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ABSTRACT 

This paper investigates research using VGI and geo-social media in the disaster management 

context. Relying on the method of systematic mapping, it develops a classification schema that 

captures three levels of main category, focus, and intended use, and analyzes the relationships 

with the employed data sources and analysis methods. It focuses the scope to the pioneering 

field of disaster management, but the described approach and the developed classification 

schema are easily adaptable to different application domains or future developments. The 

results show that a hypothesized consolidation of research, characterized through the building 

of canonical bodies of knowledge and advanced application cases with refined methodology, 

has not yet happened. The majority of the studies investigate the challenges and potential 

solutions of data handling, with fewer studies focusing on socio-technological issues or 

advanced applications. This trend is currently showing no sign of change, highlighting that VGI 

research is still very much technology-driven as opposed to theory- or application-driven. From 

the results of the systematic mapping study, the authors formulate and discuss several 

research objectives for future work, which could lead to a stronger, more theory-driven 

treatment of the topic VGI in GIScience. 
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1 Introduction 

In 1941, the BBC called for people’s collaboration to obtain holiday pictures and postcards of 

European beaches. Over 10 million of items were received1. This early precedent resembles 

in scale and quality of information modern responses to disasters: people generate and collect 

dozens of millions of media content for supporting diverse activities during all stages of disaster 

management (Meier, 2015). What makes the current utilization of user-generated content 

different is that many of the original technological limitations on the production, collection, and 

processing of data no longer exist. People now produce data in many ways, and many do not 

realize that they are constantly generating data through their own handheld devices (e.g. 

automated GPS traces).  

The term Volunteered Geographic Information (VGI) was coined in 2007 (Goodchild, 

2007) to emphasize the concept of user-generated content attached with geospatial 

information (e.g. location, place names) in the form of geotags or coordinates. No matter what 

people, services, devices, and sensors are sensing (e.g. noise, air quality), spatio-temporal 

context is a must to help in the understanding and interpretation of the collected data (Sagl et 

al., 2012). Various sources of VGI have been used in many contexts and diverse application 

scenarios, leading to a family of terms which highlight slightly different characteristics on the 

level of user participation, on whom produces the data (citizens, sensors, etc.), or on the 

particularities of data collection processes. Some authors have tried to create taxonomies for 

user-generated geographic content (Craglia et al., 2012). In this paper we continue to use the 

term VGI, albeit in an inclusive manner that also encompasses data that was not explicitly 

volunteered.  

Contrary to the BBC case, where each picture was manually processed to help find the 

final location in Normandy, one of the determining factors today is the existence of enabling 

analytics technology (Chen et al., 2012) to quickly process and analyze huge amounts of data. 

The actual data-rich context reduces emphasis on the accuracy and exactness of data in favor 

of allowing some degree of inaccuracy, uncertainty and noise in return for capturing a far more 

comprehensive, larger set of data (Mayer-Schönberger & Cukier, 2013). The current state of 

the art in data analysis techniques enables the rapid discovery of correlations in large data. 

More data might also help to deal with inaccuracy of individual bits of data. In this context, we 

assume that data analysis techniques will gain traction over data quality and precision as long 

as more and more VGI is captured and used in projects and applications.  

                                                      

1 http://en.wikipedia.org/wiki/Operation_Overlord 



3 

 

Recent works in the literature (Neis & Zielstra, 2014; Roick & Heuser, 2013) examine 

the nature of VGI itself (e.g. quality, accuracy, precision), focus on the role of the contributor 

(e.g. gender, motivating factors to contribute), or explore the defining capabilities in terms of 

reliability, documentation, and easy-to-use of current VGI sources. This study focuses on the 

utilization and analysis of VGI in the domain of natural and man-made disasters management. 

While recent reviews question current data practices on using VGI during disaster 

management scenarios (Haworth & Bruce, 2015), this study takes a complementary view 

assuming that the detection of hidden and emerging patterns on the utilization of VGI could 

pave the way to advancing the VGI research field beyond its predominant focus in data 

collection to a level where rich spatiotemporal contexts, and advanced geospatial analysis 

techniques play a dominant role (Crampton et al., 2013). 

In this sense, we expect that VGI research is now a stage where a body of knowledge 

and best practices should emerge. This is a difficult task because research on VGI is mostly 

technology-driven and changes at a fast pace. We aim to contribute to an ongoing 

consolidation by identifying important analytical trends and use patterns on the utilization of 

VGI, in order to shape future research and applications in the field. 

To do so, we conducted a systematic mapping study that aims to find and classify the 

primary studies in the VGI and disaster management field. Engström and Runeson (2011) 

summarized a systematic mapping study as a useful tool looking “at a higher granularity level 

with the aim to identify research gaps and clusters of evidence in order to direct future 

research”. In this work, we present the results of a systematic mapping study based on a 

sample of VGI-related studies published since the term’s inception in 2007. To do so, we first 

designed a classification schema that allowed us to explore systematically the set of eligible 

papers through a “purpose” dimension. This enables us to investigate relationships between 

purposes, VGI sources and analysis methods, and reveal hidden and emerging patterns to 

expose novel, innovate purposes for VGI beyond data collection in disaster management 

situations. We argue that the outcomes of the present research are valuable also for 

researchers in other applications domains by taking the analysis framework as reference for 

subsequent studies.  

In particular, this systematic mapping study addresses the following questions in the 

context of the disaster management domain: 

 Q1: Which is a suitable classification schema for VGI research to enable a systematic 

mapping study? 

 Q2: What are the most investigated intended uses, and in what user case scenarios? 

