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that they will function less like tools and more like 

teammates.1–3

Many approaches to designing more team-like 

cooperation between humans and machines have 

been proposed, including function allocation, su-

pervisory control, adaptive automation, dynamic 

task allocation, adjustable autonomy, mixed-

initiative interaction—most recently regrouped 

under the rubric of cooperative robotics. All these 

approaches rely on the levels of autonomy concept 

as the benchmark for machine performance and 

the criterion for decisions about human-machine 

task allocation.

In this article, we argue that the concept of lev-

els of autonomy is incomplete and insuf� cient as 

a model for designing complex human-machine 

teams, largely because it does not suf� ciently ac-

count for the interdependence among their mem-

bers. Building on a theory of joint activity,4,5 we 

introduce the notion of coactive design,6 an approach 

to human-machine interaction that takes interdepen-

dence as the central organizing principle among peo-

ple and agents working together as a team.

What Is Autonomy?
The word autonomy, derived from a combination 

of Greek terms signifying self-government (auto

means self, and nomos means law), today has 

two basic senses in everyday use.7 The � rst sense, 

self-suf� ciency, is about the degree to which an 

entity operates without outside help. For exam-

ple, a Roomba robot can vacuum a room without 

assistance. The second sense refers to an entity’s 

self-directedness, or the degree of freedom from 

outside control. The Mars Rover, which was 

tightly controlled by NASA engineers, is such as 

example.

In our discussion, we will use the terms self-

suf� ciency and self-directedness to distinguish 

between these two senses of autonomy.

Pervasiveness of the Levels 
of Autonomy Concept
The concept of levels of autonomy is usually at-

tributed to the pioneering work of Thomas Sheri-

dan and William Verplank.8 Their ideas were de-

rived from a teleoperation study with underwater 

robots. Although the original 1978 work is often 

cited, the original three page table is usually con-

densed and simpli� ed as shown in Table 1. The 

“levels” were used to describe the space of design 

options, as they saw them. They range from te-

dious and error-prone manual operation, where 

humans are required to do everything (level 1), to 

fully autonomous operations, where the machine 

can perform the entire task without assistance or 

direction (level 10). Sheridan and Verplank real-

ized the unlikelihood of achieving a completely au-

tonomous solution because they “simply [did] not 

As automation becomes more sophisticated, 

the nature of its interaction with people will 

need to change in profound ways. Inevitably, soft-

ware and robotic agents will become so capable 
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have available at [that] time such de-

vices or the understanding to build 

such devices” (p. 1–10) for their de-

manding environment. Given this re-

alization, they suggested two things:

• levels of automation as a means to 

gain some of the bene�ts of auton-

omy while not requiring a fully au-

tonomous solution and

• supervisory control, in which hu-

mans allocate tasks to one or more 

machines and then monitor them.

For the second suggestion, once con-

trol is given to the machine, it is ide-

ally expected to complete the tasks 

without human intervention. The 

job of the machine’s designer is to 

determine what needs to be done 

and then provide the capability (self- 

suf�ciency) for the machine to do it. 

This is often described as �nding the 

appropriate level of autonomy.

