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We present a modification of the DGLAP improved saturation model with respect to the
nonlinear correction (NLC). The GLR-MQ improved saturation model is considered by employing
the parametrization of proton structure function due to the Laplace transforms method, which
preserves its behavior success in the low and high Q2 regions. We show that the geometric
scaling holds for the GLR-MQ improved model in a wide kinematic region rQs. These results are
comparable with other models in a wide kinematic region rQs. The behavior of the dipole cross
sections, with respect to the GLR-MQ improved saturation model, are comparable with the Color
Glass Condensate (CGC) model. The model describes the dipole cross sections in the inclusive
and diffractive processes. We also compare the nonlinear corrections to the impact-parameter
dependent saturation (IP-Sat) model with the impact-parameter dependent color glass condensate
(b-CGC) dipole model. Finally, we consider the linear and nonlinear corrections to the IP Non-Sat
model. These results provide a benchmark for further investigation of QCD at small x in future
experiments such as the Large Hadron Collider and Future Circular Collider projects.

I. Introduction

The color dipole picture (CDP) [1] has been introduced
to study a wide variety of small x inclusive and diffractive
processes at HERA. The dipole approach, at small val-
ues of Bjorken x, gives a clear interpretation of the high-
energy interactions. This regime of QCD is characterized
by high gluon densities because the proton structure is
dominated by dense gluon systems [2-4] and predicts that
the small x gluons in a hadron wavefunction should form
a Color Glass Condensate [5]. The gluon saturation ef-
fects are observable at very small x values and character-
ized by a hard saturation momentum Qs(x). The satu-
ration scale is a border between dense and dilute gluonic
systems as

xg(x,Q2
s)
αs(Q

2
s)

Q2
s

≃πR2, (1)

where xg(x,Q2) is the gluon distribution function and
πR2 is the target area where R is the correlation radius
between two interacting gluons. Indeed the parameter
R controls the strength of the nonlinearity. The satura-
tion scale rises with decreasing x and at small enough x,
Qs≫ΛQCD where ΛQCD is the QCD cut-off parameter at
each heavy quark mass threshold (i.e., Λ

nf

QCD).
Since nonlinear dynamics are known to become siz-
able only at small-x, so the nonlinear contribu-
tion to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution [6] leads to an equation of the form

∂2xg(x,Q2)

∂ln(1/x)∂lnQ2
= αsxg(x,Q

2)− 9

16
α2
sπ

2 [xg(x,Q
2)]2

R2Q2
,(2)

∗
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where αs≡αsCA/π and the value of R is order of
the proton radius (R ≃ 5 GeV−1), if the gluons are
distributed through the whole of proton, or much smaller
(R ≃ 2 GeV−1) if gluons are concentrated in hot spot
within the proton. This was a vast subject initiated by
Gribov, Levin, Ryskin, Mueller and Qiu (GLR-MQ) [7],
as the second nonlinear term in (2) is responsible for
gluon recombination. This term arises from perturbative
QCD diagrams which couple four gluons to two gluons.
So that two gluon ladders recombine into a single gluon
ladder. It leads to saturation of the gluon density at
low Q2 with decreasing x. A closer examination of the
small x scattering is resummation powers of αs ln(1/x)
where leads to the kT -factorization form [8]. In the
kT -factorization approach the large logarithms ln(1/x)
are relevant for the unintegrated gluon density in a
nonlinear equation. Solution of this equation develops a
saturation scale where tame the gluon density behavior
at low values of x and this is an intrinsic characteristic
of a dense gluon system [9].
The main goal of this paper is to consider the nonlinear
corrections to the DGLAP improved saturation model.
In fact, the DGLAP improved saturation model will be
modified to the GLR-MQ improved saturation model.
This is based on the nonlinear evolution of the gluon
density at small values of x. These results will be
compared with the nonlinear saturation dynamics which
is explicitly incorporated into the CGC model. One of
the well-known impact-parameter dependent saturation
models is the IP-Sat model [10,11]. This is a simple
dipole model that incorporates the physics of saturation
and all known properties of the gluon saturation. In
this case the saturation boundary is approached via the
DGLAP evolution, that is, by the eikonalization of the
gluon distribution, which effectively represents higher
twist contributions. The b-CGC and the IP-Sat models
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are easily generalized from DIS off protons to DIS off
nuclei [12].
This paper is organized as follows. In Sec. II, we
introduce the color dipole model for calculating the
dipole cross sections in the GBW, the DGLAP improved
saturation, the b-CGC dipole , the IP-Sat models and
also the exclusive diffractive processes. In Sec.III, we
present the GLR-MQ improved saturation model to
consider the color dipole cross section at low values of
x. Then in Sec. IV, we present a detailed numerical
analysis and our main results. We summarize our main
results in Sec.V.