 Q3: What are the most frequently VGI data sources, and in what context/application? 
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 Q4: What are the most frequently (spatial) data analyses methods, and in what 

context/application? 

Sections 2 and 3 cover the systematic mapping review itself. We describe the 

methodology to obtain the set of eligible studies and the subsequent analysis for identifying 

main intended uses, data sources employed, and key enabling analysis methods. In section 

4, we interpret the results, and point out our own observations; whereas in Section 5 we 

discuss opportunities and challenges 

2 Method 

A systematic mapping study is a successful tool in research fields such as software 

engineering (Petersen et al., 2008) and rich web applications (Casteleyn et al., 2014). We 

adopt the methodology from Petersen et al. (2008) for this study. In short, the study answers 

specific research questions (Q2-4), related to the identification and coverage of the field of 

study, by first identifying eligible and primary studies, then classifying them in a newly 

developed schema (Q1), and analyzing the results. The following subsections detail each step 

of the approach. 

2.1 Search and selection criteria 

Initially, we obtained 426 papers as a result of several bibliographic search queries in major 

specialized and general databases engines such as ISI Web of Science, Scopus, ACM, IEEE, 

and DBLP, as well as thematic repositories like the Humanitarian Computing Library2. We also 

sought for relevant conferences and workshops for which VGI4DM was a central topic (See 

annex A). In order to better understand the resulting set, we performed an initial, three-phased 

exploratory analysis, using the following eligibility criteria:  

1. Publication in scientific journals, magazines, conferences, symposia or workshops 

(excluding review and survey papers, editorials, comments and prefaces) with full text 

being accessible.  

2. Written in English.  

3. The title, abstract or keywords explicitly mention the utilization of VGI sources 

(including geo-social media) in a disaster management or crisis response context. 

4. The publication was published in or after 2007, when the term VGI was coined. 

During the first phase, a screening of titles and abstracts led to the removal of 

duplicates and those that clearly did not fulfill all eligibility criteria, reducing the set to 119.  

                                                      

2 http://humanitariancomp.referata.com/wiki/Welcome 

http://humanitariancomp.referata.com/wiki/Welcome
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A second in-depth analysis of the resulting set focused on criterion 3, the relevance 

and use of VGI or geo-social media in a disaster management context, resulting in a final set 

of 59 relevant and representative papers for the systematic mapping study. These papers 

appear in Annex C. In total, 35 unique publication venues were identified, of which about two 

thirds (25) features only one publication (see Annex A). This high dispersion reflects the 

diversity of VGI research that spans many diverse disciplines and scientific fields. However, 

GIS journals are well represented in our selection and are identified as core journals in a recent 

bibliographic study about GIS journals (Scarletto, 2014). 

Third and finally, we conducted an extensive qualitative analysis3 in order to extract 

and synthesize relevant data about the remaining papers (N=59). For each paper, we tried to 

answer: What is the main focus and intended use? What kind of data do the authors employ 

for their study? What data analysis and visualization techniques do the authors utilize? Do the 

authors compare or integrate their results with official/reference datasets? What is the use 

case or scenario? Who are the target user(s)? As a result, we extracted a list of 30 variables 

grouped on four thematic clusters:  

 Article’s bibliographic details: unique identifier; title; year of publication; the name and 

type of the publication venue, keywords as they appeared in the paper; DOI and 

abstract. 

 Article’s focus and intended use: the main category of a paper, its focus, and intended 

uses (the combination of these three variables contributed to the build-up of the 

classification schema described in the following section); the most relevant application 

domain (natural disaster, man-made disaster, both; use case or scenario (e.g. floods, 

earthquake, riots, etc.); a concrete disaster, if any (e.g. 2010 Haiti Earthquake); and 

type of stakeholders or end users if explicitly mentioned.  

 Data sources employed: (geo-)social media/VGI sources used; additional 

comments/notes on how the VGI sources were used; use of official/reference data, and 

if so, which ones. 

 Analytical strategy and analysis methods employed: the type/strategy of analysis 

conducted; the methods and/or protocols used for data collection; the manual data 

analysis and crowdsourcing methods, automated data analysis methods, or specific 

geospatial-related methods used during the data preparation phase; the network 

analysis techniques, applied statistics methods, or specific geospatial analysis used 

                                                      

3 The resulting data set from the analysis, plus documents explaining all the variables of the data set, along with 

the subsequent data analysis (R scripts) for Section 3 are publicly available in the following Github repository: 

https://github.com/cgranell/paper-vgi-science 
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during the analysis phase; the geospatial methods used for visualization purpose; and 

whether or not the paper describes a tool. 

2.2 Classification schema 

The resulting classification schema addresses Q1 and groups the studies into a taxonomy of 

three levels: Main categories, focus, and intended use. The main category refers to the overall 

context of the research, the focus captures the main objectives of the study within each 

category, and the intended uses are meant to express finer aspects of each focus. For 

instance, location extraction and classification is a concrete use of a paper whose overall focus 

is data preparation or handling. Categories and focus are not exclusive since a paper may 

belong to various categories or may have more than one focus.  

The classification schema is based on two inputs: First, from discussions between the 

authors and therefore based on their domain knowledge. Second, as a result of the exploratory 

analysis (Section 2.1) by identifying the research context and main concepts that reflected the 

main contribution of each paper. By doing so, we identified three main categories: data-centric, 

human-centric, and application-centric. Given the focus on disaster management and 

response, the application-centric category currently consists only of crisis management as 

single instance.   