Although the supervisory-control 

approach ful�lled its initial purpose, 

its static nature did not address re-

quirements for variable task alloca-

tion in different situations, which 

spurred interest in research on dy-

namic and adaptive function allo-

cation. Dynamic interaction of this 

sort has been suggested as a unifying 

theme in human-robot interaction9 

and has led to numerous proposals 

for dynamic adjustment of autonomy  

level10 —in this case, the self-

directedness aspect. Such approaches  

have been variously called adjustable 

autonomy, dynamic task allocation, 

sliding autonomy, �exible autonomy,  

and adaptive automation. In each 

case, the system must decide at run-

time which functions to automate 

and to what level of autonomy.11

Mixed-initiative interaction is de-

�ned as “a �exible interaction strat-

egy, where each agent can contribute 

to the task what it does best” (p. 14).12 

Its contribution is in the perspective  

that people can work in parallel 

alongside autonomous systems, so it 

adopts the stance that the perception, 

problem-solving, and task-execution 

processes are subject to an ongoing 

give and take that can be initiated 

by either the human or the machine, 

rather than explicitly determined 

by the original system designer. Al-

though it is more sophisticated in 

some ways than function allocation, 

in practice this approach still tends 

to be autonomy-centric, focusing on 

�uid management of task assignment 

and the authority to act—the self- 

directedness aspect of autonomy. The 

in�uence of the levels of autonomy 

concept is apparent in James Allen’s 

proposal for mixed-initiative interac-

tion levels.12

The classic Sheridan-Verplank lev-

els are widely cited and have had a 

signi�cant impact on the outlook of 

robot designers. A recent survey of 

human-robot interaction concluded 

that “perhaps the most strongly  

human-centered application of the 

concept of autonomy is in the notion 

of level of autonomy” (p. 217).9 This 

seems counterintuitive. Why should 

the independence of a given robotic 

partner play a more dominant role 

in human-centered design of joint 

activity than the interdependence 

among the set of human-robotic team 

members?

Problems with the Levels  
of Autonomy Concept
Signi�cant nuances in the original 

Sheridan-Verplank work have been 

forgotten through frequent use of the 

simpli�ed list shown in Table 1. As a 

basis for our discussion, Figure 1 illus-

trates the richer detail in the original 

work. In this excerpt from the com-

plete model, we have altered Sheri-

dan’s level 6 by adding the tell func-

tions and associated text from level 8. 

We did this to incorporate all the basic 

elements in a single level for discussion 

purposes, but it does not signi�cantly 

alter the original intention because the 

original table had a footnote indicat-

ing other possible variations.

The �rst column is the descrip-

tion that corresponds to an item on 

the simpli�ed version of the list from 

Raja Parasuraman, Thomas Sheri-

dan, and Christopher Wickens.11 The 

second column represents the human 

functions in the activity and the third 

represents the functions the computer 

performs. Interestingly, arrows were 

used between the second and third 

columns in the original work, creat-

ing a small causal diagram. This rep-

resentation more clearly shows that 

two parties are involved in the activ-

ity, as opposed to the list in Table 1, 

which focuses solely on the computer. 

Additionally, these arrows represent a 

Table 1. Levels of automation.*

Level Description

High 10. The computer decides everything, acts autonomously, ignoring the human.

  9. The computer informs the human only if it, the computer, decides to.

  8. The computer informs the human only if asked, or

  7. The computer executes automatically, then necessarily informs the human, and

  6.  The computer allows the human a restricted time to veto before automatic 
execution, or

  5. The computer executes that suggestion if the human approves, or

  4. The computer suggests one alternative

  3. The computer narrows the selection down to a few, or

  2. The computer offers a complete set of decision/action alternatives, or

Low   1.  The computer offers no assistance; the human must take all decisions  
and actions.

*Adapted from an earlier work.11
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work�ow with dependencies connect-

ing the functions. Insightfully, Sheri-

dan and Verplank understood that 

even their original richer description 

had limitations and stated that “as 

computer control and arti�cial intel-

ligence become more sophisticated, 

certain human functions in teleop-

eration may be replaced, but greater 

need and demand will be placed upon 

other human functions, and in these 

respects the need for improved man-

computer interaction will increase, 

not diminish” (p. 1–10).8

With this in mind, we have out-

lined several problems with the sim-

pli�ed concept of levels of autonomy 

as it is usually formulated.

Problem 1: Functional  

Differences Matter

There are signi�cant differences be-

tween performing an action and mak-

ing a decision as well as between dif-

ferent kinds of actions. Sheridan and 

Verplank’s original work provided a 

table of behavior elements that can be 

used to characterize a system. Their 

list included request options, get op-

tions, select action, approve action, 

start action, and tell functions. In this 

regard, the original levels model mixes 

apples and oranges—task work and 

teamwork. For example, in their level 1,  

the human handles the entire task 

without automation by performing  

the get options, select action, and 

start action functions. These are 

task-work components. On the other 

hand, the request options, approve 

action, and tell elements engage both 

parties in a simple form of teamwork.

