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1 Introduction

In an attempt to find the structure underlying M-theory, West has proposed to study non-
linear realisations based on the Lorentzian Kac-Moody group Ej; [1-3| and this proposal
has been developed further in [4-6].! One of the reasons for considering Ej; is that it
contains the covariance group GL(11) of eleven-dimensional supergravity as well as the
Cremmer-Julia sequence of split F; symmetry groups of maximal supergravity |1, 8-10].
A convenient way of organising the infinitely many generators of the corresponding Lie
algebra e1; is by decomposing its adjoint representation under gl(11) and this immediately
reveals a possible connection to eleven-dimensional supergravity. One finds as the first
generators in this so-called level decomposition the adjoint of gl(11) (that is associated
with the vielbein), an antisymmetric three-form (that is associated with the three-form
gauge field), an antisymmetric six-form (that is associated with the magnetic dual of the
three-form) and a mixed symmetry generator with index structure (8, 1) (that is associated
with the (linearised) magnetic dual of the vielbein) [11-13|. These are but the first of an
infinity of generators contained in eq;.

In order to construct a theory with Fq; symmetry one has to consider also an ex-
tended (infinite-dimensional) space-time as well as a local symmetry that is associated
with a maximal subgroup of Fj; that we will call K(Ej1) and that plays the role of a
generalised R-symmetry group.? The infinite-dimensional space-time is associated with an
infinite-dimensional lowest weight representation of e;; that is called the ¢; representation
in the literature [16, 17|, in accordance with the labelling of the nodes in the e;; Dynkin
diagram shown in figure 1. Thus, the Dynkin labels that we associate with the lowest
weight representation ¢; are (1,0,...,0) with 1 at the first node, and 0 at all other nodes.
Decomposed under the gl(11) C e subalgebra the ¢; representation comprises standard
translation generators as well as generators that are associated with the two-form and five-
form central charges of the D = 11 supersymmetry algebra [16].2 In the Ej; framework
there is a coordinate 2™ for every basis element Py of the ¢; representation and all fields
depend on all these coordinates. A set of first-order equations of motion and a set of gauge
transformations have been proposed in [2, 3, 5] to describe an Fj; invariant extension of
eleven-dimensional supergravity. This far-reaching proposal has a number of points related

LA conceptually different approach based on the hyperbolic Kac-Moody group Eig can be found in [7].

2In the literature one often finds the notation I (F11) since it is defined as the fixed point set of a Cartan
involution. In order to obtain Lorentz symmetry SO(1,10) C K(E11) one has to also allow for multiple
time signatures [14, 15].

3A coordinate ymn for the membrane central charge was already discussed in [18, 19].



to the dynamics and gauge invariance that deserve further study. In this paper, we investi-
gate these points and we make a proposal for an extended framework which may overcome
some difficulties that we encounter in the original scheme.

More precisely, the non-linear realisation of F11 on a space-time based on the /; repre-
sentation leads to objects that transform in the tensor product of the coset representation
of K(FE11) and the ¢; representation (viewed as a K (FEj;) representation). A construction
of dynamics that respects the Fq1 symmetry then could be based on requiring that the pro-
jection of the general Maurer-Cartan coset velocity to certain invariant subspaces of this
tensor product has to vanish. The equations obtained in this way will be a set of K(FE11)
covariant first order equations that are similar to the (twisted) duality equations introduced
in [10]. Since the decomposition of the tensor product of ¢; and the coset representation
under K (E;;) is not known, the construction of such subspaces can only be probed in a
pedestrian way in a level decomposition, starting for example from known duality equations
such as the one between the four-form field strength and its dual seven-form in D = 11
supergravity. The multiplet should then also involve first order equations for gravity. This
is the approach followed in |2]. The level decomposition does not allow, however, to prove
the existence of a suitable K (e11) invariant subspace, and one will eventually need to intro-
duce more sophisticated methods to define the theory. Note that the construction does not
assume these first order equations to be invariant under generalised gauge transformations.
In fact, it is expected from the point of view of unfolded field equations of higher spin gauge
fields (starting from gravity) that these first order equations are not gauge invariant [20-23].

First order duality equations imply second order field equations by integrability. Given
the K (e11) multiplet of first order duality equations one can in principle construct a K (e11)
multiplet of second order field equations in this way. The construction of a K (e11) multiplet
of second order equations has been initiated in [5] and continued to higher derivative orders
in [6]. There are two important aspects to this construction that have not been addressed
in detail in the literature. First, one forms a compatible system of equations, in the sense
that the K (e11)-multiplet of second order equations is automatically solved by the solutions
to the K(e11)-multiplet of first order equations by integrability. This requires in particular
the first and second order equations to transform consistently with respect to K (ej1). The
second aspect concerns gauge invariance of the second order field equations. The dynamics
must be gauge invariant and so one may hope that these second order field equations are
invariant under the generalised gauge transformations acting on the fields of the theory in
much the same way that the Einstein equation and matter equations are gauge invariant.
However, it was explained in 6] that the order of the differential equations that can possibly
be gauge invariant increases linearly with the gl(11) level of the associated gauge fields, more
precisely the number of columns of the associated Young tableau. These gauge invariant
equations of high differential order can be integrated to lower order differential equations
at the price of introducing undetermined total derivatives. It is proposed in [6] that these
ambiguous total derivatives can be interpreted as certain (yet to be determined) gauge
transformations of the theory. As FEy; contains fields with an arbitrarily high number of
columns, seeking a full set of gauge and K (e;) invariant differential equations of finite
order in derivatives, one has to introduce additional fields and this is the approach we will
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Figure 1. Dynkin diagram of F;; with labelling of nodes used in the text.

pursue in this article.

Independently of this additional difficulty, we argue in this paper that, as is visible
already at low levels, any kind of integrability condition or gauge invariance can only be
realised upon imposition of a section constraint. This section constraint is of the type that
has also featured prominently in recent efforts devoted to defining exceptional field theory
for finite-dimensional symmetry groups Eg with d < 8 [24-26] using also earlier ideas on
exceptional generalised geometry [27-32| and double field theory [33-37]. In the context
of E11, the section constraint has been discussed in relation to generalised BPS conditions
in [38], but it has been also argued for example in [4] that the section constraint is not
necessary for the consistency of the full non-linear realisation of Fj;.

In exceptional field theory all fields depend on an extended space-time that is deter-
mined by the finite-dimensional analogue of the ¢; representation mentioned above. How-
ever, consistency of the gauge algebra and the theory requires that all fields in the theory
satisfy the (strong) section constraint, which effectively limits the dependence to that on the
coordinates of ordinary space-time, by requiring that certain combinations of two deriva-
tives vanish on any field, or on any product of fields (where the derivatives act separately
on one field each). In group theoretic terms, the section constraint says that the product
of two derivatives 0p; ® Oy has to vanish when projected to a certain subrepresentation of
the tensor product ¢1 ® ¢1. Since most of our analysis is at the linear order in the fields, we
will only encounter the weak version of the section constraint here, where both derivatives
act on the same field, and thus only the symmetric part of the tensor product is relevant.
The section constraint then relies on the decomposition

(61 ®1)sym = (2061) B [lo® - -], (1.1)

where ¢1yp denotes the e representation with Dynkin labels (0,0,...0,1,0), and (2¢)
denotes the representation with Dynkin labels (2,0, ...,0). The part projected out by the
section constraint is the complement of the (2¢1) representation that is shown in square
brackets. In the analogous discussion for the finite-dimensional Lie algebras eg with d < 7,
the analogue of ¢1g (i.e., £4—1) is in fact the only other irreducible representation, besides
(2¢1), in the symmetric part of the tensor product ¢; ® ¢1.* In these cases, one could
therefore alternatively write (O ® ON)symle,_, = 0. A discussion of section constraints for
arbitrary groups was initiated in [39].