In addition, keywords were analyzed to elicit information about the main focus of each 

paper. The process to extract and define foci was iterative by adding, deleting and merging 

them over the course of the analysis as we were getting a better understanding of the concrete 

contributions of the papers. The third level of the classification schema was achieved by 

identifying finer intended uses through a detailed analysis of the papers. The combination of 

categories, foci and intended uses gave us an initial classification schema to categorize papers 

and provided an overview of the finer intended uses of the utilization of the VGI for disaster 

management. 

The data-centric category contains studies that mainly concern the management or 

handling of (big) VGI4DM streams. It includes studies whose general goal is to transform raw 

data into useful and relevant data, i.e. “processed data” ready for subsequent analyses. 

Examples of data processing and transformation tasks are cleaning and filtering, annotation, 

clustering, aggregation, and contextualization, which form the basis for the definition of the set 

of sub-categories: 

 Data preparation: Cleaning, filtering and extraction of extract relevant data from raw 

data sources. 

 Data contextualization: Data enrichment with contextual information (e.g. from external 

sources). 
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 Data quality assessment: Assessment of the veracity and reduction of bias of the data.  

 Data preservation: Strategies to long-term social media data storage to permit future 

studies on past data. 

 Data policy: Various aspects such as data access rights, terms of service, copyright 

and the like about VGI and social data.  

By drilling down further, we identified a set of intended uses of VGI data for each sub-

category within the data-centric category, which are summarized in the figure 1. 

 

Figure 1: Data-centric category (first level), focus (second-level) and intended uses (third 

level) in VGI–related studies for the review 

The human-centric category includes studies that focus on people as central theme 

and that explore human activities and social digital footprints from VGI sources. Human-centric 

papers investigate a wide range of important social phenomena, including demographics, 

social relations, interactions and behaviors. The foci are: 

 Human activities: Any kind of human activities which may be the target of VGI analyses.  

 Human mobility: A special type of human activity related strongly to location, thus 

deserving its own sub-category.  

 Human relations: How people relate to others, and how they are grouped together in 

similar communities or clusters. 

 Human perceptions: The level of awareness or public perception of a theme or topic, 

i.e. how people feel particular disaster events and situations.  
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Similarly to the data-centric papers, we identified intended uses of VGI for each focus 

within the human-centric category, as illustrated in figure 2.  

 

Figure 2: Human-centric category (first level), focus (second-level) and intended uses (third 

level) in VGI–related studies for the review. 

The application-centric category comprises studies that are concerned with the use and 

application of VGI to the particular case of natural disaster, e.g. earthquakes, tsunamis, floods, 

tornados, and man-made events such as social movements, protests, riots, and so on. We 

arrived at the following self-descriptive sub-categories for the application-centric category, 

which fit the four phases of crisis management during the outbreak of natural or man-made 

events (Cutter, 2003) plus public health issues: 

 Crisis detection and prediction,  

 Crisis monitoring,  

 Crisis recovery and response,  

 Crisis coordination and organization, and  

 Crisis health. 

Finally, we also identified intended uses within the application-centric category (Figure 

3). 
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Figure 3: Application-centric category (first level), focus (second-level) and intended uses 

(third level) in VGI–related studies for the review. 

3 Results 

The section presents the results of the systematic mapping review. We first map the set of 

eligible studies (N=59) to the classification schema (Q1). This exercise allows to address Q2-

4, with each question being dealt with in a separate subsection (Sections 3.1 – 3.3). 

The three tables in Annex B result from mapping the outcomes of the exploratory 

analysis into the classification schema described earlier. They correspond to the three 

application categories, i.e. data-centric, human-centric, and application-centric. Each table 

relates each focus with the set of intended uses extracted from the papers, and also gives 

examples of analysis methods used, which will be explored in detail in the following sections. 

3.1 Focus and intended use 

The definition of an initial research question is essential to drive, focus, and contextualize a 

study. Every analysis aims to answer a given question, and each question may require different 

analysis methods and strategies to address it (Leek & Peng, 2015a). The focus and intended 

use of the study therefore should determine the analysis methods, tools and the set of data 

sources.  

To explore the focus and intended use of the studies, we first observe the overall trend 

of the entire set of papers. The number of papers tagged as data-centric (41, or 53%) 

outnumbers the other two categories (24 as application-centric: 31%; 12 as human-centric: 

16%). As mentioned, a paper can belong to more than one main categories. 5 papers are 

labeled as data-centric and human-centric, and 13 papers are data-centric and application-

centric. This indicates that these papers make significant contributions to both categories. For 

example, these studies often focus on data handling and then apply the results to either 
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application- or human-centric use cases. There is no overlapping between human-centric and 

application-centric categories. 

 

Figure 4: Parallel set visualization to illustrate how the set of papers are related considering 

the main category, application domain, and use cases variables. Use case abbreviations are 

defined as: CA stands for crowded areas; HU hurricanes; CW civil wars; DO disease 

outbreaks; TO tornados; RI riots; PE protest events; and HR hurricanes and riots. 

The parallel set visualization in Figure 4 illustrates the relation among main categories 

(identified by color), application domains (natural disaster, man-made disaster, both) and use 

cases. First, the total number of papers in the natural disaster domain (63%) doubles that of 

those in the man-made disaster domain (33%), with 4% of the papers addressing both 

domains. In particular, natural disasters are predominant in data-centric and application-centric 

related studies, while man-made and natural disaster domains turn out to be evenly distributed 

in human-centric studies. Based on the set of analyzed studies that specified application 

domain and use case, earthquakes and flooding are by large the recurrent use case in 

application-centric studies and data-centric studies, followed by wildfires, and hurricanes. Most 

use cases also correspond to those found by Horita et al. (2013).  