II. Dipole cross section

Dipole representation provides a convenient descrip-
tion of DIS at small x. There, the scattering between
the virtual photon γ∗ and the proton is seen as the color
dipole where the transverse dipole size r and the longi-
tudinal momentum fraction z with respect to the photon
momentum are defined. The amplitude for the complete
process is simply the production of these subprocess am-
plitudes, as the DIS cross section is factorized into a light-
cone wave function and a dipole cross section. Using the
optical theorem, this leads to the following expression for
the γ∗p cross-sections

σγ∗p
L,T (x,Q

2) =

∫
dzd2r|ΨL,T (r, z, Q

2)|2σdip(x, r), (3)

where subscripts L and T referring to the transverse and
longitudinal polarization state of the exchanged boson.
Here ΨL,T are the appropriate spin averaged light-cone
wave functions of the photon and σdip(x, r) is the dipole
cross-section which related to the imaginary part of the
(qq)p forward scattering amplitude. The variable z, with
0 ≤ z ≤ 1, characterizes the distribution of the momenta
between quark and antiquark. The square of the photon
wave function describes the probability for the occurrence
of a (qq) fluctuation of transverse size with respect to
the photon polarization [1, 2]. The dipole hadron cross
section σdip contains all information about the target and
the strong interaction physics with

σdip(x, r) =

∫
d2b

dσdip

d2b
(4)

where b is a particular impact parameter (IP) as

dσdip

d2b
= 2(1− Re S(b)), (5)

and S(b) is the S-matrix element of the elastic scatter-
ing. The cross section at a given impact parameter b is
proportional to the dipole area, the strong coupling, the

number of gluons in the cloud and the shape function by
the following form [10]

dσdip

d2b
= 2
[
1− exp

(
− π2r2αs(µ

2)xg(x, µ2)T (b)

2Nc

)]
, (6)

where the hard scale is assumed to have the form

µ2 = C/r2 + µ2
0, (7)

and the parameters C and µ2
0 are obtained from the fit

to the DIS data [1]. For multi Pomeron exchange, the
eikonalised dipole scattering amplitude of Eq.(6) can be
expanded as

N(x, r, b) =

∞∑

n=1

(−1)n+1

n!

[ π2

2Nc
r2αs(µ

2)xg(x, µ2)T (b)
]n

,

where dσdip/d
2b = 2N(x, r, b) and the n-th term in

the expansion corresponds to n-Pomeron exchange [10].
Eq.(6) is known as the Glauber-Mueller dipole cross sec-
tion [13] and can also be obtained within the McLerran-
Venugopalan model [14]. The exponential form of the
function T (b) is determined from the fit to the data as

T (b) =
1

2πBG
exp(−b2/2BG), (8)

where the parameter BG was found [10] to be
4.25 GeV−2.
In the original Golec-Biernat-Wüsthoff (GBW) model [1],
the dipole cross section was proposed to have the eikonal-
like form

σdip(x, r) = σ0(1− e−r2Q2
s/4), (9)

where Qs(x) plays the role of the saturation momentum,
parametrized as Q2

s(x) = Q2
0(x/x0)

−λ. Parameters Q0

and x0 set dimension and absolute value of the satura-
tion scale and exponent λ governs x behavior of Q2

s. This
model was updated in [2, 15] to improve the large Q2

description of the proton structure function by a modi-
fication of the small r behavior of the dipole cross sec-
tion to include the DGLAP evolved gluon distribution.
Since the energy dependence in large Q2 region is mainly
due to the behavior of the dipole cross section at small
dipole size r, therefore authors in Refs.[2, 15] investigated
the DGLAP evolution for small dipoles. Bartels-Golec-
Bienat-Kowalski (BGBK) improved the dipole cross sec-
tion by adding the collinear DGLAP effects. Indeed the
BGBK model is the implementation of QCD evolution
in the dipole cross section which depends on the gluon
distribution. The following modification of the DGLAP
improved saturation model [1] proposed for the dipole
cross section as

σdip = σ0{1− exp(−π2r2αs(µ
2)xg(x, µ2)