In this article, we will present a new scheme that is based on an extension of ¢ to a Lie
superalgebra which is the d = 11 analogue of the tensor hierarchy algebras extending ey for
d < 8 [40-42|. This tensor hierarchy algebra provides a framework for constructing gauge

“In the last finite-dimensional case d = 8 the symmetric product contains in addition an eg singlet.



invariant objects by furnishing a differential complex of functions satisfying the section
constraint. The tensor hierarchy algebra also provides new generators in addition to the ones
of e;1 and the associated fields allow a consistent description of the dualisation of linearised
gravity [11, Section 4].> We will also explain how this algebraic structure could provide a
(linearised) two-derivative Lagrangian whose equations of motion, together with a duality
relation, reduce to the standard D = 11 supergravity field equations upon choosing the
standard D = 11 solution of the section constraint that only retains the eleven-dimensional
coordinates.

The tensor hierarchy algebra has two features that we find particularly remarkable.
The first is that it extends in a controlled way the adjoint representation of e;;. The
resulting representation contains the adjoint of ¢1; as a subrepresentation but is not fully
reducible. In particular, the tensor hierarchy algebra introduces new generators starting
from gl(11) level three, the first of which has nine antisymmetric indices. It combines with
the irreducible (8, 1) hook structure of the ¢;; dual graviton generator to produce the correct
dual gravity equation with the correct gauge transformations. Understanding this has been
a long-standing puzzle. This point is explained in more detail in sections 4 and 5.

The second remarkable feature of the tensor hierarchy algebra is that it includes an
F11 module that allows to define natural field strengths in the theory. This module is
equipped with an invariant symplectic form, that descends from a non-degenerate bilinear
form with Zo-graded symmetry on the whole tensor hierarchy algebra. The symplectic
form together with an appropriate K(ej;) invariant bilinear form on the field strength
representation can be used to write down a first order duality equation. This equation
is not gauge invariant (in generalised space-time) but corresponds exactly to the duality
equation of D = 11 supergravity. However, it is compatible with the gauge-invariant second
order field equations that we also construct.

As another new result we present the decomposition of all equations in a language
adapted to type IIB supergravity. This is relevant since Fq; is known to relate to type I1IB
supergravity as well [44] and the section constraint (1.1) has type I1IB as another maximal
vector space solution [45-47].

The structure of this article is as follows. In section 2, we review the construction
of the non-linear realisation of Fj; and identify the building blocks for constructing field
equations respecting Fq; symmetry. In section 3, we discuss potential paths to constructing
first order field equations and identify a particular candidate multiplet of first order duality
equations. In section 3.4, we investigate second order field equations that can be derived
from the candidate multiplet of first order duality equations and study their consistency with
K(FE11). Moreover, we study linearised gauge transformations of the second order equations
and find that their gauge invariance requires as a novel feature the section constraint. Our
results in sections 2 and 3 extend the analysis in |2, 5] by including higher level fields and
by noticing the necessity of working modulo a section constraint.

5There is no obvious relation between our new fields and the section constrained forms that appear in
exceptional field theory [26] and that are not part of Eq; either. The fields of [26] are relevant for the gauging
of the trombone symmetry and the field strengths defined in the present article do not accommodate these
gaugings.



In section 4, we introduce our new scheme based on the tensor hierarchy algebra,
providing a construction of an Fp; multiplet of gauge invariant field strengths (modulo the
section constraint). We also introduce a Lagrangian based on this construction in section 5
and show that its Euler-Lagrange second order field equations are gauge invariant and
agree with those of D = 11 supergravity. Furthermore we discuss the existence of a natural
set of first order duality equations compatible with the field equations. We also connect
our construction to non-geometric fluxes and the unfolding construction. In section 6, we
rediscuss our analysis of the preceding sections in a language where everything is written
in terms of type IIB variables rather than D = 11. This will bring out more clearly the
difference between our scheme based on the tensor hierarchy algebra and the original Fqq
formulation. In section 7, we offer some comments on non-linear extensions of our theory.
Section 8 contains some concluding comments. In two appendices we collect more technical
details on some of the arguments and calculations used in the body of this article.

2 Non-linear realisation of E;; and D = 11 supergravity

After reviewing first the non-linear realisation and the gl(11) level decomposition of e11, we
discuss the construction of dynamics associated with it following the FEj; proposal [1, 5].
In most of the paper we will be dealing with Lie algebras that we write in fraktur font.
For Kac-Moody Lie algebras like ¢1; the definition of the corresponding groups is more
subtle than just taking the exponential map due to the existence of imaginary roots. One
can define an associated group by considering only the real roots and the associated one-
parameter subgroups. The Kac-Moody group is generated from these one-parameter groups,
see [48-50] for detailed discussions.

2.1 Non-linear realisation

The fields of the theory parametrise the coset E1;/K(F11), and are functions on the Eqp
module ¢1. To define the action of E1; on the module ¢, it is convenient to define the
semidirect sum e1; @ ¢1. We introduce the following abstract notation for the generators
of the various representations. The generators of the adjoint of e;; are called t* with
commutation relations

(to, 7] = CP 17 . (2.1)

The generators of the ¢; representation are called Py;. They transform in a representation
of e11 according to

[t, Py] = = DNy Py (2.2)

and are abelian, [Py, Py]| = 0.

5In sections 4 and 5, we shall instead use the indices oo and My for the adjoint and ¢; representations of
e11 in order to distinguish them from additional representations that arise in the tensor hierarchy algebra.
No confusion should arise, given the context in which the formulas are given.



One parametrises an element z of the module ¢; as
z=2Mpy, (2.3)

which parametrises an a priori infinite-dimensional extended space-time. gg € FEj1 acts
linearly on these coordinates through the action (2.2)

Z— gozgy * - (2.4)

The Ej; group element g(z) depends on these coordinates. On g(z) we define the action of
global F1; and local K(E11) as

9(2) = gog(gozgy k() (2.5)

for k(z) € K(E11). Here ‘local’ means that k(z) depends on the extended space-time.
In practice one represents the coset F11/K(F11) through a representative g(z) satisfying
a specific gauge condition (which is possible almost everywhere). Then k(z) becomes an
induced compensating transformation function of gy and g(ggzgo_l).

The first building block for the dynamics comes from the Maurer-Cartan form

V(z) = g(2)"'dg(2), (2.6)
where the differential
0
M
d=dz 50 (2.7)

corresponds to taking derivatives with respect to all coordinates 2™ of the £; module.
As a form it is valued in the adjoint of e;; and transforms as

V(z) — k(z)_IV(gozgofl)k:(z) + k(2) " tdE(z) (2.8)

under (2.5). The global Ej; transformation only acts on the argument of V. The second
inhomogeneous term on the right is a connection term valued in the Lie algebra K(e11) of
K (Eh1). Under this subalgebra, e1; decomposes as

e = p & K(enn), (2.9)

where p is a K (e11)-module, which we shall refer to as the coset representation. It is not
known whether it is irreducible or not, even in the affine case.
If one splits the Maurer-Cartan one-form V according to the decomposition (2.9) as

V(z) =P(z)+ K(2), (2.10)
then the ‘coset component’ P(z) transforms as a linear K (F1;) representation,
P(2) = k(z) " P(go295 h(2) (2.11)
and the ‘connection part’ K as

K(2) = k(2) ' K(gozgy Dk(2) + k(2) " 1dk(2) . (2.12)



It is convenient to define the vielbein basis’
9(2)"'dzg(2) = E(2)"Pa = E(z)a"'dz" Pa, (2.13)

where the ‘vielbein’ E(2)y4 is the matrix representation of the coset representative g(z)
written in the ¢ representation where M is a ‘curved index’ transforming under Fy; and
A is a flat index transforming under local K(E71). When one expands out the one-form P
in this basis, one obtains

P(2) = Pu(2)dz™ = Pa(2)E(2)4 . (2.14)

The remaining tangent space components P4(z) then transform under K (E;;) both on the
A index (in the ¢; representation branched to K(F11)) and in the coset representation of
K(FE11). The P4 are the basic dynamical variables of the non-linear realisation of F1; with
the group element g(z) depending on variables z in the ¢; representation.