We observe that a significant proportion of studies within the data-centric and human-

centric categories do not explicitly indicate an end user or stakeholder, and some studies do 

not specify a use case at all. Conversely, application-centric studies do often indicate 

stakeholders, i.e. vested users interested in the results and/or usage of the application. In such 

cases, emergency managers are mostly identified as target users or stakeholder.   
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With such preponderance of data-centric studies, it is worth looking more closely at the 

focus and concrete intended uses. Figure 5 shows the frequencies of intended used (y axis) 

grouped by focus (color). At first glance, the frequencies of intended uses are very unevenly 

distributed, with the data preparation focus and associated intended uses the most frequent. 

This suggests that many studies concentrate on the selection, extraction and classification of 

features of interest (i.e. topics, theme, location, places, etc.) from source data streams (See 

Table 1 in Annex B for examples from literature). Activities related to the handling and 

preparation of VGI4DM are still the predominant goal of many studies.  

 

Figure 5: Intended uses by focus within the data-centric category. Note that a single paper 

can have more than one intended use. 

An equal number of papers address issues of data contextualization and data quality 

and assessment. Data contextualization refers to annotating and enriching bits of data 

extracted from VGI4DM sources with contextual information that often originates from 

alternative data sources. Its aim is to enhance situational awareness and contextual narratives. 

This shows that some studies in the VGI4DM research field are moving from extracting and 

classifying bits of data (data preparation focus) towards more elaborated, knowledge-intensive 

uses. Intended uses within data contextualization include capturing place-time-theme 

narratives for situational awareness purposes (Rogstadious et al., 2013; McEachren et al., 

2011; ), annotation and augmentation of VGI data with spatial semantic descriptions (Abel et 

al., 2012; Ortmann et al., 2011; Schulz et al., 2012;), enrichment of VGI data with alternative 

spatio-temporal contextual data (Spinsanti & Ostermann, 2013; Davis et al., 2013; De 

Longueville, Luraschi et al., 2010; Horita et al., 2015); inferring and enriching one’s location by 
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combining additional data sources (Davis et al., 2011; Diakopoulos et al., 2012; Ikawa et al., 

2012), and integration of heterogeneous geospatial ontologies and concepts (Zhang et al., 

2014; Intagorn et al., 2010).  

The utilization of VGI4DM for data quality and assessment has two types of studies: 

those that try to assess the quality, relevance and trustworthiness of VGI4DM data by 

comparing it with other data sets (e.g., Foody, 2014; Spinsanti & Ostermann, 2013; Power et 

al., 2013; Panteras et al., 2015; Kent & Capello, 2013; Antoniou et al., 2010; Camponovo & 

Freundschuh, 2014), and those that use people as quality assessment tools (e.g., Rogstadious 

et al., 2013; Ortmann et al., 2011; Barrington et al., 2012; Popoola et al., 2013). Both represent 

different but potentially complementary approaches to verify the quality of VGI (Goodchild & 

Liu, 2012). Hybrid strategies that combine methods to integrate VGI4DM and official data sets 

examined by large groups of volunteers are still rare but seem to be a promising niche to 

explore in the future, especially during the aftermath of disaster events. 

Finally, foci relative to data preservation and policies seem to attract less attention from 

the VGI4DM research community. As seen in Section 2.1, most eligible studies have been 

published in computer science venues, and so the predominant focus on technology-intensive 

research (data preparation, contextualization and quality assessment) dominates over other 

topics from the social sciences community.  

Figure 6 shows the foci and intended uses within the human-centric category. Most 

studies explore human activities, with human mobility being a special case since location is a 

dominant, central feature in such cases. For example, determining and predicting peoples’ 

movement and density in and aftermath of disaster events or social events (protests, riots, 

etc.) is widely explored (Bengtsson et al., 2011; Chen et al., 2011; Wirz et al., 2013). Similarly, 

human activities like the identification of people’s daily habits (Girardin et al., 2008; Crandall 

et al., 2010; Andrienko et al., 2013) and topic of conversations (McNamara & Rohner, 2012) 

have been also investigated in disaster emergency situations . An important aspect in disaster 

situations is the characterization of the affected communities. Revealing social relations and/or 

ties between members of such communities may help response agencies to discovery 

community leaders who have predominant roles within their communities (Cheong & Cheong, 

2011).  

Even though other studies with a human-centric focus have been applied to varied use 

case scenarios other than disaster managements, they still remain of interest in such cases 

because of their methodological approach. Inferring co-occurrences of people in time and 

space, also known as people co-location (Crandall et al., 2010), travel patterns and 

recommendations (e.g., Girardin et al., 2008), and commuters habits (Zatlz et al., 2013) are of 
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value to response agencies and emergency managers when it comes to evaluate all factors 

for taking decisions.  

 

Figure 6: Intended uses by focus within the human-centric category. Note that a single paper 

can have more than one intended use. 

For the third category, application-centric papers, social media services and VGI tools 

become powerful communication tools to disseminate information to the public (e.g., for alerts), 

to gather information from the public (e.g., crowdsourcing), and to coordinate actions among 

crisis management professionals. Figure 7 shows that most studies have investigated the use 

of VGI4DM as an early warning and detection mechanisms (e.g. Crooks et al., 2013; Earle, 

2010; Robinson et al., 2013; Schelhorn et al., 2014), and for monitoring purposes to extract 

event-relevant information (e.g., Rogstadius et al., 2013; Liang et al., 2013; Budak et al., 2013; 

Poser & Dransch, 2010; Horita et al., 2015). However, there is also a significant effort on 

collective, user-driven damage assessment during the response and recovery phases (e.g., 

Curtis & Mills 2012; Santamaria et al., 2013; Corbane et al., 2012; Barrington et al., 2012; Lue 

et al., 2014). The variety of intended uses extracted from the set of studies shows that VGI 

collected and captured over the course of a crisis event is a valuable source of information for 

emergency agencies and managers to carry out detection, monitoring and assessment 

activities as well as to take actions for recovery and rapid response. 
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Figure 7: Intended uses by focus within the application-centric category. Note that a single 

paper can have more than one intended use. 