3σ0
)}. (10)
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Indeed BGBK model is successful in describing dipole
cross section at large values of r as the two models (GBW
and BGBK) overlap in this region but they differ in the
small r region where the running of the gluon distribu-
tion starts to play a significant role. Indeed the DGLAP
improved model of σdip significantly improves agreement
at large values of Q2 without affecting the physics of sat-
uration responsible for transition to small Q2. As ex-
pected, geometrical scaling is true for the DGLAP im-
proved model curve for the scaling variable rQs≥1 and
for the GBW model curve for the whole region [1].
The saturated version of the dipole model may in princi-
ple be derived from the Color Glass Condensate effective
theory for QCD according to Eq.(6) where at small r this
expression (i.e., Eq.(6)) becomes

dσdip

d2b
=

π2r2αs(µ
2)xg(x, µ2)T (b)

Nc
. (11)

Eq.(6) is referred to as the IP-Sat model, while Eq. (11)
is referred to as the IP Non-Sat model. The BGBK and
CGC models considered only the dipole cross section in-
tegrated over the impact parameter b [16]. The BGBK
model was modified to include the impact parameter de-
pendence as denoted by the IP-Sat model and the CGC
model was also modified to include the impact parameter
dependence as denoted by the b-CGC model. The dipole
cross section can be calculated in the CGC approach from
the relation

σdip(x, r) = σ0N (x, r), (12)

where σ0 = 2πR2
p and

N (x, r) =
{N0(

rQs
2 )2(γs+(1/kλY ) ln(2/rQs)) : rQs≤2

1−e−A ln2(BrQs) : rQs>2
(13)

where Y = ln(1/x) and k = χ′′(γs)/χ
′(γs) where χ is

the LO BFKL [17] characteristic function. The scatter-
ing amplitude N (x, r) can vary between zero and one,
where N = 1 is the unitarity limit. To introduce the
impact parameter dependence into the CGC model, the
b-CGC model for the dipole cross section is defined by
the following form [16]

dσdip

d2b
= 2N (x, r, b) (14)

where the impact parameter dependence of the satura-
tion scale Qs was introduced by

Qs≡Qs(x, b) = (
x0

x
)λ/2

[
exp(− b2

2BCGC
)
]1/2γs

, (15)

where the parameter BCGC , instead of σ0 in the CGC
dipole model, is a free parameter and is determined by
other reactions, namely the t distribution of the exclu-
sive diffractive processes at HERA. The parameters were

fixed by a combination of theoretical constraints [11] and
a fit to DIS data.
Another one of the main advantages of dipole models
is the description of the diffractive process [2, 18]. The
cross section for the diffractive qq production reads [8]

dσD
L,T

dt
|t=0 =

∫
dzd2r|ΨL,T (r, z)|2σ2

dip(x, r), (16)

where t = ∆2, and ∆ is the four-momentum transferred
into the diffractive system from the proton. In Eq.(16),
the generalised optical theorem is applied in the frame-
work of the dipole picture. At small values of the diffrac-
tive mass M2 ∼ Q2 the elastic scattering of the qq pair
dominates, while at larger values of the mass M2≫Q2,
the qqg contribution dominates (due to gluon production
in the final diffractive state). The treatment of the qqg
component goes beyond the saturation model since this
is not present in the inclusive analysis [2, 18]. This com-
ponent was computed in the two gluon exchange approx-
imation with an additional assumption of strong order-
ing of transverse momenta of the qq pair and the gluon.
In the transverse coordinate representation, the qqg sys-
tem is treated as a color octet dipole 88 where the cou-
pling of two t-channel gluons is relative by a weight fac-
tor CA/CF = 2N2

C/(N
2
C − 1) with CA = Nc = 3 and

CF =
N2

C−1
NC

= 4
3 where NC is the number of colors.

Thus, the color dipole cross section for exchange of a two
gluon system for octet dipole reads [2,18]

σdip = σ0{1− exp(−CA

CF

π2r2αs(µ
2)xg(x, µ2)

3σ0
)}. (17)

In the next section, we consider the color dipole cross
sections due to the behavior of the linear and nonlinear
gluon density and compare with the other models.
The linear gluon densities are obtained with respect
to the Laplace transform technique by employing the
parametrization of proton structure function, then
applied the GLR-MQ evolution equation for the non-
linear gluon densities. Some approximated analytical
solutions in the color dipole model have been reported in
recent years [19, 20] with considerable phenomenological
success due to a parametrization of the deep inelastic
structure function for electromagnetic scattering with
protons.