2.2 GL(11) level decomposition of Fq; and its £; representation

We will require a more explicit parametrisation of ¢;; and its 1 representation and use a
decomposition into gl(11) representations for this. As is visible from the Dynkin diagram in
figure 1, the Lie algebra e1; contains a gl(11) subalgebra, since the Dynkin diagram of s[(11)
is obtained by deleting node 11, and the Cartan generator associated to the deleted node
extends s[(11) to gl(11). The generators K™, of this subalgebra satisfy the commutation
relations

(K™, KPg) = 68 K™, — 61 KP,, (2.15)

with gl(11) tensor indices m,n,... = 0,1,...,10. Any representation of ¢;; can then be
decomposed into representations of gl(11). In the cases we consider here, these are finite-
dimensional representations that can be specified by s[(11) Dynkin labels together with a
level ¢, which is the eigenvalue of %K , where K = K™, is the trace of the gl(11) generators.
We use the convention that is common in the context of hyperbolic and Lorentzian Kac-
Moody algebras [7], namely to use as Dynkin labels the negative of the lowest weight. We
give more details on our conventions for the gl(11) representations and the translation to
tensors in appendix A.

Table 1 lists the result of the gl(11) level decomposition for the adjoint of e;; at levels
0 < ¢ < 5[11]. The generators E™"2"3 and E™ "6 are completely antisymmetric, while
the level £ = 3 generator E™ "™ transforms in an (8, 1) hook tableau® of gl(11):

pra-nsm — gluenshm gl _ (2.16)

"Note that unlike the original papers [2, 16, 17], we do not include a factor ="' P in the group element
entering the non-linear realisation. The only purpose that it serves there is to obtain the vielbein E(z)a*
from the non-linear realisation. Here, we obtain this simply as the representative of the E1; group element
g(z) in the ¢; representation.

8Projectors on tensors with hook symmetry are discussed more generally in appendix A, see (A.9).



Level £ = g | sl(11) representation Generator Potential

0 (1,0,0,0,0,0,0,0,0,1) K hon
(0,0,0,0,0,0,0,0,0,0)

1 (0,0,0,0,0,0,0,1,0,0) Ermnans Aninons

2 (0,0,0,0,1,0,0,0,0,0) Emme Anyong

3 (0,0,1,0,0,0,0,0,0,1) Eraene,m Py ong,m
(0,1,0,0,0,0,0,1,0,0) | Em™"To:P1P2P3 Ap, - ng,pipaps

4 (1,0,0,0,0,0,0,0,0,2) Emimiopg B, niopq
(0,0,0,0,0,0,0,0,0,1) Eracmm Chyeomiim
(0,1,0,0,1,0,0,0,0,0) | E"™no:P1pe Apng prps

. (1,0,0,0,0,0,1,0,0,1) | E™MMOPLPLA | By 0 oeepag
(0,0,0,0,0,0,0,1,0,1) | EmuPip2psd | O b pops.g
(0,0,0,0,0,0,1,0,0,0) | E™ P14 Cri-ni1,p1-pa

Table 1. Level decomposition of e;; under its gl(11) subalgebra obtained by deleting node 11 from
the Dynkin diagram in figure 1, up to level ¢ = 5. The level ¢ is the eigenvalue of the generator
%K’”m. The degree ¢ is defined in (2.21) and for the adjoint of e1; equals the level /.

We will always use the notation that comma-separated sets of indices belong to an irre-
ducible tensor whereas a semi-colon denotes a reducible tensor. Conjugate to the positive
level generators one has negative level generators down to level £ > —3 consisting of

Fn1-~~ng,ma Fn1~--n67 Fn1n2n3 (217)

with analogous symmetry properties. Together they constitute all t* of the adjoint of E1;
for |¢| < 3. Their complete commutations relations are given in appendix A. We note
that our conventions for the commutators differ slightly from the ones used in [5]. As an
example, we have

[Erineans  pransne] — pa-ne (2.18)

This is the reason for some differences in coefficients of our expressions below compared to
the literature.

The coordinate representation ¢; is a lowest weight representation of eq; with the fol-
lowing low-lying generators in gl(11) basis [16]

Py = {P,,, Z™", zm ns prcns  prasnnm Y (2.19)

The last two that are displayed here appear on the same gl(11) level £ = 9/2 and this
information is also summarised in table 2. The action of ¢;; on the representation in this



¢ | g=1¢—3| sl(11) representation Generator Coordinate Parameter

3 0 (1,0,0,0,0,0,0,0,0,0) P, ™ e

5 1 (0,0,0,0,0,0,0,0,1,0) zZmn Ymn Amn

z 2 (0,0,0,0,0,1,0,0,0,0) Znmms Yny s D -

9 5 (0,0,0,1,0,0,0,0,0,1) pruenam Ty eemy,m &nyomrm
(0,0,1,0,0,0,0,0,0,0) pmins Ty Ani-ong
(0,0,0,0,0,0,0,0,0,0) prnn Yni..mi Any.min
(1,0,0,0,0,0,0,0,0,1) pra--niom Yny..n10,m An1niom

u A (1,0,0,0,0,0,0,0,0,1) | ~ Pr-mom Gni..niom Any.moim
(0,1,0,0,0,0,0,0,1,0) | Pr1--m9m1m2 Yny...ng,mima Ani...ngmaims
(0,1,0,0,0,0,0,0,0,2) pri-no.mp Ynr...ng,m.p Ani...ngmp
(0,0,1,0,0,0,0,1,0,0) | Pr-nemmamams | g, o mimams | Anp..ng,mimams

Table 2. Level decomposition of the ¢; representation of e¢;; under gl(11), up to level £ = 11/2.
This is a lowest weight representation and therefore the top entry is annihilated by all lowering
generators. The names of the generators already anticipate their roles as translation and central
charge type coordinates in a D = 11 interpretation. The degree ¢ in this case differs from the gl(11)
level ¢ in the way indicated in the table and in (2.21).

decomposition is given in appendix A. We stress that the objects in (2.19) are not tensors
of gl(11) but tensor densities. Under the gl(11) generators K™, one has for example that

1

This is the reason that we introduce an additional degree ¢ that uses as an offset the gl(11)
level ¢ of the lowest weight component in ¢; with respect to gl(11). This degree ¢ is not the
eigenvalue of any semisimple operator of e;; but very useful to keep track of the number of
steps one has taken from the lowest component. Thus we have

g=1 for the adjoint of eq1,

(2.21)

3
q=1{— 5 for the ¢; representation of ej;.