3.2 Data sources 

A critical step for any scientific inquiry is the identification and choice of relevant data sources 

meeting the study. Developing or using well-documented procedures and automated methods 

to collect data from varied sources fosters the reproducibility of VGI-related studies of interest 

by other researchers (Ostermann & Granell, 2016). 

Figure 8 illustrates that the overwhelming majority of studies use Twitter as data source. 

Some studies choose other data sources because of the special characteristics of their context 

and intended use, e.g. GPS data from mobile phones to trace people movements after crisis 

events (e.g. Bengtsson et al., 2011; Wirz et al., 2013), spatial video for assessment and 

monitoring of the affected environment during post-disaster phases (e.g. Curtis & Mills, 2012; 

Lue et al., 2014), detection of road blockage using Open Street Map and airborne light 

detection and ranging (LiDAR) data (Liu et al., 2014), and unmanned aerial vehicles for quick 

mapping purpose (Santamaria et al., 2013). Despite these examples, Twitter clearly is the 

primary (and often the unique) data source for disaster management use cases.  



15 

 

Figure 8: VGI sources employed by main category.  

 

The use of Twitter as a unique data source comes at the expense of having only few 

studies using two or more VGI sources simultaneously or combining or integrating VGI sources 

with other official data sets. The degree of Twitter use varies depending on the focus. For 

example, Twitter is the predominant source in almost all data-centric studies, especially in data 

preparation, contextualization, and quality assessment, with 18 cases in total as unique source 

but 25 if combined with other sources, followed by Flickr with 7 occurrences, both alone and 

in combination with other sources. Twitter is exclusively used for detection and prediction, and 

monitoring foci in the application-centric category. This is due to most studies focusing on 

earthquakes, where Twitter practically is the only feasible VGI source for early detection. 

However, Twitter is not so widely used in recovery and response foci in favor of other data 

sources such as spatial video, UAV, and phone call data, which may provide strong evidence 

(e.g. in-situ images) of the current situation of an affected area during post-disaster stages.  

Surprisingly, Twitter is less frequently used in human-centric studies. In fact, this 

category presents a scarce variety of data sources but mostly used in isolation. For example, 

Twitter, Flickr, and GPS data from mobile phones are examples of unique sources used in 

human-centric studies. In fact, GPS data (2 cases) is exclusively used in studies relative to the 

human mobility focus.  
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Finally, we cannot observe a distinctive feature on the use of VGI4DM sources in 

combination with official data except for all of the studies classified in the data contextualization 

and data quality and assessment foci that use additional official sources.  

3.3 Analysis methods 

The definition of an initial research question in a data analysis study is fundamental 

because it determines the most suitable overall analysis approach or strategy, which in turn 

should determine the pool of analytical methods to employ. Many studies in our set do not 

explicitly define an initial scientific question that shapes the analysis strategy and guides the 

subsequent data analysis. They briefly state vague or broad objectives such as to improve 

decision making for disaster management and to enhance situational awareness, but do not 

operationalize these vague research questions into a suitable strategy for data analysis. This 

lack of information about the research questions and target users of the analysis made it 

difficult in many cases to identify or interpret the analysis strategy. From the literature, we 

distinguish the six broad analysis strategies or approaches: descriptive, which describes or 

summarizes data sets; exploratory, which tries to find relationships or patterns and develop 

objectives for follow-up studies; methodological, where authors propose and test methods and 

workflows; inferential, which aims to generalize results from small data samples to the 

population; predictive, which utilizes some variables (predictors) to predict values for another 

object variable (outcome); and causal, which tries to find out the conditions under which 

associations and correlations amid variables can be interpreted as causality. 

Almost all of the examined studies have been categorized as descriptive or exploratory. 

Descriptive studies summarize data via descriptive statistics (e.g. mean, median, standard 

deviation, quartiles, etc.) and plots (histograms, box plots, etc.) without deeper interpretation. 

More than half of the studies are of exploratory nature. They often build on a descriptive 

analysis to discover patterns and correlations between observations, help interpret statistic 

coefficients and errors, and measure data uncertainty. Within this group, well-known Natural 

Language Processing (NLP) and Machine Learning (ML) techniques are used for text analysis, 

information retrieval, and in general for data preparation purposes (i.e., filtering, classification, 

clustering etc.). This includes for example activities to compute word frequency, word 

disambiguation and to extract and identify entities of features of interest like place names using 

named entity recognition tools. Also supervised and unsupervised classification and clustering 

techniques are applied in order to group relevant entities (e.g. emotions, place names) and 

detect patterns. These techniques often required fine-tuning to handle the extremely short and 

unstructured content of the text field in Tweets.  
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A few studies may be regarded as inferential or predictive analysis for quantifying 

discoveries beyond the dataset in hand and predicting measurements respectively. Examples 

are probabilistic models (Crandall et al., 2010), predictive models (Bengtsson et al., 2011; 

Chen et al., 2011; Wirz et al., 2013), and regression analysis (Wirz et al., 2013; Panteras et 

al., 2015; de Alburquerque et al., 2015; Kent & Capello, 2013). Causality is absent in the 

studies analyzed.  