The model also mixes reasoning 

(get options), decisions (select action), 

and actions (start action). Moreover, 

the entire approach reinforces the 

erroneous notion that “automation 

activities simply can be substituted 

for human activities without other-

wise affecting the operation of the 

system.”13

Parasuraman, Sheridan, and Wick-

ens’ work attempted to address some 

of these problems by associating  

activity types with the 10 levels.11 

They proposed four types (acquisi-

tion, analysis, decision, and action), 

but this merely highlights the impor-

tance of functional differences be-

tween the elements and ignores the 

issues of interdependence relating to 

such activities.

Problem 2: Levels Are Neither 

Ordinal nor Representative  

of Value

Another problem is that the term 

level implies an ordinal relationship. 

Authors who reproduce the con-

densed version often add the low and 

high labels to levels 1 and 10, respec-

tively, as in our Table 1. These labels 

imply that the levels are of increas-

ing autonomy, but are they really? 

The get options function seems like a  

lower level of autonomy than the se-

lect option. However, if the “getter”  

of the options can filter the op-

tions and the receiver has no other 

means to know what the options 

are, is it really a lower level? Who 

holds the power in this relationship? 

Which has a higher value: a start 

action or tell? It probably depends 

on the criticality of what is being 

started and the importance of what 

is being told. For these and other  

reasons, it is more productive to 

think about autonomy in terms of 

multiple task-specific dimensions 

rather than in terms of a single, uni-

dimensional scale.7

The perspective in which we view a 

system can also affect our assessment 

of autonomy. For example, ambiguity 

about the term autonomy comes into 

play in Figure 1. Because the level 

shown is six out of 10, we could con-

sider the machine semiautonomous— 

that is, at a mid-level of autonomy. 

However, with respect to the self-

suf�ciency perspective on autonomy, 

the machine could be viewed instead 

as fully autonomous because it can 

perform all aspects of the task work. 

On the other hand, from a self- 

directedness perspective, a machine 

functioning at this level would have 

no autonomy since the performance 

of its task work is completely subject 

to the direction and initiative of the 

human.

Our assessment of a system’s au-

tonomy also depends on the way we 

de�ne the boundaries of its sphere 

of action. Consider the vehicles that 

competed in the DARPA Urban Chal-

lenge, which were designed to �nd 

their way over a given course in “fully 

autonomous” fashion. Although fully 

autonomous with respect to this one 

particular task, they might be far 

from autonomous with respect to  

Figure 1. Altered excerpt of Sheridan-Verplank’s level 6 automation. Our goal was to 

incorporate all the basic elements in a single level for discussion purposes and more 

clearly show that two parties (computer and human) are involved in the activity. 

The solid arrows depict hard constraints that enable or prevent the possibility of an 

activity. The dashed arrow indicates soft interdependence, which includes optional 

commands. (Adapted from an earlier work.8)
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related tasks, such as going to the 

store and getting groceries.

This also applies in the other di-

rection. Several entries in the Urban 

Challenge were unsuccessful at com-

pleting the task but were success-

ful at aspects of the task. For exam-

ple, some could follow the road but 

not deal with traf�c. These might be 

called semiautonomous, but all this 

term tells us is that the machine could 

not do everything on its own. If we 

rede�ne the task as something sim-

pler, such as following a road with-

out traf�c, then we could once again 

describe the car as fully autonomous. 

In fact, virtually any machine could 

be considered fully autonomous if we 

de�ne the grain size of its task to be 

suf�ciently small. These examples 

make it obvious that the property of 

autonomy is not a mere function of 

the machine, but rather a relationship 

between the machine and a task in a 

given situation.

Problem 3: Autonomy Is Relative  

to the Context of the Activity

Autonomous capabilities are relative 

to the context of the task for which 

they were designed. When a design-

ers consider what level of autonomy 

is appropriate, they are assuming 

some level of granularity and using  

that to de�ne activity boundaries. 