Using this more explicit parametrisation of ej; and its ¢; representation in the gl(11)
maximal parabolic gauge, we can write the group element g(z) and its argument z more
precisely as

ni---ng,m mq--n 1 ninon mipn

g= o ethny g m BT G An g EMUUT6 g A ngng EM1M273 on™ K

=1+ E At + -+, (2.22)

a with £>0

_.m 1 mn 1 ni-ns n-n7,m

Z= m T Eymnz + gyn1-~n5Z + ﬁxnl-un'z,mp
1
+ ﬁxm...nstmm +-



The local K(FE1;) invariance has been used to take a coset representative solely in terms
of non-negative levels.” At this point ¢, at level £ = 0 is not constrained, and so it is a
general (11 x 11)-matrix. This means that we have not completely fixed the local K(E;)
invariance but are left with a local Lorentz invariance coming from SO(1,10) C GL(11) at
level ¢ = 0. This type of K(F11) gauge is referred to as a maximal parabolic gauge. We
have also used different letters for the coordinates and fields according to whether they are
part of the gravity or of the matter sector of the theory. Note the prefactor 1/7! in front of
Ty g P which turns out to be more convenient than 1/8!.10

In the explicit parametrisation of fields (2.22) one can then construct the P4 of equa-
tion (2.14). Working at the linearised level one obtains the following components:

Oahipe, OaApybabs OaAp, ..bg) Oahp,...bg e
0"y, , 0192 Ab1b2b37 0122 Ab1~~ba7 02 hbl..,b&c,

(2.23)

Latin indices from the beginning of the alphabet are tangent space indices. We note that the
components in P4 depending on the vielbein fluctuation ¢,," only depend on the derivative
of the metric fluctuation

hab = Qab + Pba » (2.24)

so we shall use the symmetric tensor h,p instead of the generic tensor ¢.;. Note that this
does not mean that we have gauge fixed the local Lorentz invariance. Sometimes in the
literature the complete Maurer-Cartan form V4 = P4 + K4 is used rather than only Pgy.
In this case the full ¢, appears. For completeness we have checked that our computations
lead automatically to the condition that only P4 is involved in the first order equation
without assuming it to start with.

First order field equations will be constructed out of the objects (2.23) and in order to
maintain Fq; symmetry the resulting equations will have to form a K (F1;) multiplet since
the induced K (FE11) action is all that remains when working with P4. The action of K(FE1;)
on the various quantities above have been worked out for example in [2] (see also [52, 53])
and we give them here in our conventions. For defining the action of rigid K (eq1) it suffices
to give the action of the ‘level one’ generator

1
A= gAalaﬂlS (B — Faiasas) (2.25)
since we are working in a manifestly Lorentz covariant formalism and all other K(e11)

generators can be obtained from this by multiple commutation.

9This is not always possible but we restrict ourselves here to work on a patch of F1; where it is. This
difficulty is due to the non-compact involution defining K (F11) with ‘Lorentz signature’. There is a second
difficulty with the parametrisation above that is due to the fact that some of the generators are associated
with imaginary roots and therefore not locally nilpotent such that the exponential map is not a priori
well-defined [51].

10T his is related to the fact that P™ ™8 appears at the same level as P™""7™ and one can combine

: 1 ni...n7;m
them into #;Tn;...nqgsm P .
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Using the commutators of appendix A, the coset potentials transform under the lin-

earised action of this K (e11) generator as'!

1 .
Oahay = AClcz(aAb)cwz B §77abACICQCJA61€263 )
1
5AAa1a2a3 = _3Ab[ h }b + éAblebBAalaza:shbzbg )

ajaz'tas

SrA = 20A A L \bibaey,

A aljazaszaqasae [a1a2a3 a4a5a6] + 5 a1a2a3a4a5a6b1bg,ca
5Ahala2a3a4asaea7a8,b = 56A<a1a2a3Aa4a5a6a7a8,b> Tt (2'26)

These transformations were obtained in [5] in a different normalisation of the fields and
without the symmetric gauge choice (2.24). The angle brackets < > denote projection on
the (8,1) hook representation (see appendix A). The derivatives transform as

1
O0AODq = iAablbgable ;

1
b b1b2b
(SA@alaQ = _Aa1a2 81; + gAblb2b3aa1a2 19293 5

570102030405 —10Ale102a3 asas] + %Ablbwaalmasawshbzﬁ

1
ajazazasasbibab
éAb1bzb3al23451237

5A8a1a2a3a4a5a6a7,b — _% (A[a1a2a38a4a5aea7]b + Ab[a1a28a3a4a5a6a7]> SE
5, HMa2a3a1a5a6a7as _ 7§ la1aza3 gaaasasaras] 4 . (2.27)

In the last two equations the ellipses indicate terms involving derivatives of gl(11) level

11
(<1

2.3 Gauge transformations and Fj;

The local gauge transformations of the above non-linear realisation of Fy; are just the local
K (E4;) transformation in (2.5). In order to obtain (generalised) diffeomorphisms, one must
introduce additional gauge transformations as was discussed in [3]. For this one introduces
gauge parameters =M that transform in the ¢; representation. In the present basis, this
means one has

EM = L™ Ny Anyoons » Engemrimn s Angoong s -+ -} - (2.28)

The reason for using different letters in the decomposition is that the £ are associated
with the gravity sector (diffeomorphisms and dual diffeomorphisms) whereas the A are
thought of as associated with the matter sector in this decomposition. One exception to
this labelling occurs for the antisymmetric parameter A,,...,s that is also associated with

"These transformations correspond to the symmetric gauge for the potentials (in which @.p = %hab),
but hold for the components of P4 in 0y A, for any gauge, and in particular for the parabolic gauge we
consider.
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dual diffeomorphisms. The reason it is denoted with A rather than £ is to reduce the risk of
confusion with the mixed symmetry parameter &g, ...n, m with the same number of indices.

The linearised gauge transformations for fields A, parametrising the coset E11/K(E11)
as in (2.22) can be defined by using the fact that the adjoint appears in the tensor product
of the translation representation ¢; and its dual (2.30):

0z An = KiapDPM NONMEN + by . (2.29)

Here kg is the inverse of the symmetric invariant bilinear form on e; (see appendix A) and
DPBM . are the structure constants in the ¢, representation. The fields A, are the compo-
nents of an element in the maximal parabolic subalgebra of e;; (see (2.22)) and the compen-
sator b, € K(e11) is defined such as to remove any component of negative level generated
this way. For non-linear gauge transformations one must also introduce an appropriate
connection in a (gauge) covariant derivative V replacing the partial derivative above,

029(2) = (kas DN MV NEM (2)t%) g(2) + g(2)b(g, VE) (2.30)

where we have written out the local K (e11) transformation b(g, VE) that restores the gauge
fixing. The covariant derivative Vs is not a priori determined directly from a group theory
construction [3]. Its definition is an open problem that we shall not address in this paper
since we shall almost always work at the linearised level.

The linearised gauge transformations (2.29) for our fields are then found, using the
commutators provided in appendix A, to be

2 5 ciecs,

2
ozhap = 2a(a'}gb) - 2a(ac)‘b)c - Ea(aCl C4Ab)C1-~~c4 - 6! (a d&b)qwctﬁ,d
2 e 16
~ 70T @eel) — 06 e e
1 4 6 6
+ gnab <661C2)‘6162 + ﬁacln.%}\cr--cs + ﬁaqmc%dgqmc?,d + 7!801”.68)\01---08)
+ .o,

1 1 ...
55Aa1a2a3 = 38[0,1)\612(13] + §8b1b2)\(l1(12(l3b1b2 + @81}1 b5§a1a2a3b1-~-b4,b5

1 .. 1

_ a81)1 b5)\a1a2a3bl__,b5 -+ 36[@@25@3} —+ §Ba1a2a3b1b2)\blb2
1 1

+ Iaalm%bl b4’c)\b1.‘.b4c — gaalazagbl b5)\b1...b5 + ...,

55‘4@1“-@6 =06 a[a1 >‘a2~~'a6} - abcgar“aﬁb,c + ab1b2 )‘al"~a6b1b2

—6 a[al'”(lg,é(lﬁ] - 8a1---a6b’c)\bc + aay--aﬁblbz)‘blbg + .o,

8
0zha, ag,b = 88[@5@...@817(, + 3 (8[(11 )‘az---as}b — 8b>\a1...a8) — 88[a1---a7\,b|§a8]
8
— § (8,11...@8&, - 8b[a1,,_a7§a8]) + ... (2.31)
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The ellipses indicate terms involving derivatives or gauge parameters of gl(11) level [¢] >
%.12 These transformations extend the ones given in the original paper [3]. Indices have
been raised and lowered with the flat background metric. Alternatively, the coefficients
in all the transformations above can be fixed by the requirement that they commute with
the K (FE71) transformations. We will use these gauge transformations later to check gauge

invariance of the field equations that we construct.

