that

correspond to the contribution of each new factor to the

original variables (i.e., how much the temporal factor

accounts for the voltage recorded at each time point). Thus

the factor loadings can be seen as the elementary or basic

waveforms, indicating segments in the ERPs during which

a significant variability of amplitude is present. tPCA also

provides a set of factor scores that correspond to the con-

tribution of each factor to each independent variable (i.e.,

how much a temporal factor participate to the voltage

observed for each original waveform). The factor scores

indicate the nature of the variability that can then be

analyzed by regular statistical tests. For instance,

regrouping the scores by electrode reveals the topography

of variability and sometimes, a subsequent spatial PCA on

temporal factor scores is performed to reveal spatial com-

ponents [71]. By contrast, regrouping the scores by

condition reveals the experimental effects on variability.

Depending on the research question, any combination of

factor scores is feasible.

Finally, we should emphasize that although PCA is a

data-driven analysis, its systematic application to ERPs

requires some caution and expertise. In particular, the
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results may somewhat vary depending on the pre-selected

matrix type, the decision to restrict the number of factors or

not, and the rotation type (see [63–65]). PCA is also

thought to be sensitive to latency jitters and misallocations

of variance, although simulation studies have shown that

these biases also influence baseline to peak analyses in

conventional ERP analysis (and probably even more so).

Moreover, these effects are actually negligible in compar-

ison with the actual contributions of PCA [61, 62, 72].

Using tPCA to Study Visual Emotion Perception

Although the use of PCA is not restricted to any specific

domain of cognition or emotion, PCA has been valuable to

shed light on the spatio-temporal dynamics of visual

emotion perception. For instance, given its ability to

disentangle overlapping components, PCA was found to be

particularly pertinent to explore long-latency (late) ERP

components that are associated with emotion processing

across a wide range of task conditions and stimulus cate-

gories [73]. Indeed, several studies have reported a reliable

and sustained emotion-sensitive positive deflections in

ERPs, with maximum amplitude over posterior recording

sites, typically elicited between 300 and 1,000 ms after the

onset of various emotional stimuli [74]. This component

has been referred to as the late positive potential (LPP; [75,

76]), late positive complex (LPC; [77, 78]), or positive

slow waves (PSW; [79]). This late positive component has

also sometimes been interpreted as reflecting a P3b com-

ponent [80–83], as classically recorded during an oddball

paradigm [84]. But the relationship between this classic

P3b and the late emotion-sensitive positive potential has

generally remained unclear.

Fig. 2 Illustration of principal

component analysis in a visual

detection task with emotional

picture targets. (a) Grand

average ERPs for all 25

electrodes in response to targets

(average collapsed across all

three valence categories:

unpleasant, pleasant and neutral,

see [28]). The temporal window

selected for the baseline to peak

analysis is highlighted by the

shaded rectangle. The

horizontal scalp map shows the

corresponding topography of

this late positive peak. (b)

Results of the tPCA (factor

loadings) showing two distinct

rotated factors (thin and thick

waveforms corresponding to

P3a and P3b components,

respectively), with distinct but

partly overlapping time-courses.

The topographical distribution

of corresponding factor scores

(unit-less values directly related

to amplitude values) is shown

on horizontal scalp maps
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A reliable finding is that the late positive potential is

systematically augmented in amplitude in response to

unpleasant or pleasant visual stimuli relative to neutral

stimuli. This increase to emotional stimuli was usually

interpreted as reflecting the processing of the arousal value

of these visual stimuli, because this late positive compo-

nent does not exhibit reliable effects of valence and

correlates with measures of the autonomic nervous system

associated with arousal (e.g., electrodermal activity, see

[74]). However, this common observation (higher late

positive potential for arousing relative to neutral visual

stimuli) is usually obtained after having performed a con-

ventional baseline to peak analysis for a fairly large

temporal window [6], or after having averaged the ampli-

tude values of many successive time points (e.g., average

amplitude for successive 100 ms temporal windows start-

ing 300 ms after stimulus onset and ending sometime 6 s

after stimulus onset, [74]). Thus, in most studies (e.g., [74,

77, 78, 80, 81]), this late positive deflection in the ERPs is

considered as a unitary long-lasting component. However,

this assumption might be questioned, as it is unlikely in the

context of active sensory or emotional processing that a

single brain process would remain stable over such a long

time range (e.g., for more than 500 ms). Instead, it is

possible that the late positive activity might result from

several overlapping but distinct ERP components, which

are difficult to tease apart when a conventional ERP anal-

ysis is used [14, 59]. In this context, a PCA decomposition

may provide useful additional information, including the

delineation of specific ERP components embedded within

the same late positive potential.

Remarkably, already 20 years ago, Johnston et al. [85]

used PCA to decompose ERPs evoked by visual emotion

stimuli. These authors performed a tPCA (and used a

Varimax rotation) allowing them to break down the late

positive potential in what they labelled a P3 component, a

P4 component, and a Slow Wave. These authors elegantly

showed that the P3 and P4 were both sensitive to the

emotional value of the pictures, while the Slow Wave was

less specific, being both affected by the emotional content

and the task. This ERP study was one of the first to suggest

the added value of PCA in its ability to refine the time-

course of specific psychological variables (here with a

focus on the emotional content and the task), each influ-

encing the late positive potential of the ERPs, but with

dissociable electrophysiological effects revealed by the

PCA.