Sheridan and Verplank’s original table  

title was “Levels of automation in 

man-computer decision making for 

a single elemental decisive step.” In 

other words, level 10 represents full 

autonomy relative to the single ele-

mental decisive step or activity. Un-

fortunately, over time researchers 

have generalized this to all activity 

in complex systems involving teams 

of humans and machines. This goes 

far beyond the original scope and 

might explain Sheridan’s comment 

that “surprisingly, the level descrip-

tions as published have been taken 

more seriously than were expected” 

(p. 206).14 

Functions are not automated in 

isolation from task context. There-

fore, when system designers auto-

mate a subtask, they are really per-

forming a type of task distribution 

and, as such, have introduced novel 

elements of interdependence within 

the system. This is the lesson to be 

learned from studies of the substi-

tution myth,13 which states that re-

ducing or expanding the role of au-

tomation in joint human-automation 

systems can change the nature of in-

terdependent and mutually adapted 

activities in complex ways. To ef-

fectively exploit automation’s capa-

bilities (versus merely increasing au-

tomation), we must coordinate the 

task work—and the interdependence 

it induces among players in a given  

situation—as a whole.

As an example, consider the major 

assumption underlying the Sheridan-

Verplank levels that the human, in a 

supervisory role, is the initiator of the 

activity and has an implied obligation 

to monitor the activity. Although this 

is not explicit in the model, it can be 

derived from the fact that the request 

options action is only available to 

the human and that the tell option is 

only available to the computer. Roles 

are not simple titles; rather they are 

mechanisms by which we describe ca-

pabilities and their interdependence.

Problem 4: Levels of Autonomy 

Encourage Reductive Thinking

Previous essays in this department 

have raised the issue of “keeping 

things too simple” in the design of 

cognitive systems.15 The levels of au-

tonomy concept demonstrates several 

of these oversimpli�cations. Some 

have already been mentioned, such 

as ignoring functional differences, 

which could include treating hetero-

geneous elements as homogeneous 

and ignoring task context. Another 

problem is the tendency to view ac-

tivity as sequential when it is actually 

simultaneous. Although task work 

often entails sequential dependencies 

and can be reasonably decomposed 

by looking at individual capabili-

ties, we cannot uniquely describe or 

design teamwork in this way. Team-

work is necessarily based on the  

interaction among the participants, 

whereas a simplifying notion of levels 

treats elements as cleanly separable.

Using Figure 1 as an example 

again, there seems to be a sequen-

tial ordering of the task elements. 

This might be appropriate for some 

tasks but not in general. Most team-

work occurs concurrently. Looking 

at the description of level 6 in the 

�rst column of Figure 1, it includes 

the phrase “informs the human in 

plenty of time to stop it.” This im-

plies the human is concurrently mon-

itoring and assessing the computer’s 

activity on some level. It would also 

suggest the need for a stop function, 

although none is included. The sim-

pli�cation here might explain the ap-

parent oversight of including a stop 

behavioral element, and it is indica-

tive of the problems faced when using 

a model with a solitary focus on lev-

els of autonomy.

Problem 5: The Levels of Autonomy 

Concept Is Insufficient to Meet 

Future Challenges

Many of the challenges facing de-

signers are related to teamwork. An 

earlier article in this department pro-

posed 10 challenges for making au-

tomation a “team player.”5 These 

challenges include directability, trans-

parency, and predictability. These 

challenges deny the intrinsic validity 

of any levels of autonomy concept. 

Each of these challenges must be ad-

dressed not by making the machines 

more independent, but by making 
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them more capable of supporting sys-

tem interdependence.

Many supportive behaviors are 

what might be called soft system con-

straints and are not essential to task 

completion—that is, although the 

performer is, strictly speaking, self-

suf�cient, it can bene�t from support. 

Joint activity is not exclusively about 

the hard constraints that enable or 

prevent the possibility of an activity, 

as the solid arrows in Figure 1 depict. 