2.4 D = 11 supergravity and its first order duality relations

We will consider D = 11 supergravity [55] in conventions such that the bosonic second
order field equations are given (in tangent space indices) by
1

1
Rab - ﬁFaclcgchbCICQC3 - mnachl...C4FC1mC4 ) (232&)

1 by..b
Dcha1a2a3 = _ngalazais ! SFbl...b4Fb5...bg 5 (232b)
where D, = e, (O + wm) is the tangent frame covariant derivative with the torsion
asazas)- Lhe
flat indices have ranges a,b,... = 0,1,...,10, with 0 indicating the time direction and
Nab = (— + - - - +) the flat Minkoswki metric.

As is well-known, the non-linear matter equation of motion (2.32b) can be recast in a

free spin connection wy,. The field strength is given by Fyyaza3a, = 4D}, A

first order form by pulling a covariant derivative out of the Chern-Simons contribution on
the right-hand side, leading to

1
Dc <Fca1a2a3 - m€Ca1a2a3b1"'b7Ab1b2b3Fb4...b7> — O’ (2.33)

and the existence of a six-form potential A,, 4, satisfying

1 1
[Fot-aa 1445a1ma4b1Mb7Ab1b2b3Fb4‘..b7 — _@gal...a4b1...b7 D[blAbg...lw] ) (234)
. —_——
=1Fy by

By contrast, the non-linear Einstein equation is not amenable to a similar treatment [56, 57].
However, once one linearises the theory one can obtain a dual graviton field and write
the linearised Einstein equation in first order form [1, 11, 58-61]; the matter contribution
disappears in this approximation. We will perform the dualisation from the linearised
(vacuum) equation of motion R, — %nabR = 0. Expanding the vielbein around flat space,
em® = 6% + ¢y ®, the Ricci tensor and scalar become at linear order

Rap = Ouwep® — Owap”, R = 2adwcdc ,  where  wgpe = _a[b@c}a - 8[b90\a|c] + 8a%p[bc] .
(2.35)

12We note that these expressions, as similar ones below for the tensor hierarchy algebra, are formally
infinite sums and therefore not fully well-defined algebraically. A discussion of this point in the context of
affine Kac-Moody algebras can be found in [54].
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Note that local Lorentz invariance has not been fixed here and the linearised vielbein g,
contains an antisymmetric part. Introducing a mixed symmetry field Cy,. 44 With

1
Wab1by — ch[blcan]a — _ggbleCl"'cgaclCCQ"‘CQ;G’ (2.36)
one finds that the integrability of this equation (taking 6”' on both sides) implies
1
Rap — §nabR =0, (237)

and therefore (2.36) is equivalent to the linearised Einstein equation.

It is important to note that the field Cy, 44, that one calls the dual graviton does
not satisfy Clg,. g = 0 from (2.36). This is indicated by the notation with the semi-
colon. Recall that we will always use the notation that a comma on a set of indices denotes
an irreducible Young tableau as in (2.16). Indeed, taking the trace 7% of that equation
leads to
Wea© = 2a[c‘Pa}c = _égaqmcmacl Cey...cose10 5 (2.38)

so that the vanishing of the completely antisymmetric part would mean that the spin
connection has to be traceless, whereas it is not in general. Following [11, 62|, one defines
the local Lorentz transformations at the linearised level as

1

590ab - Aab 5 5Ca1...a8;b = _5&‘(11.‘.agbclchClc2 ’ (239)

such that one can fix the gauge by setting Cly,  44;5) = 0, if one allows for an antisymmetric
component of g, with the constraint dj.¢,° = 0. Note that it is not possible, however, to
use Lorentz invariance to set gy = 0 and Clg, . 445 = 0 at the same time [68].

Alternatively, we can write linearised gravity in terms of the metric gmn = mn + Amn
(with Ay, symmetric) by defining

inan = 29mpa[nlgn2]p7 (240)

such that the linearised equations of motion are equivalently written in terms of the Ricci
tensor Ry = 0°Qeap — Opac” and the duality equation (2.36) takes the form

[n1

2
Qnyny™ + 207, ot = genmql“'%@qlC’q%qg;m . (2.41)

The two definitions (2.36) and (2.41) are identical for ¢u, = %halr However, in this case
there is no freedom to set the antisymmetric component of Cj,,  ng:m to zero by a Lorentz
transformation since Cp, . ng.m is inert at the linearised level. This second formulation in
terms of gy, is closer to the E1; formulation to be developed below.

In the following it will be convenient to decompose the dual graviton into a
field hy,..ngm with vanishing antisymmetric component and a nine-form field X, n,
as follows'3

QCnl...ng;m - hn1...n8,m + an...ngm . (242)

3 This is not a complete decomposition into Lorentz irreducible representations since hn;..ng,m still

decomposes into a traceless and a trace component hn,...npm,”"
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Then the duality equation (2.41) splits into its trace and its traceless component as

1
QP = aenplmpwaplsz...pm 7 (2.43a)
m 1 m p 1 p1...p9 ,,mq 1 1
Qn1n2 +3 [lenz]p :§5mn2 n amhp2-~~p97q+Eame.--ngq_’_E&IXPI--%’S) :
(2.43D)

If one considers the gauge fixing for linearised diffeomorphisms
hap — 0ahp? =0 = 1000, Xy n1g) = 0, (2.44)

Xg is then pure gauge and there is an appropriate gauge for dual diffeomorphisms such
that Xg =0.
Finally, we can also linearise the duality equation (2.34) to obtain

1
Fal...a7 = Igal...a7b1mb4Fb1...b4 . (245)

These first order duality equations are the ones we will now try to reproduce from a first
order dynamical system based on Ej;. The occurrence of the fields hgp, Aaiasas, Aay...as
and hg, . qg,p is DOt surprising from the perspective of F1; in view of the low level generators
of table 1. What is seemingly missing from Ej; is the component X,, ., as was already
noted in [1, 11]. Although Xy can a priori be set to zero in an appropriate gauge, we shall
see, e.g. in section 3.3, that its presence is important for the K(e1;) invariance of the first
order equations.

3 Dynamics for E;; and the section constraint

In this section we investigate possible first order dynamics that respect Fq1; symmetry. We
begin with some general analysis that will lead to the conclusion that at present no general
prescription exists that would yield unique dynamics. Then we probe a construction ‘by
hand’ that is built from the D = 11 equations above. In doing so, we shall extend the
results in [2, 5] by including higher level derivatives and fields. We shall then discuss in
some detail the important shortcoming of the formalism in that it gives traceless Lorentz
spin connection. We finally proceed with the two-derivative field equations, in which case
we find that gauge invariance of the equations of motion require section constraints.

3.1 First order dynamics: general remarks

Having established the Maurer-Cartan form as the starting point of the non-linear realisa-
tion, the next question to address is how to define Fq; invariant dynamics from it. We are
aiming for a set of first order differential equations. Using as building blocks the components
P4 of the Maurer-Cartan form (2.14), we have at our disposal Ej; invariant quantities that
transform in the tensor product representation p ® ¢; of K (e11) where p denotes the coset
representation and ¢; is viewed as a representation of K(Ej;) C Ej; (associated with the
A index). If a K(E;;) gauge is fixed, then Ej; acts on Py by the induced compensating
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K (E1;) transformation in the coset representation of K(Ej;). After conversion to tangent
indices P4 = EoM Py therefore transforms in the tensor product of the coset represen-
tation of K(E7;) with the ¢; representation viewed as a K(Fj1) representation. Given a

decomposition

palt =PV (3.1)
el
of the tensor product into K (FE11) invariant and indecomposable subspaces V; (labelled by
some index set I), setting

v =0 (3.2)

jeg Vi

PA‘EB

for any subset J C I would clearly constitute a set of Fq; invariant first order differential
equations that potentially define some ‘dynamics’. Obviously, setting all of P4 equal to
zero (J = I) is a too strong choice since it would trivialise the whole dynamics whereas the
other extreme J = @ does not put any constraints on the dynamics. We also note that for
|I] > 1 the first-order dynamics of the non-linear realisation is not unique and the question
remains how to pick the right set J of equations.