III. GLR-MQ improved saturation model

We will present an approach to the description of the
color dipole cross section at small x, alternative to that
based on the DGLAP improved saturation model. From
a more theoretical viewpoint it is known that in the low
x, low Q2 region gluon recombination effects are not neg-
ligible and reduce the growth of the gluon parton distri-
bution function. The GLR-MQ equation for the gluon
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density, where an extra non-linear term, quadratic in the
gluon density, was added to the linear DGLAP evolution
equation by the following form

∂xg(x, µ2)

∂lnµ2
=

∂xg(x, µ2)

∂lnµ2
|DGLAP

− 81α2
s

16R2µ2

∫ 1

χ

dy

y
[yg(y, µ2)]2, (18)

where χ = x
x0

and x0 is the boundary condition that

the gluon distribution (i.e., G(x, µ2) = xg(x, µ2)) joints
smoothly onto the linear region. We note that at x≥x0(=
10−2) the non-linear corrections are negligible. The non-
linear shadowing term, ∝ −[g]2, arises from perturbative
QCD diagrams. In this regime the gluons in the pro-
ton form a dense system with mutual interaction and
recombination which also leads to the saturation of the
total cross section. Other early works on this topic
can be found in [21, 22]. In what follows, the hard
scale is assumed to have the form µ2 = C/r2 + µ2

0 as
for light quarks the gluon distribution is evaluated at
x = xBJ = µ2/(µ2 +W 2) and for the charm quark the
gluon structure function is evaluated at

x = (µ2 + 4m2
c)/(µ

2 +W 2), (19)

where mc is the charm quark mass and W refers to
the photon-proton center-of-mass energy. The non-linear
equation (i.e., Eq.(18)) shows that the strong rise that is
corresponding to the linear QCD evolution equations at
small-x and Q2 can be tamed by screening effects. The
first iteration of Eq.18 reads

dG(x, µ2)|NLC = dG(x, µ2)|DGLAP − 81α2
s

16R2µ2
dlnµ2

×
∫ 1

χ

dy

y
[G(y, µ2)]2, (20)

where the nonlinear correction to the gluon distribution
function (i.e., GNLC(x, µ2) ) is obtained by the following
form

GNLC(x, µ2) = GNLC(x, µ2
0) + [G(x, µ2)−G(x, µ2

0)] (21)

−
∫ µ2

µ2
0

81

16

α2
s(µ

2)

R2µ2

∫ x0

x

dz

z
G2(

x

z
, µ2)dlnµ2.

Here G(x, µ2) and G(x, µ2
0) are the linear gluon distribu-

tions, and obtained from the parametrization F2 using
the Laplace transform techniques [23, 24], at µ2 and µ2

0

scales respectively. At the initial scale µ2
0, the low x be-

havior of the non-linear gluon distribution is assumed to
be [25]

GNLC(x, µ2
0) = G(x, µ2

0){1 +
27παs(µ

2
0)

16R2µ2
0

θ(x0 − x)

×[G(x, µ2
0)−G(x0, µ

2
0)]}−1. (22)

Therefore the non-linear correction to the gluon distri-
bution at µ2 scale for x < x0 reads

GNLC(x, µ2) = G(x, µ2) +G(x, µ2
0)

[
{1 + 27παs(µ

2
0)

16R2µ2
0

×[G(x, µ2
0)−G(x0, µ

2
0)]}−1 − 1

]
(23)

−
∫ µ2

µ2
0

81

16

α2
s(µ

2)

R2µ2

∫ x0

x

dz

z
G2(

x

z
, µ2)dlnµ2.

The gluon distribution due to the non-linear corrections
can be analytically solved at small x with respect to the
linear gluon distribution behavior.
The linear gluon distributions (i.e., G(x, µ2) and
G(x, µ2

0)) in Eq.(23) are defined with respect to the most
parametrization suggested in Refs. [23] and [24]. The
authors in Ref.[23] have an expression for the asymptotic
part of F2 (no-valence) as

F2∝ ln2(1/x) (24)

for x≤0.09. In Ref.[24], the authors obtained two
quadratic expressions in ln2(1/x) using second-order lin-
ear differential equation as well as Laplace transforms
for the leading-order (LO) gluon distribution function,
respectively. In the first method in Ref.[24], the LO
DGLAP equation for the evolution of the proton struc-
ture function F2(x,Q

2) is rearranged into an inhomoge-
neous second-order differential equation by the following
form

x2 ∂2

∂x2
G(x,Q2)− 2x

∂

∂x
G(x,Q2) + 4G(x,Q2) =

−4π

αs

9

20
x4 ∂4

∂x3∂lnQ2

F2(x,Q
2)

x
+

12

5
x
∂

∂x
F2(x,Q

2)

−3x2 ∂2

∂x2
F2(x,Q

2)− 9

5
x3 ∂3

∂x3
F2(x,Q

2)

+
12

5
x4 ∂3

∂x3

∫ 1

x

∂

∂x
F2(z,Q

2)ln
z

z − x
dz. (25)

Eq.(25), with the new variable υ = ln(1/x) becomes a
linear 2nd order inhomogeneous equation, as