Joint activity also includes soft inter-

dependence, which includes optional 

commands, such as the ability to re-

quest the �nal status of the action (see 

the dashed arrow in Figure 1). Soft 

interdependence also includes help-

ful things that a participant might do 

to facilitate team performance. For 

example, team members can signal 

progress appraisals16 (“I’m running 

late”), warnings (“Watch your step”), 

helpful adjuncts (“Do you want me 

to pick up your prescription when I 

go by the drug store?”), and obser-

vations about relevant unexpected 

events (“It has started to rain”).

Our observations suggest that good 

teams can be distinguished from 

great ones by how well they support 

requirements arising from soft inter-

dependence. Although social science 

research on teamwork indicates it as 

an important factor in team perfor-

mance,17 interdependence (particu-

larly soft interdependence) has not 

received adequate attention in the re-

search literature.6

Teamwork is largely about enhanc-

ing each member’s performance, not 

merely effective task distribution. In 

response to the MABA-MABA (men-

are-better-at/machines-are-better-at)  

Fitts’ List model,18 an alternative 

human-centered view was expressed 

in this department as the Un-Fitts 

List.19,20 The intent was to emphasize 

the ways in which people and ma-

chines cannot simply divide up the 

work, but rather mutually enhance 

their competencies and mitigate their 

limitations. Such a view is consistent 

with our view of interdependence and 

its role in design.

Consider the hypothetical level 6 in 

Figure 1. If we consider the interdepen-

dence in the activity, we can concoct 

a table patterned after the Sheridan- 

Verplank levels of automation but 

based on the Un-Fitts List (see Figure 2). 

We have added some potential inter-

dependence that might be appropri-

ate for such an activity. We allow the 

sequential-work-�ow assumption to 

persist only to maintain consistency 

in the discussion. The focus of Figure 2  

is the diversity of interdependence 

among the activities.

Although we apply this process 

to a single level within the original 

Sheridan-Verplank list here, it can be 

applied to any of the levels with dif-

ferent results, based on the varying 

interdependence within the activity. 

If we move beyond the single decisive 

element portrayed by the Sheridan-

Verplank list toward activity to sup-

port the future envisioned roles, the 

interdependence become much more 

complex and generating such a table 

becomes even more interesting. Such 

a construction calls out the ways in 

which changes to the level of auton-

omy affect interdependence and how 

the interdependence affects the total 

work system. Levels by themselves do 

not provide this information, which 

leads to the next problem.

Problem 6: Levels Provide 

Insufficient Guidance  

to the Designer

Levels of autonomy do not provide 

principles or guidelines for design-

ers as they build human-machine 

systems. Previous articles have dis-

cussed the challenge of bridging the 

Figure 2. Example of an interdependence analysis based on the Figure 1 example.  

We added some potential interdependence and allow the sequential-work-flow  

assumption to persist only to maintain consistency in the discussion. The solid  

arrows depict hard constraints, and the dashed arrow indicates soft interdependence.  

(Adapted from an earlier work.8)
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gap from cognitive engineering prod-

ucts to software engineering.21 The 

levels of autonomy concept provides 

no assistance here. Parasuraman, 

Sheridan, and Wickens suggested us-

ing levels of autonomy in combina-

tion with human performance as an 

evaluative criterion for automation 

design.11 Although we agree that 

human-performance measures are im-

portant and useful, it is unclear what 

value the descriptive levels of auton-

omy provide other than as a label-

ing mechanism. They provide no as-

sistance to the designer, whose only 

option is to build it and try it, then 

build something else and compare the 

results.

Interdependence, however, affords 

a great deal of predictive power. It 

can inform the designer of what is 

and is not needed, what is critical, 

and what is optional. Most impor-

tantly, it can indicate how changes in 

capabilities affect relationships.

This extends the human-centered 

approaches where designers typically 

ask, “How can we keep the human in 

the loop?” or “How do we reduce the 

burden on the human?” These types 

of questions lead designers to focus on 

usability issues. Understanding the in-

terdependence in the human-machine 

system in the context of the antici-

pated activity can provide a wealth 

of guidance to a designer. In fact, we 

posit that it is through understand-

ing the dynamic interdependence 

within the macrocognitive work that 

the system developer can answer such 

questions as “What should be auto-

mated?” and “How do we reduce the 

burden on the human?” More impor-

tantly, it has the potential to answer 

richer questions, such as “How will 

this change affect the work system?”