For the case at hand, we are actually faced with the problem that no non-trivial de-
composition of the type (3.1) is known, where we stress that the decomposition can be into
invariant subspaces and not necessarily irreducible representations of K(ey;).'* This can
be traced back to the fact that the Lie algebra K(e11) is not a Kac-Moody algebra with
a triangular decomposition into raising, lowering and Cartan generators, see [63-65] for a
more detailed discussion of this point. In the absence of such a decomposition one can try to
construct an invariant subspace in a ‘level by level’ fashion using supergravity as a guiding

principle and aiming for a small invariant subspace @ ; Vs in order not to overconstrain

JjeJ
the system. This is the approach we will follow below for Fii, using linearised D = 11

supergravity in first order form as presented in the preceding section.

3.2 First order duality relations for Fi;

We now proceed to construct a tentative invariant subspace in the sense of (3.2) using
D = 11 supergravity as a guiding principle as done originally in [2]. For determining a
K (E11) invariant subspace it is sufficient to use the linearised building blocks (2.23).

The starting point of the construction is equation (2.45) involving the field strength
Fo ara5a, Of the three-form potential Ay gy04. In the Maurer-Cartan form we have at our
disposal 9, Ap, p,b4, Which is generally not completely antisymmetric. Therefore projecting to
the antisymmetric part could correspond to the requirement above that one uses only a true
subspace of the general tensor product (3.1).!> The starting ansatz for the construction is
thus a four-form and we begin with terms not involving any epsilon tensors as this generalises
F4 05030, - Indeed, the construction of all field strengths will not involve the epsilon tensor

MTncidentally, it is not even known whether p and ¢; themselves have invariant subspaces, not even in
the affine case when ¢ is replaced by the affine ¢g and ¢; by the basic representation of eg.

15 A different interpretation was pursued in [31] for finite-dimensional F,, where the mixed symmetry part
of 0q A beb; Was interpreted as part of an exceptional connection.
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since it is not produced by the action of K (E1;). We consider the most general expression
that involves all fields up to level ¢ = 3 and also derivatives up to the same level (relative
to the highest level derivative):16

1
b1b b1b
ga1a2a3a4 = 48[(11‘4(12(13(14} - §a18 ! 2Aa1...a4b1b2 - 2a28[a1a2a3 ! 2Aa4}b1b2

ag as
+ Ea[(n b1.“b4ha2...a4]b1.‘.b4c,c + Za[alagblmb4c’cAa3a4]b1‘..b4 (33)

B by B2
- ﬂa ! 5h[a1...a4]b1...b4,b5 + Fa[aﬂua?’

s
30

b1...bg,c
Tt Aa4]b1...b4c

8[alagag,blmbs14(14]1)1...1)5 + 0(47 4) .

We are employing a notation for the maximum order of terms in an expression that works
as follows. For derivatives, we define a degree ng = —¢ — % (equal to g for the corresponding
coordinate given in table 1), and for potentials, we set n, = ¢ = ¢, so that

(Oa; Oaras> Oay-as» Oar..anbr Oay.ags - --)  have degree  ng=(0,1,2,3,3,...) and
(ha®, Aayasas> Aayags Rayasps - --)  have degree  n, = (0,1,2,3,...) . (3.4)

Note that 94797:® and 9“9 both have ng = 3. The notation O(Ny, N,) then indicates
that we are presenting all terms which have ng < Ng and n, < N,. On rare occasions, we
do not present all possible terms that may arise at order O(NNg4, IVp), in which case we will
use the notation O(Ny, Np, Ny), signifying that only the terms that satisfy the additional
condition ng + n, < IV; are kept.

We now consider the K(ej;) variation of this ‘field strength’ using (2.26) and (2.27)
while attempting to keep the result as small as possible, meaning that we try not to generate
too large Lorentz representations in the process. This is in line with the general discussion
in section 3.1. This will constrain some of the parameters in the ansatz. It is useful to
consider terms in 07AGg,q9aza4 Structure by structure. On the grounds of comparison with
supergravity we would expect a transformation into things related to the seven-form field
strength, the spin connection and possibly into the field strength of the dual graviton. This
last term, however, cannot be computed reliably in the present truncation.

Here and in the following we will often make use of the shorthand for indicating tensorial
derivatives of tensors where we only list the numbers of antisymmetric indices (lengths of
columns in Young tableau) separated by commas (see appendix A). In this notation a term
01 A3 represents a generic structure of type 9, Ay, 4,5, Whereas 82h8,1 would be any structure
involving 012 hy,...pg -

We now consider dpGq,asa3a,, Peginning with terms that vary into 01 Ag:

2 . 1 .
5Aga1a2a3a4‘81A6 = gAblebda[mAa2a3a4]b1b2b3 + ialAblebdablAbzbgal...a4 . (35)

16Since a5 is projected to its symmetric component hqp in the coset there can be no terms of type
Ola1asPasa,] in the ansatz.
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In order for the terms on the right-hand side to combine into a seven-form (which would be
the smallest possible representation one can have), one needs to fix oy = 1 and then gets

7 .
6Aga1a2a3a4‘61A6 = gAblbzbda[alAa2a3a4b1b2b3] : (3'6)

Next we consider terms of the form 0, A3 where we obtain

11—«
5Aga1a2a3a4 |82A3 = _6Ac[a1a2 <8CbAa3a4]b + 20428@3 bAazdcb + TQ(SES 8b1b2 Aa4]b1b2>

+ 6a2Ab1b2 la1 8a2a3 Aa4]b1b2 . (37)

Demanding that the last term be absent (since it would correspond to the generic five-index
tensor in 0%2A43) leads to the constraint .z = 0. The remaining terms are then only in the
(not traceless) representation of type (2, 1) which is identical to that of the spin connection.
We note that in [2], a term of the form i, 4,44, Was added to (3.3), in order to constrain
the 92 A3 terms in the first line of (3.7) to be even more restricted and to be antisymmetric
in their three free indices. However, this is not needed for it to belong to the representation
of the spin connection. In fact, although we have presented our calculation in terms of
the coset component P involving the symmetric hy, only, we have also checked using the
ansatz in terms of V that the next term in 9%p;! arising from the variation of OlarasPazay
in Ga,asa3a, cannot be of the correct structure. (This was not yet apparent at the level of
truncation considered in [2].)