(
∂2

∂υ2
+ 3

∂

∂υ
+ 4

)
Ĝ(υ,Q2) = Ĝ4(υ,Q

2) (26)

and the definition Ĝ(υ,Q2) = G(e−υ , Q2). In Ref.[24],
the authors have found the parametrization of the gluon
distribution Ĝ4(υ,Q

2) which is calculated as a second
degree polynomial in υ whose coefficients are quadratic
polynomials in ln(Q2) for x≤0.09 as

Ĝ4(υ,Q
2) = α(Q2) + β(Q2)υ + γ(Q2)υ2, (27)

Therefore

Ĝ(υ,Q2) =
2√
7

∫ υ

0

e−
3
2 (υ−υ′) sin(

√
7

2
(υ − υ′))Ĝ4(υ

′, Q2)dυ′,
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where the gluon distribution in x-space reads as a simple
quadratic polynomial in ln(1/x) with quadratic polyno-
mial coefficients in ln(Q2) by the following form

G(x,Q2) = −0.459− 0.143lnQ2 − 0.0155ln2Q2 +[
0.231 + 0.00971lnQ2 − 0.0147ln2Q2

]
ln(1/x) +

[
0.0836 + 0.06328lnQ2 + 0.0112ln2Q2

]
ln2(1/x). (28)

In the second method, the authors [24] have suggested a
new parametrization based on Laplace transforms. The
DGLAP evolution is written as follows

∫ υ

0

Ĝ(w,Q2)ĥ(υ − w)dw = f̂(υ,Q2), (29)

where w = ln(1/z) and

f̂(υ,Q2) =
3

4

4π

αs
F2(e

−υ, Q2). (30)

The function ĥ(υ) in Eq.(29) is

ĥ(υ) = e−υP̂gq(υ), (31)

where Pgq is the gluon-quark splitting function. The
function F2(x,Q

2) in Eq.(30) is sum of the proton struc-
ture function F2-dependent terms in the DGLAP evolu-
tion equation by

F2(x,Q
2) =

∂F2(x,Q
2)

∂lnQ2
− αs

4π

{
16

3

∫ 1

x

∂F2(z,Q
2)

∂z

×ln
z

z − x
dz − 4

3

∫ 1

x

∂F2(z,Q
2)

∂z

(
x2

z2
+

2x

z

)
dz

}
. (32)

By making a Laplace transform in υ, we can factor
Eq.(29), since the Laplace transform of a convolution is
the product of the Laplace transform of the factors, so
that

L
{∫ υ

0

Ĝ(w,Q2)ĥ(υ − w)dw; s

}
= ĝ(s,Q2)×ĥ(s) (33)

Solving Eq.(29) for g in s-space, we have

ĝ(s,Q2) = ĥ−1(s)f̂(s,Q2). (34)

Thus, inverting the Laplace transform of the factors, then
the gluon distribution is defined by

Ĝ(υ,Q2) = L−1
[
ĥ−1(s)f̂(s,Q2); υ

]
. (35)

Therefore, the gluon distribution in x-space reads

G(x,Q2) =
9

20

4π

αs

{
3Fγp

2 (x,Q2)− x
∂

∂x
Fγp

2 (x,Q2)

−
∫ 1

x

Fγp
2 (z,Q2)(

x

z
)3/2

[ 6√
7
sin(

√
7

2
ln(

z

x
))

+2 cos(

√
7

2
ln(

z

x
))
]}

, (36)

for 0 < x≤0.06. The standard representation for QCD
coupling in LO approximation is defined by

αLO
s (t) =

4π

β0t
, (37)

where β0 is the one loop correction to the QCD β-

function and t = ln Q2

Λ2 , Λ is the QCD cut-off parameter
with αs(M

2
z ) = 0.118.

The ln2(1/x) behavior of the DIS proton structure
function (i.e., Eq.(24)) at small values of x is compatible
with saturation of the Froissart bound at each value
of Q2. The authors, in Ref.[23], have shown that this
behavior may be the signal for the saturation or gluon
recombination processes at high parton densities. The
gluon distribution in Eqs.(26-36), according to the
results in Ref.[24], is determined from the DGLAP
evolution equation for the proton structure function.
Thus in Eq.(20), the nonlinear corrections to the gluon
behavior at low x and Q2 values are considered, where it
is compatible with ln2(1/x) behavior of parton densities
at very small x in the QCD evolution framework.
Now, we can estimate the non-linear corrections to the
gluon distribution (i.e., Eq.(23)) due to the linear gluon
distributions (i.e., Eq.(28) and (36)) for small x and we
will use the non-linear corrections to the dipole cross
sections, and in the next section, the accuracy of the
results will be discussed in comparison with the CGC
model.