With regards to the pool of geo-analysis methods, many papers customize well-known 

NLP and ML techniques to support geo-parsing and geo-location. Contextual information such 

as one’s current and past messages, one’s profile, and locations of one’s relations prove useful 

(Ikawa et al., 2012). Some studies analyze spatiotemporal patterns using density surface maps 

(i.e. heat maps) and by computing spatial distances (Manhattan, etc.), and often produce web 

map-based visualizations to show the results of their experiments (e.g. Stefanidis et al., 2013; 

Girardin et al., 2008). Others have applied social network analysis (SNA) techniques to study 

the network structural properties as well as propagation and diffusion models as a result of 

transforming interrelated social data into network graphs (e.g., Crandall et al., 2010; Conover 

et al., 2013). Indeed, SNA is a versatile tool as it allows constructing different networks from 

the same data set to subtly study distinct human behaviors and relations. For example, Cheong 

& Cheong (2011) created one network composed of nodes (or vertices) representing Twitter 

users and edges (or links) representing responses to particular tweets of Twitter users, and 

another network containing those Twitter users and linked resources (i.e., referenced by links 

from tweets) as nodes forming then a bimodal or bipartite networks.  

For the application-centric category, we found a richer set of analysis methods than in 

the other two categories. For example, in the detection and prediction focus there exist more 

advanced models such as a geo-spread indicator for detecting quakes (Robinson et al., 2013; 

Earle, 2010), and a quake response model as a function of distance from epicenter over time 

(Crooks et al., 2013). Within the monitoring focus, examples are density and buffer-intensity 

calculations (Liang et al., 2013), Kriging regression (Poser & Dransch, 2010), computation of 

a composite “hazard” index (Horita et al., 2015), and the Geo-scope algorithm (Budak et al., 

2013) for detecting geo-correlated trends from VGI sources. SNA-related techniques such as 

link analysis (Conover et al., 2013) are widely used within the coordination and organization 

focus.  

4 Discussion 

In this section, we revisit the four research questions, synthesize the results from the previous 

section, and discuss implications of our findings. 
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The classification schema (Q1) proved useful and provided sufficient detail to capture 

the various aspects of the investigated papers. Some of the schema’s intended uses are 

sparsely populated, suggesting a merging to create fewer categories. However, this 

sparseness is also an indicator of current research foci (and their absence), hence it shows 

the richness (or lack thereof) in current research, and suggests future research topics - one of 

the original objectives or motivations of this study. The data-centric and human-centric 

categories can be re-used for exploring other applications than emergency management in 

conjunction with an extension and/or adaptation of the application-centric category’s foci and 

intended uses. To complement our manual analysis and reasoning that shaped the 

classification schema, it would be desirable to use text mining methods over the abstracts of 

all papers to check whether a significant proportion of the terms we used in the focus and 

intended use level are explained (i.e. are highly correlated) by the most frequent associations 

of topics from all abstracts 

Concerning Q2, focus and intended uses, Figure 9 shows that even after several years, 

there is still a clear overall emphasis on data-centric research. This is surprising given that our 

literature is based on a search with a clear application context of disaster management. It 

suggests that there is still a need to understand VGI4DM collection, processing and 

characteristics. An overall data-centric emphasis is to be expected for earlier publications when 

researchers were struggling to handle the volume and diversity of VGI sources. However, one 

could expect an increasing share of studies on human- or application-centric themes over time.  

Other important activities such as data contextualization and, quality assessment have 

received less attention from the research community than data preparation. Spinsanti & 

Ostermann (2013) proposed to enrich social data on forest fires with additional geographic 

context information (from external official sources) based on the location identified in VGI 

items. Contrasting information from VGI sources with information from official data sources 

(e.g. demographic, environmental observations, transport, etc.) may be certainly a way forward 

to discover new insights, correlations and patterns. When top-down data (official, authoritative, 

“objective” data) and bottom-up data (user-generated, “subjective”, social data) are properly 

combined, the resulting contextualized data should become more precise and actionable for 

being used in data analyses. For example, Schade et al. (2013) have explored the use of the 

OGC Sensor Web Enablement (SWE) standards (OGC SWE, 2015) to model and combine 

VGI sources, thus converting them in a timely and valuable source of information. Other 

authors (Crampton et al., 2013; Roick & Heuser, 2013; Tsou & Leitner, 2013) as well call for 

further research in data contextualization and integration (especially with other official and 

ancillary data sources), data assessment and quality, but also data ownership and privacy. 

The tendency on data preparation seems to decline the past two years (Figure 9); studies 
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dealing with data contextualization and quality assessment issues clearly outnumber those on 

data preparation tasks.  

Nevertheless, coupling structured and unstructured data from many different data 

sources still remains challenging for several reasons: the difficulty to manage distinct protocols 

for data collection; the need to integrate data sets of different provenance, coverage, 

granularity and complexity; and the time constraints of a disaster management context. A 

potential solution could be a common data model that could be directly applied to multiple VGI 

sources for improving subsequent geospatial analysis (Kalanteri et al., 2014). To this end, 

Croitoru et al. (2013) proposed a data model composed of source-dependent and source-

independent components. While source-dependent components refer to bits of information 

present in particular VGI sources, source-independent components aim to identify common 

information that span several sources. 
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Figure 9: Intended uses over time by main category 
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There is a notable scarcity of studies on data policies, ownership, data rights, privacy, 

and ethics. One possible explanation could be that, although important for leveraging VGI in 

disaster emergency contexts in the long term (Meier, 2015), the technology-driven research 

community might perceive them as less technology-intensive and thus of secondary concern. 