Consistent with the results of Johnston et al. [85], we

also performed PCA of multi-channel ERP data (see [28])

to explore if the late positive activity evoked by visual

emotion stimuli could be decomposed into distinct non-

overlapping components. In our study, we presented par-

ticipants with unpleasant, pleasant and neutral pictures as

targets in a standard oddball paradigm. Importantly, the

mean arousal value was equated for the three categories. A

coloured checkerboard served as frequent standard pic-

tures, to which participants had not to respond (further

details regarding the task, stimuli, EEG parameters and

analyses can be found in Delplanque et al. [28]). The goal

of this study was to test for any differential effect of picture

valence on the early P3a versus the late P3b in visual ERPs,

two components that may partly overlap in time (and

topography), and that are difficult to separate from each

other using a conventional baseline to peak analysis [14].

ERP components were extracted using a Varimax rotated

tPCA. We found a striking dissociation when comparing

ERP results obtained with the baseline to peak analysis and

those obtained with the tPCA. In each case, we restricted

the analysis to the same temporal window spanning 300–

600 ms post-stimulus onset, which is commonly used in

the ERP literature for selecting and measuring the P300

(see [86]).

Whereas the conventional baseline to peak analysis [6]

revealed a single, uniform positive deflection peaking

380 ms post-stimulus onset (see Fig. 2a) consistent with

either a non-specific P300 or an emotion-related LPP, our

tPCA was able to separate two distinct sources of vari-

ability in the data during the exact same temporal window

(Fig. 2b): one involved an early positive activity with a

clear frontal scalp distribution (P3a), and the other involved

a later positive activity with a parietal scalp distribution

(P3b). Thus, the tPCA could accurately disentangle two

partly overlapping but reliably distinct ERP components,

while a conventional peak analysis only showed an

undifferentiated large positive waveform (see also [85]).

In addition, statistical analyses (incorporating the nor-

malization procedure of [87]) revealed no differential

effect of stimulus valence on the amplitude values of the

late positive activity measured using the baseline to peak

method. By contrast, the same statistical analysis on data

from the PCA indicated that, whereas the P3a amplitude

was not altered by the valence of pictures, the P3b

amplitude was substantially smaller for unpleasant com-

pared to pleasant pictures (see [28]). This effect was

replicated in a subsequent study using an emotional cate-

gorization task instead [29]. In addition, recent ERP studies

based on PCA confirmed that the P3b was sensitive to both

the valence and arousal of attended and unattended visual

emotion stimuli, with these effects being modulated by the

task at hand (e.g., when contrasting implicit versus explicit

processing of the emotional content in stimuli; see [29, 30,

88]). An effect of valence on the P300 was also suggested

by Diedrich et al. [79] and by Conroy and Polich [86]. But

these two ERP studies used baseline to peak analyses or

computed average amplitude for successive time-points

during temporal windows defined a priori, such that they
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could not draw strong conclusions about a genuine segre-

gation of the underlying cognitive processes.

In our experiment reviewed above [28], the lack of sig-

nificant valence effect on the late positive potential when

using the baseline to peak analysis cannot be explained

simply by a lack of power, but instead by the fact that this

activity was likely to be subtended by a combination of two

overlapping electric activities, each manifested by a distinct

functional component (P3a and P3b). The baseline to peak

analysis was blind to this dissociation. Thus, the use of PCA

in ERP data analysis may help to refine the time-course of

emotional effects on specific ERP components (such as the

P300), which may arise simultaneously but influence sepa-

rate cognitive processes. In the context of visual emotion

perception [28–30], our PCA results offered new insights

into the selective effects of core emotional dimensions such

as valence or arousal on two different cognitive mechanisms

such as the orienting of attention (P3a) and the updating of

working memory (P3b).

Finally, we should point out that tPCA may help not only

to break down late ERP effects (e.g., P300) into functionally

distinct components during visual emotion processing, but

may also be used to dissect earlier sensory stages in the

visual ERPs to emotional stimuli (e.g., [89, 90]). For

instance, PCA has been exploited to disentangle overlapping

ERP components modulated by anxiety-related biases dur-

ing emotion perception (including sub-components of the

Contingent Negative Variation, see [91]); and to investigate

effects of depression on visual emotion processing

(including the P300 component, see [92]).

Conclusions

We have reviewed two distinct analysis techniques of

multi-channel ERP data (microstate segmentation and

PCA) which may be relevant to explore the time-course

and exact electrophysiological correlates of complex

mental processes such as emotion perception. These

methods can provide unique additional insights that com-

plement more conventional ERP analyses based on

localized waveform peaks (for other alternative data-driven

methods including Independent Component Analysis, see

[3]). We first illustrated the advantages of microstate seg-

mentation in the study of emotional attention [23, 32],

where early topographic variations allowed us to identify

neural activity in parietal areas that modulated spatial

orienting towards emotional stimuli and provided top-down

signals to enhance extrastriate responses to these emotional

stimuli, but were not captured when using a conventional

ERP analysis alone. Likewise, we illustrated the advantage

of PCA in a study of visual emotion perception [28, 29],

where temporally overlapping but functionally distinct

neural responses could be separated into different factors,

and thus reveal differential effects of the valence and

arousal properties of visual target during the same time

window (see also [29]), which were not detected when

using a standard baseline to peak analysis.

To sum up, these two methods of analysis share in

common the possibility to restrict the a priories in selecting

a few channels or a few time-points that are thought

(sometimes arbitrarily) to carry the relevant variance (or

information) related to experimental variables. Although

such analyses should not be performed on multi-channel

ERP data sets without generating and testing specific

hypotheses in the first place, we believe that additional and

important insights about the time-course of emotion pro-

cessing can be gained from these data analyses by allowing

a holistic approach (i.e., considering all electrodes and

time-points concurrently), and thus exploiting most use-

fully the complex information embedded within human

EEG recordings.
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