IV. Results

The linear and nonlinear methods are presented based
on the solutions of the DGLAP and GLR-MQ evolution
equations at the leading-order accuracy in perturbative
QCD, respectively. The dipole cross-sections (Eqs.6, 10,
11 and 17) require the gluon density G(x, µ2) for all
scales µ2. These gluon distributions [24] are obtained
directly in terms of the parameterization of the struc-
ture function F2(x, µ

2) and its derivative. The resulting
linear and nonlinear gluon distribution functions for var-
ious dipole sizes for x≤10−2 are shown in Fig. 1. The
dipole size determines the evolution scale µ2. In this fig-
ure, we plot the r dependence of the nonlinear corrections
to the gluon distribution for R = 2 GeV−1. Nonlinear
corrections play an important role on gluon distribution
as x and µ2 decrease. A depletion occurs at x < 10−2

where these results show that the nonlinear behavior of
the gluon distribution function is tamed. This taming
behavior of nonlinear gluon distribution function toward
low x at low µ2 values becomes significant when consid-
ering the color dipole cross section at the hot spot point
(i.e., R = 2 GeV−1). We have calculated the linear and
nonlinear corrections to the ratio σdip/σ0 in a wide range
of the dipole size at the LO approximation. Results of
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FIG. 1: The linear (Eqs.(28) and (36)) and nonlinear
(Eq.(23)) gluon distribution functions for various dipole sizes.

calculations and comparison with the GBW [1] and CGC
[5] models for x = 10−4 are presented in Fig.2. The linear
corrections to the ratio of color dipole cross sections at
LO approximation are comparable with the GBW model
at low and high r values. The nonlinear corrections to the
ratio of color dipole cross sections are comparable with
the GBWmodel for r.10−2 and r≥100 and also are com-
parable with the CGC model for 10−2.r≤100. Indeed
the nonlinear corrections tame the behavior of the dipole
cross section at r&10−1. The effective parameters in the
GBW model have been extracted from a fit of the HERA
data as, λ = 0.288, x0 = 3.04×10−4, C = 0.38 and
µ2
0 = 1.73 [1]. Parameters of the CGC dipole model fixed

at the LO BFKL according to the original CGC fit [5]
with respect to the values γs = 0.63, k = 9.9, N0 = 0.7,
λ = 0.177 and x0 = 2.70×10−7 [16]. The dipole cross
sections are evaluated according to the four active fla-
vors, which take into account charm quark mass. The
quark mass, in the CGC model, was taken to be 1.4 GeV
although in our calculations it is 1.29 GeV [26].
An important property of the saturation formalism is

the geometric scaling phenomenon, which means that
the scattering amplitude and corresponding cross sec-
tions can scale on the dimensionless scale rQs. A par-
ticular interests present the linear and nonlinear ratio
σdip/σ0 defined by the scaling variable rQs. In Fig.2
(right hand), we observe that the nonlinear corrections
to the ratio σdip(rQs(x))/σ0 merge into the GBW curve
for rQs&10−1. The results of the GLR-MQ improved
saturation model due to the parametrization of the pro-
ton structure function have become a function of a single
variable, rQs, for almost all values of r at LO approxi-
mation.
The diffractive final state [2, 18] is built starting from

10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

 

 

/
0

r [fm]

 GBW Model
 CGC Model
 Linear
 Nonlinear

10-3 10-2 10-1 100

 

 

rQs

FIG. 2: Left:The extracted linear (dashed curve) and non-
linear (dot curve) ratio σdip/σ0 (Eq.(10)) as a function r for
x = 10−4 compared with the GBW model (Eq.(9)) (solid
curve) and CGC model (Eq.(13)) (dashed-dot curve, CGC
plotted due to Eq.(13) for rQs≤2 and also the parameters
are defined from Ref.[16]). Right:The same as left as a func-
tion rQs.
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FIG. 3: The same as Fig.2 in the the simplest case of the qq
system for the ratio σ2

dip/σ
2
0 (Eq.(16)).

a qq pair in the color singlet state as the diffractive
γ∗p→qqp′ cross section is proportional to σ2(x, r) by
Eq.(16). We have calculated the ratio σ2

dip/σ
2
0 for the

diffractive qq production into r and rQs respectively and
compared the ratio with the GBW and CGC models in
Fig.3. The linear corrections to the ratio σ2

dip/σ
2
0 are

comparable with the GBW model in a wide rang of r
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although the nonlinear corrections are comparable with
the CGC model for r < 1 and with the GBW model
for r≥1. In Fig.3 (left hand), the geometrical scaling of
the nonlinear corrections to the ratio σ2

dip/σ
2
0 is visible in

comparison with the linear curve. The nonlinear curve
merges into one solid line in the right plot where the
dipole cross section is plotted as a function of the scaling
variable rQs. This is a reflection of geometric scaling in
the nonlinear corrections in comparison with the GBW
model for the diffractive qq production.
In addition to the contributions of the qq states, it is