Continuing to terms of the type 052 we find the same constraint as = 0. If one next
analyses the terms of type 0°Ag and demands that the terms in Ag,q,q; combine into a
7-form and the terms in A, 3,5, combine at least into a 5-form instead of a generic tensor,
all remaining coefficients are fixed to 1 =0, ag =1, a5 =1, B2 = 1, B3 = 1 such that the
final fixed version of (3.3) is found to be

1
ga1a2a3a4 = 4a[a1Aa2a3a4] - §ab1b2Aa1...a4b1b2

1 1
68[01 br---ba hag...a4]b1.,.b40,C + Za[alagbl.”b4C7cAa3a4}b1...b4
1

1 .
+68[a1a2a3blmb47cAa4}b1...b4c - %8[a1a2a3blmbdAa;;]bl...bs + 0(474) . (38)

_|_

This result extends the previous expressions in the literature. We stress that the ansatz (3.3)
that was the starting point of this analysis included the most general terms up to this order.
Thus there is no definite degree structure (as defined in (3.4)) that governs the resulting
expression. This implies in particular that one cannot prove that the full expression does
not involve 9, derivatives of higher gl(11) level fields, which might make the interpretation
of this field strength in eleven-dimensional supergravity problematic. The K (e11) variation
of this expression is given by

1

5Aga1a2a3a4 = 6Ab1b2b3ga1...a4blbgb3 - 6Ab[a1a29a3a4]b + 0(37 3) ) (39)
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where to this level of truncation

1
Qs = 2a[a1ha2]b + 8" Agyaze + Eabcl'"alAalazcu.cA;

1 4
+§6Fa1 (6610214(12]51(:2 + 5!861.~~65Aa2}01...c5> + 0(3, 3) , (3.10)
and
35 by by
gal...a7 = 7a[a1Aa2...a7] - ?8[(11(12(13 Aa4...a7]b1b2 + 0(37 3) . (311)

These are the highest terms that can be trusted, given the order to which we have presented
our ansatz for Gg,aa5q,, Decause after a K(ej;) variation any higher term in the varied
expression has the possibility of contributions from level ¢ = 4 potentials in the original
field strengths that could vary into the same structure.

One can, however, ‘improve’ for example Gg,...q, by terms up to 7!, 9 and hg,1 and
run through the same logic as for G4, 5434, This means that one computes the variation of
the improved ansatz and demands that the variation produce only small representations.
In this way one finds the following improved expression for G, ...q;:

35
2
70 be A 210 be, A — 70 bibz 4

+ (a1...a6 a7]bc+ [a1...a5 c‘lagar]b lai...a6 ar]bib2

gal...a7 = 78[(11 Aag...a7] - a[alagagblbQAa4...a7]b1b2 + 78[a1bha2...a7]bc,c
+O4,4,6) . (3.12)

Note that here we have not included terms of the form Oghg 1, which would have total
level ng + n, = 6, and hence the order O(4,4,6), as explained below (3.4). This is the
Eq1 generalisation of the field strength Fj, . of the six-form A, .., that also appears
in (2.45). Its variation under K (ej1) is given by

1
0AGay-ar = _35A[a1a2a3ga4a5aea7] + §Ablb209a1---a7b1b2,c +0(3,3), (3.13)
where
Qal---ag,b = 252 (a[alagAa3~--a8 + 2a[al...a5Aae‘.a7ag) Nag],b + 0(37 3) . (3-14)

For our purposes here, it suffices to vary Qq,4,° without adding any improvement terms.
Thus, under K (e11) the quantity Qq,4,° defined in (3.10) varies into

1 1
5AQa1a2b — §Ab61029a1a20102 + §Aclczc35falgaz]016263
1
+ Aclcg[m%ag}chz - §Ac162036ﬁ11 ,Hag]clcQCS + A-Ca/la/Q @b,c + 0(2, 2) s (315)
where
Ho b2t = g, Abibabs 4 3plbibepy be] 4 ;6};’18“2'%0“3} +0(2,2), (3.16)
0% = o°lap.b) + 0(2,2) . (3.17)
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As for Qg ...q9 b, We proceed by improving the ansatz for it as

Qal---ag,b = 252 (8[a1a2Aa3...a8 + 28[a1---a5Aa6a7as) Nag),b (318)
+9’718[a1 ha2..-a9},b + nb[al (726017,&2._.(19]70 + 7380‘2}1'@3"-(19}070) + 0(3’ 4’ 5)

and its K (e11) variation yields

6AQa1---a9,b = 716871 (Ab[alazaagAa4-~~ag] + A[a1a2a3aa4Aa5.‘.a9]b) + 5b ( : )

l[ax

= =71 (24N (010,905-25) ~ 28M 010205 Fas]” + 288 usaz05 1l a0) )
+ 00, () +0(2,3), (3.19)
up to the trace components, where
Ho oo = 9, 4%% + 0(2,3) . (3.20)

The last entry (N; = 5) in the order displayed in (3.18) is due to the fact that terms of the
form Oshg 1 are not included.

One might be worried at first sight at seeing non-antisymmetrised derivatives of the
potentials in (3.16), (3.17) and (3.20). This is not a problem if one considers that e;
includes at level ¢ = 4 potentials of the type Ag 3, Bio,1,1 and Ci1,1 whose field strengths
include Hio,3 and ©11,1,1, leading to the conclusion that there should be well defined first
order equations between H; 3 and H19,3, and between oLl and ©11,1,1- We do indeed find
part of such duality equations in the K (e11) variation of the first order gravity equations.
Proceeding to include higher level contributions to these equations we expect them to take

the form
Tal02bs = 34, 02bs — %mfacl"'qo”cl...clo,b1b2b3 =0, (3.21)
Tobibe = gy brbe _ 1 - 01-~~0107-Lclmcw7b1“‘b6 —0. (3.23)

100"

These would correspond to duality equations that appear in the unfolding approach [23],
but in a first-order form.
We now postulate the E7; version of the duality equation (2.45) to be

1
Sal...a4 = gal,..a4 + ﬁeal...a4b1...b7gblmb7 =0. (324)

Putting the results above together we obtain under K (eq7)

1
5A8a1..,a4 = _ﬂAblebsgalmazlblbglmcl..‘C4SCIMC4 - 6Ab[ala23a3a4]b7 (325)

where

b — b 1 c1...c b
Sauzg == Qalag - 58(11(12 ! 9Szcl.A.Cg,

0. (3.26)
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Requiring that the K (e11) variation of S,,,,° gives back equation S, ayasa, fixes v1 = 1 and
72 =73 =0 in (3.18). One obtains then

1 1 28
b berc cicacs §b cieac b,cq...c
OASaray” = §A "2Sarazercs §A " 36[:115&2]010203 - jA Y g ager.eg T

1
Fhercafon Tar)" " = Ghercaca Oy, Tl + Aearaa T+ 0(2,2), - (327)

where the T tensors are equal to the corresponding © and H tensors (3.16), (3.17)
and (3.20), at this level of truncation.

The duality equations (3.21), (3.22) and (3.23) are not invariant under the gauge
transformations (2.31). However, taking the derivative of, for example, the duality equa-
tion (3.21) in the following fashion,

a[a18ba2a3a4} = O 1020304 _ %0' £, CLC10 Rc1---c1oa1a2a3a4 =0, (3.28)
where
Reyeyg™ %% = 400, 01 A, 0 %2%3%8] | (3.29)

gives an equation that is gauge invariant, and is known to appear in the unfolding ap-
proach [23].17 Just as for gravity, we can expect only the second order equations to be fully
gauge invariant (for two-column fields).

In this section we have revisited the proposal of [2], to construct a K (e11) multiplet of
first order duality equations starting from the duality equation G; = xG4 (2.45) in super-
gravity, with the requirement that the total set of first order constraints is small enough
to allow for dynamical equations. We confirmed that one obtains in this way a duality
equation for the gravitational field €221 = %91 that enforces, however, the additional
constraint that the spin connection be traceless, incidentally violating general covariance.
Pushing the program to higher levels, we see the premises of an infinite chain of unfolding
duality equations advocated in [23| that relate level ¢ to level £ + 3 fields

Hiz =+Hiwz, Hie=+*Hiwoe, Hisi=+*Hios1, Hioez=*Hie3, -.- (3.30)

Here, the field strengths on the left-hand side are derivatives of a potential Ar at level ¢
with R being given by some Young tableau not containing any column with ten or eleven
indices, and the field strength on the right-hand side is the curl of the next dual potential
Ag r at level /4-3. The terminology of “unfolding” refers to the fact that there is a field Agn g
dual to each gradient (01)"Apg of a given field Ag,'® such that all the degrees of freedom
of the fields are unfolded into infinitely many potentials in one-to-one correspondence with

the solutions to the wave equation.'”