This would be unfortunate, since ensuring privacy during data collection is crucial. The simple 

assumption that anything posted publicly on social networks is meant to become public is 

insufficient, and a more detailed and careful assessment is necessary (Crawford and Finn 

2015). Mechanisms to ensure privacy for gathered data are required (King, 2011), as well as 

data governance to clarify who owns the data and defines its limits of use. 

For 3-4 years after the term VGI had been coined in 2007, only a few "practical" results 

were published apart from position/vision papers. From 2011/2012 onwards, this changed 

somewhat (Figure 9). The increase of application-centric studies runs in parallel with an 

increase studies in data-centric themes, which in turn focus on extracting and parsing location 

from VGI sources. This suggests that application-centric studies depend strongly on a solid 

substrate of operational tools to conveniently extract, parse, classify and process location from 

VGI sources. This fact is particularly important because it demonstrates that location is vital 

context information to correctly interpret, analyze and reason on VGI4DM streams, and that 

geospatial analysis methods and tools are cross-cutting to several domain applications, and in 

consequence should be considered among the core building blocks of the social media 

analysis field.  

Regarding Q3 (data sources), the most used data source is Twitter, and this trend has 

even increased over the past years, as also suggested by Steiger et al. (2015). As unique 

source, the benefits of Twitter are public access to large data sets in the order of millions of 

pieces of content (although the free search API has limited access to historic data), an easy-

to-use and well-documented API, structured meta-data and –though unstructured– content in 

the form of microposts that allow researchers to apply well-known techniques to process, 

extract, and mine text. Another positive aspect is the “option value” of Twitter data according 

to Mayer-Schönberger & Cukier (2013), which is the ability to use the data for novel, not 

anticipated purposes different from the primary usage. The primary purpose of Twitter data is 

personal communication. The studies analyzed here, even though they represent a small part 

of the spectrum of possible applications based on Twitter data, show the value of using Twitter 

data in a broad range of secondary, novel purposes. The preponderance of Twitter also comes 

with challenges and threats to the potential validity of results. There are several biases to 

consider when using social media data in general and Twitter in particular. First, there is a 

clear user bias, i.e. the user base is not evenly distributed across countries and socio-economic 

groups (Meier, 2015). Further, social media content is strongly influenced by short-lived 
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feedback loops (Shelton et al., 2014). This tendency is aggravated by the possibility of users 

exaggerating and distorting events when posting information in social network sites like Twitter. 

For example Rutherford et al. (2013) demonstrated some evidence that studies based 

exclusively on social media data for their analyses carry a degree of bias which consequently 

may lead to error-prone decision-making. Another aspect to keep in mind is that people often 

do not always post their truly intentions, behaviors, opinions and ideas in social network sites 

(Manovich, 2012), which should be taken into account especially for human-centric studies.  

Additionally, the establishment of standardized and well-documented methods to 

collect data from varied sources is of vital importance. González-Bailón et al. (2012) examined 

two communication networks based on the same population of Twitter messages but 

generated from distinct Twitter APIs (search and streaming). The authors found evidence of 

bias in the reconstructed networks partly due to different constraints and limitations in both 

APIs. Since researchers do not have full control of that source and the delivery of the sampled 

data, any subsequent analysis of the data may lead to distorted and unexpected results as the 

inconsistencies, errors and bias on the collected data may propagate to the data analysis itself. 

For geospatial analyses, many studies limit themselves to geo-coded Tweets to avoid 

the additional challenge of geo-coding content. As a result, the retrieved data is a purposeful 

sample that may not representative of the (already biased) population of all Tweets. As 

commented earlier (González-Bailón et al., 2012), even when one single data source like 

Twitter is selected, it may become difficult if not impossible the integration and comparability 

of analysis outputs and findings, and hereby to some extent the reproducibility of the analysis 

too (Ostermann & Granell, 2016).  

Flickr has been used more at the beginning of our studied period (3 out of 4 publications 

are between 2008 and 2010) and declined later (1 in 2012). All but one study using Flickr and 

Twitter together were published recently (since 2013). 

We observe a general trend in the analyzed papers in collecting large volumes of data 

in the order of millions of pieces of content, i.e. Tweets, images, and so forth (Fisher, 2012), in 

other words a focus on Big Crisis Data. Burns (2015) offers an important critique on Big Data 

and Digital Humanitarianism, pointing out that Big Data provides new practices, a distinct 

epistemology, and new social relations between customers of Big Crisis data (formal 

humanitarian sector and affected population), and providers of services (digital humanitarians). 

There is no evidence yet that the increasing volume of the data has led to additional insights. 

Indeed, as commented in Section 3, some studies employ data preparation and 

contextualization techniques to turn large VGI sets again into manageable, relevant and 

actionable data sets (Tsou & Leitner, 2013). This again links to the issue of data 

representativeness, i.e. whether or not social data can be considered representative of the 
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whole society (Roick & Heusser, 2013), which also resembles to that of data quality versus 

quantity, would unavoidably require more attention in the future.  

There is a notable absence of well-citied studies focusing on a systematic exploration 

of using OpenStreetMap in a disaster management context. This is all the more striking, as 

OSM has been used in practice to much greater effect in actual crisis response than any of the 

other data sources.  