As an example, consider our level 6 

in Figure 1. What is the impact of al-

lowing the computer to move from the 

get options to select action functions 

without requiring the human request 

function? Here, some amount of risk 

analysis might be required to assess 

the consequences of leaving it com-

pletely to the system. Making this 

change might enable a higher level of 

autonomy, but is it better? How does 

it affect the system?

Now look at Figure 2. Identifying 

the interdependence suggests sev-

eral impacts. Not only does allowing 

the computer to select the action re-

duce the directability of the automa-

tion by eliminating the computer’s 

dependence on the human to initiate 

action selection, it also reduces trans-

parency because the human no lon-

ger has access to the options. Both 

of these limit the work system’s abil-

ity to leverage the human’s ability to 

improve the overall work system’s 

effectiveness.

Toward Coactive Design
Building on the theory of joint activ-

ity,4,5 we are working on a coactive 

design approach6 that is intended to 

provide prescriptive guidance to de-

signers of sophisticated human-machine 

systems. Coactive design takes inter-

dependence as the central organizing 

principle among people and agents 

working together as a team. The ap-

proach also embraces the idea that 

effective coordination in human-

machine activity has much to learn 

from the various forms of social regu-

lation that enable people to work well 

together.22

Besides implying that two or more 

parties are participating in an activ-

ity, the term coactive is meant to con-

vey the reciprocal and mutually con-

straining nature of actions and effects 

that are conditioned by coordination. 

In joint activity, individual partici-

pants share an obligation to coordi-

nate, to a degree sacri� cing their in-

dividual autonomy in the service of 

progress toward group goals.

By its nature, joint activity im-

plies the greater parity of mutual as-

sistance, enabled by intricate webs 

of complementary, reciprocal affor-

dances, and obligations. Thus, coact-

ive design considers the mutual inter-

dependence of the all parties instead 

of merely focusing on the dependence 

of one of the parties on the other. It 

recognizes the bene� ts of designing 

agents with the capabilities they need 

to be interdependent.

As we try to design more sophisti-

cated human-machine work systems, 

we move along a maturity continuum 

from dependence to independence 

to interdependence. The process is a 

continuum because a small level of 

agent independence through auton-

omy is a prerequisite for interdepen-

dence. However, independence is not 

the supreme achievement in human-

human interaction,23 nor should it 

be in human-machine systems. Imag-

ine a completely capable, autono-

mous human possessing no skills for 

coactivity—how well would such a 

person � t in most everyday situations?

This maturation process cannot 

only be seen in individual systems but 

also in the human-machine systems 

Coactive design takes 

interdependence as the 

central organizing principle 

among people and agents 

working together as a 

team.
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�eld as a whole. Consider the history 

of unmanned aerial vehicle (UAV) 

R&D. The �rst goal in development 

was a standard engineering challenge 

to make the UAV self-suf�cient for 

some tasks (such as stable �ight and 

waypoint following). As the capa-

bilities and robustness increased, the 

focus shifted to the problem of self-

directedness by the machine (“What 

am I willing to let the UAV do auton-

omously?”). The future developments 

of UAVs suggest yet another shift, as 

discussed in the “Unmanned Systems 

Roadmap,”24 which states that un-

manned systems “will quickly evolve 

to the point where various classes of 

unmanned systems operate together 

in a cooperative and collaborative 

manner” (p. 2). This requires a focus 

on interdependence (“How can I get 

multiple UAVs to work effectively as a 

team with their operators?”).

This progression of development is 

a natural maturation process that ap-

plies to any form of sophisticated au-

tomation. Awareness of interdepen-

dence was not critical to the initial 

stages of UAV development, but it be-

comes an essential factor in realizing 

a system’s full potential.

We believe that increased effec-

tiveness in human-agent teamwork 

hinges not merely on trying to make 

machines more independent through 

their autonomy, but also in striving 

to make them better team players5 by 

making them more capable of sophis-

ticated interdependent joint activity 

with people.
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