10-3 10-2 10-1 100
10-4

10-3

10-2

10-1

100

 
 

2 /
2 0

r [fm]
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 CGC Model
 Linear
 Nonlinear

10-3 10-2 10-1 100

 

 

rQs

FIG. 4: The same as Fig.3 for the qqg component of the
diffractive system in the ratio σ2

dip/σ
2
0 (Eq.(17)).

important to include the contributions of the qqg final
states of the diffractive processes in the nonlinear correc-
tions to the ratio σ2

dip/σ
2
0 . In Fig.4 the ratio of the dipole

cross sections are determined by the qqg component and
are compared with the GBW and CGC models. The lin-
ear and nonlinear ratio of the dipole cross sections, in
comparison with the results in Fig.3, are deviated from
the GBW and CGC models respectively. The reason for
this deviation is because the qqg component, interacting
with the proton with the same dipole cross section as
the qq system, goes beyond the saturation model [18].
Indeed, in Fig.4, the linear and nonlinear cross sections
are modified due to the weighted factor CA/CF although
this component is not present in the inclusive analysis.
Now we consider the nonlinear corrections to the the qq
differential cross section dσdip/d

2b. In Fig.5, the linear
and nonlinear corrections to the impact parameter de-
pendent dipole cross section due to the GLR-MQ equa-
tion are considered and compared with the b-CGC model
for x = 10−4. In this figure (i.e., Fig.5) the linear cor-
rections to the IP-Sat (i.e., b-Sat) model are comparable
with the b-CGC model in a wide range of the impact pa-

0 2 4 6 8 10

0.01

0.1

1

10

 

 

d
qq

/d
2 b|

b-
S

at

b [GeV-1]

               Linear     Nonlinear
r=0.1 fm   B     C
r=1 fm      D     E
r=2 fm      F     G

Solids b-CGC

FIG. 5: The linear and nonlinear corrections to the impact pa-
rameter dependent dipole cross section versus the impact pa-
rameter b (Eq.(6)) compared with the b-CGCmodel (Eq.(14))
for the dipole sizes r = 0.1, 1 and 2 fm at x = 10−4.

rameter b for r < 1 fm and the nonlinear corrections to
the IP-Sat model are comparable with the b-CGC model
in a wide range of the impact parameter b for r≥1 fm.
The optimum values for the b-CGC model parameters
are the following [16]: γs = 0.46, BCGC = 7.5 GeV−1,
N0 = 0.558, x0 = 1.84×10−6 and λ = 0.119. In Fig.5
we observe that the linear and nonlinear behavior of
dσdip/d

2b grows rapidly with r for small values of b, until
those reach the saturation plateau, dσdip/d

2b = 2, which
illustrates saturation in the Glauber- Mueller approach.
Indeed, the GLR-MQ improved saturation model illus-
trates unitarity with an increase of r as b decreases.
At small r, the IP-Sat model (Eq.6) becomes the IP

Non-Sat model (Eq.11) where the interaction between
the dipole and the hadron is described by the exchange
of one gluon. The linear and nonlinear behavior of
dσdip/d

2b in the IP Non-sat model are considered in
Fig.6. In this model, the behavior of the dσdip/d

2b is
directly dependent on the gluon distribution function.
Saturation effects are not visible in this model as b de-
creases. However this behavior tamed due to the non-
linear corrections to the gluon density. For small dipole
sizes the distributions are almost similar but they differ
significantly as r becomes large.
A comparison of the resulting dσdip/d

2b according to
the linear as well as nonlinear behavior of the dipole cross
section for b = 0 at x = 10−4 presented in Fig.7. The
resulting dipole cross-sections in linear and nonlinear cor-
rections are shown in Fig. 7. We observe that, in this
figure, the nonlinear corrections suppress the behavior of
the large dipoles in the IP Non-Sat model. Indeed, this
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FIG. 6: The linear and nonlinear corrections to the IP Non-
Sat (Eq.(11)) versus the impact parameter b for the dipole
sizes r = 0.1, 1 and 2 fm at x = 10−4.
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FIG. 7: Comparison of linear and nonlinear corrections to
the dσdip/d