As for the analysis methods (Q4), there are no clearly discernible trends over time, with 

the majority of the studies being descriptive or exploratory in nature. To some extent, this is 

not surprising because exploratory experiments aim to discover correlations, but can rarely 

validate them. While correlations on Twitter data may be used as “predictors” earthquake early 

warning, this does not mean that earthquakes occur due to Twitter data. Causality is by far 

more challenging than other types of analysis. Indeed, it seems that a trend is increasingly 

taking shape which moves from hypothesis-driven analysis toward more data-driven analysis, 

where correlation is preferred (and often enough) over causality (Mayer-Schönberger & Cukier, 

2013).  

For human-centric studies, SNA techniques are used to improve understanding on how 

a system behaves by constructing the networks from social data (e.g. Borgatti et al., 2013; 

Borgatti & Ofem, 2010). SNA offers several techniques to understand a complex system like 

networks of people. Network properties such as betweenness, centrality, density, and degree 

describe the network’s structure, whereas small worlds, scale free networks, and information 

diffusion models describe information flows through the network and thereby its behavior. 

When applied to disaster and emergency situations, these techniques let researchers discover 

the most relevant actors in a network and or to identify closed communities (clusters) in terms 

of highly connected nodes, for example. Again, many authors recently called for further 

research to put network concepts and social networks analysis into spatio-temporal data 

analysis (e.g., Crampton et al., 2013; Roick & Heuser, 2013; Tsou & Leitner, 2013; Stephens 

& Poorthuis, 2015) as a hybrid approach to spatially study complex systems. A somewhat 

cross-cutting research theme is the development of “listener” tools to monitor social data social 

(restricted practically to Twitter) related to particular scenarios and/or topics, providing in some 

cases synchronized views in the form of a dashboard tool (MacEachren et al., 2011; 

Rogstadius et al., 2013). 

5 Conclusion and Outlook 

Our results suggest that much of the work in VGI4DM still concerns earlier phases of data 

analysis such as data preparation, i.e. merging, finding missing values, cleaning, annotating, 

filtering and so forth in order to make several data sets ready for the “true” analysis. This is 
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reflected in the preponderance of data-centric studies and the fact that many of the human- 

and application-centric studies still put a secondary focus on data preparation and exploration. 

We argue also that VGI research is mature enough to move from purely data-centric objectives 

to more fundamental as well as applied research to leverage proper methodologies and 

analysis methods in VGI4DM scenarios.  

Despite some exceptions like Rogstadius et al. (2013), most studies conducted off-line 

data analyses on historical data because real-time analysis of social media data aggravates 

many of the challenges. For example, Hurricane Sandy sparked more than 20 million “tweets” 

only in the course of the following five days (Shih, 2012), which requires cloud-based near 

real-time system architecture to process. There is still a lack of widely available real-time 

analytic tools to handle and process in real time vast amounts of data streams. This is 

independent of the persisting need to still validate the need for near real-time big data analysis. 

Likely, small data analysis of carefully collected samples has still its place in the methodological 

toolkit. 

Most studies analyze social data over a short period of time. Obviously, the temporal 

dimension plays a key role if we want to study change over time. But the speed of change 

varies greatly between study objects: the impact of natural disasters (e.g. hurricane Sandy, 

Japan earthquake, etc.) may last days or weeks; the impact of social events (e.g. Arab Spring) 

may last weeks or even months. However, environmental change is often slower, sometimes 

over the course of several months, years or even decades. Getting a better understanding on 

how Earth and environmental processes change and evolve over longer periods of time ill 

improve understanding of natural disasters situations. Could VGI in conjunction with proper 

analytical tools help to understand such long timescale processes, or is it mostly suited for 

rapidly changing phenomena? Are citizen science projects with a stronger participatory 

character better suited to engage people in studies of long timescale events/phenomena that 

change slowly?  

Most studies delimit their analysis to a small coverage area such as a city, districts 

within a city, and well-delimited areas like the surrounding of a quake epicenter. The main 

barrier to increasing spatial coverage seems to be the amount of data to be processed and 

analyzed. Are current VGI analysis toolkits ready to scale up to handle with large-scale 

(spatially) experiments? Imagine for example the case of studying spatial mobility patterns in 

Italy over a year using social media data. Can we conduct such an experiment with the 

analytical techniques for social media data available today?  

Some scholars envision an emerging scientific field that would combine data science, 

GIScience and social sciences skills under the label of “location intelligence” (Wachowicz, 

2013), with the ability to shape standardized methodologies to facilitate data collection, to carry 
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out data analysis, and to compare the results beyond the eruption of popular technology and 

short-term research objectives. In this sense, emerging open source analytical tools, 

technology and easy access to public VGI sources are an undeniable opportunity for 

leveraging studies, analyses and novel purposes for VGI4DM beyond data collection. In order 

to ensure the validity, scope and impact of the results, they must fit hypothesis, research 

questions and overall analysis strategies (Leek & Peng, 2015b). Some questions that need to 

be answered in the beginning of a VGI4DM analyses are: What kind of inferences we want to 

draw from the analysis? Are we interested in aggregate or individual effects? Are we interested 

in causal explanation or in making predictions? Are large quantities of data valid for studying 

individual effects as well as aggregate effects? What are the characteristics of an ideal VGI 

data set to address the goal of the study? Should there create a new metadata model for VGI 

to support reusable datasets and reproducible analysis? Which are the stakeholders of the 

analysis? We argue that many of these issues have not been addressed fully in many of the 

examined studies, where the research design follows often new, technology-driven 

opportunities, in some sense searching for the right lock to be opened with the new key, instead 

the other way around. This is unsurprising for a novel, rapidly evolving field of study. However, 

with soon a decade of research history, the study of VGI seems ready for these fundamental 

questions.  
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