2b for the IP-Sat (Eq.(6)) as well as IP Non-Sat
(Eq.(11)) versus r for x = 10−4 and b = 0.

behavior tamed at large r for b = 0 where with the in-
crease r, µ decreases to the value of µ0. We also note
that adding nonlinear corrections to the IP-Sat model
decreases the dipole cross-section for 0.2 fm < r < 1 fm
at b = 0. The linear and nonlinear corrections to the
dipole cross section to the IP-Sat model reach the satu-
ration plateau at r > 1 fm.
It is interesting to increase the impact parameter from
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FIG. 8: Comparison of nonlinear corrections to the dσdip/d
2b

for the IP-Sat (Eq.(6)) as well as IP Non-Sat (Eq.(11)) versus
r at x = 10−4 for b = 0 and b = 1 fm, respectively.

b = 0 to 1 fm for the nonlinear behavior of the dipole
cross sections to the IP Non-Sat in Fig.8. The proton
dipole cross section at different impact parameters with
and without nonlinear corrections are shown in Fig.8 for
the IP-Sat as well as IP Non-Sat versus r at x = 10−4.
The IP-Sat and IP Non-Sat dipole cross sections are very
similar in the range 0≤r≤4 fm for b = 1 fm. Conse-
quently, for large impact parameter sizes the distribu-
tions are almost similar but they differ significantly as b
becomes small due to the nonlinear corrections. Indeed,
the nonlinear corrections become stronger at larger im-
pact parameters for the IP Non-Sat model [3]. In Fig.9
we show the IP Non-Sat to IP-sat cross-section ratios as
a function of r for x = 10−4. We depict the ratio as
a function of r for b = 0 and 1fm. Note that the ratio
increases much faster as a function of r for b = 0 than
for b = 1fm. We further note that at larger r, the ratio
remains near almost unity for b = 1fm. The large dif-
ference between IP Non-Sat and IP-Sat comes from the
decreases in the impact parameter values.

V. Conclusions

In this paper we proposed a modification of the
saturation model which takes into account the GLR-MQ
evolution of the gluon distribution. We have presented
a certain theoretical model at LO approximation to
describe the color dipole cross sections based on the
Laplace transforms method at small values of x (the
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FIG. 9: The nonlinear corrections to the ratio IP Non-sat/IP-
Sat (Eq.(11)/Eq.(6)) of the dσdip/d

2b as a function r at x =
10−4 for b = 0 and 1 fm, respectively.

Bjorken variable x is fixed to be x = 10−4). We have
used a nonlinear correction to the dipole cross sections
from a parametrization of the proton structure function
with a rescaled variable mc. The nonlinear corrections
to the dipole cross sections in the description of inclusive
and diffractive DIS at small x, according to the satu-
ration scale and geometric scaling, are consistent with
analytical saturation models in a wide range of r and
rQs, respectively. We find that the ratio σdip/σ0 due
to the DGLAP improved saturation model is consistent
with the GBW saturation model, although the nonlinear
corrections to this ratio with respect to the GLR-MQ
improved saturation model is consistent with the CGC
saturation model especially in the range 0.05 < r≤1. In
the simplest case of the qq system for the ratio σ2

dip/σ
2
0

in the diffractive processes, the linear and nonlinear
corrections show good agreement with the GBW and
CGC models in a wide range of r and rQs. The linear
and nonlinear corrections to the ratio σ2

dip/σ
2
0 in the

diffractive processes due to the component qqg deviates
from the GBW and CGC models, because the qqg
system goes beyond the saturation models.
We developed nonlinear corrections to the impact
parameter dependent dipole cross sections, dσdip/d

2b.
The nonlinear corrections to the IP-Sat model are
comparable with the b-CGC model in a wide range of
the impact parameter b and the dipole size r. The linear
and nonlinear corrections considered in the IP-Sat and
IP Non-Sat models for the impact parameters b = 0
and b = 1 fm in the range 0≤r≤4. The behavior of the
nonlinear corrections to the IP Non-Sat model tamed in

a wide range of r. This behavior for the IP-Sat model
shows that the dipole cross section saturated early for
b = 0 in comparison with b = 1 fm for r > 1 fm. The
nonlinear corrections to the IP-Sat and IP Non-Sat
models show that those behaviors are comparable in the
range 0≤r≤4 for the impact parameter b = 1 fm.
In conclusion, by considering the statistical errors due to
the effective parameters, the nonlinear corrections to the
dipole cross sections give a reasonable data description
in comparison with the other models. Indeed, the
GLR-MQ improved saturation model tames the DGLAP
improved model behavior when the results compared to
models described based on the recombination of gluons
at low x.
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