'"The integrability condition of the gradient 9, F*1""*4 then gives, from (3.28), the condition
al---a. 1 C1 " C C aljasasza
8[b18b2]F 1°-aq :mgblb2 1709 GO0 Ry, 210293 — ()
which is an equation of motion satisfied by Ag 3.
8 The derivative 8; Ag is dual to curl dAg r, the derivative 01 A9 r is dual to dAg 9, r, and so on, such
that by recurrence 07 Ag can be reduced to (xd)" Agn .
19We note also the alternative formulation in terms of ‘Ogievetsky generators’ given in [66].
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We identify also the appearence of gauge non-invariant non-dynamical dualities that re-
late field strengths involving the exceptional % derivative of potentials of level £ in some rep-
resentations to the curl of level /44 fields that carry a column of 10 antisymmetrised indices

011 =%0111,1, ©O41=%O1141, O71=%01171, Op2=%0O1162, Oz =#*O1158, ...
(3.31)

and more generally the exceptional derivative of level —3/2 — n of potentials of level ¢ to
the curl of level ¢ 4+ 3 + n fields that carry a column of ten antisymmetrised indices. They
are non-dynamical because the left-hand side does not include ordinary derivatives so that
they vanish identically when interpreted in eleven-dimensional supergravity. The duality
relation then implies that the fields including a column of ten antisymmetrised indices have
a vanishing curl, and are therefore non-dynamical, as expected from the standard free field
analysis. We shall argue in section 5.3 that backgrounds with such field strengths turned on
are non-geometrical, and that the latter can be identified with components of the embedding
tensor in gauged supergravity.

As was emphasized above, the field strengths that appear in this construction of the
field equations are not governed by any grading; the only requirement that is imposed on
the terms is that they have the correct Lorentz tensor structure. Therefore there is no
argument to rule out the contribution of standard derivatives 0y of potentials of arbitrarily
high level contributing to for instance Gy, gya3a,- Simple examples would come from ordinary
derivatives of the form 0y Agen 5 where one simply contracts all 2n of the columns of nine
indices in a pairwise fashion. Therefore it is not clear whether one can safely interpret the
equations restricted to eleven-dimensional supergravity in a given level truncation. Similar
terms were discussed in [2].

3.3 On the trace of the spin connection

As already emphasised, in order for the first order dual gravity equation to be formulated
in a gauge invariant formulation, one needs a nine-form potential, which does not appear
in ey; at gl(11) level £ = 3. If one were to give up gauge invariance, one would need
to find a consistent K (e1;)-multiplet of gauge-fixing conditions that would represent an
additional K (ej;)-multiplet of first order constraints. However, one has to make sure that
the gauge-fixing conditions are not too strong, e.g., , they should not contain 0y Ap,pyps = 0
for arbitrary indices. If one starts with a Lorentz-covariant ansatz for a metric gauge of
the form 9°hge — a10,hc + a20”P2 Agy b, + - - = 0 and demands that its K (eq1) variation
only includes the derivative of the three-form gauge field through the Lorenz gauge term
0% Ay, a0, this fixes the two coefficients with the result

1 1 1
5<3bhab — iaahbb + iablbzAable + gabl"'b5Aab1...b5 +.. )

1 1 1
_ 5Aablb2 <8CAb1bzc + 28Cb1hcb2 _ §8blb2hcc + 66b1b261C203AC1C2C3 + .. ) ) (3_32)
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Varying it again under K (e11) this then gives consistently the original condition on the
metric together with a Lorenz gauge for the six-form potential

1 1
5<80Aa1a20 + 280[(11 hca2] _ 5aCL1a2hcc + 6aa1a2b1b263Ab1b2b3>
1 1
— _pbmee (achbc = SO+ 50U A+ )
L\ bibobs (e
_EA (8 Aalalebegc - 108[a1a2Ab1b2b3] + .. ) . (333)

One concludes that an appropriate K (eq1)-multiplet of first order gauge-fixing conditions
must involve the harmonic gauge Opha? — %aahbb = 0 for the graviton rather than the
one in (2.44). In the harmonic gauge for the metric, it is not consistent to gauge fix the
nine-form component of the dual graviton to zero. We conclude that there is no K(ej1)-
multiplet of first order gauge-fixing conditions that is consistent with the condition that
the nine-form vanishes.

We will therefore discuss whether such a nine-form may possibly arise in the theory.
Inspecting the table 1 or the tables of [12], the lowest level field that includes a nine-form
in its so(1,10) decomposition is the ¢ = 5 field C11,3,1. A suitable triple trace of this field
yields a nine-form potential, Cy. However, the local gauge transformation of this potential
will not agree with the required gauge transformation, d=Xg = d\g, since we have

bibobs, bibobs, bibobs,
0=Cay-agbibs, = by = 98[a1é‘azmag}blbz7 200y — 20p, €y aghy, T by o (3.34)

The first term is of the correct form, but the second is not. We expect a similar phenomenon
for higher level fields whose trace may yield a nine-form. For this we note that the analysis
of |67] shows that for any generator of a given Young tableau, the ¢; representation contains
corresponding gauge parameters of the form where a single box is removed from the Young
tableau in all possible admissible ways. In the example above with a potential Ci1 31
this means that there are parameters of the form X931, A11,21 and A11,3. These can be
paired with ordinary derivatives in the gauge transformation (2.29) to yield the linearised
gauge transformations of Ci;31. In equation (3.34) above, we have only displayed the
transformation under A1q21 that suffices to make our argument as all gauge parameters
are independent. A similar calculation to (3.34) will then show for any higher level gauge
potential of mixed symmetry type that even if its so(1,10) decomposition contains a nine-
form, the gauge transformation of that nine-form will not be of the standard type that is
needed in the dual gravity equation. The fact that there are no pure nine-forms contained
in the adjoint representation of ¢ follows from the arguments in [12]. From this discussion
we conclude that one cannot reconcile the standard gauge transformations required for the
trace of the spin connection with the gauge symmetries present in eq;.

An additional problem in the analysis of the duality equations arises as follows. Their
construction as described in the previous subsection is such that the terms in the equations
are determined up to order O(ng, ny, n¢) (see below (3.3) for the definition of this notation).
The problem with this procedure is that the ordinary derivatives of a potential will arise at
arbitrarily high levels. Therefore, even if we encounter a potential or its trace playing the
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role of Xg at some level that is needed for the dual graviton equation, the latter could be
spoiled by a term that could arise at some higher level which would involve the ordinary
derivative. For example, the level £ = 8 field By g 32 could spoil the dual graviton equation
Sarax” = 0 by a contribution of the form

as---a cieC b1bab
€aias griiie™ 11861B62-“C11,a3“'a11, . ,b1ba - (3'35)

Turning to the problem associated with the incorrect gauge transformation rule for the nine-
form potential that might arise at higher levels, assuming that the set of first order equations
must reproduce the corresponding equations in the bosonic sector of eleven-dimensional
supergravity, the system described above will not give the trace part of the dual graviton
equation. A related discussion of this issue without reference to gauge transformations can
be found in the appendix of [2].

As we shall see in section 4, the difficulties associated with the trace of the spin con-
nection are circumvented in the extension of the theory that we propose in this article.

3.4 Second order E; field equations and the section constraint

So far we have not considered the behaviour of the first order equations under gauge trans-
formations. One reason for this is that we already know from ordinary gravity theory that
the first order duality equation is not gauge invariant unless one introduces a Stiickelberg
field [62]. The duality equation for gradients of the physical fields are not gauge invariant
either. However, gauge invariant second order duality equations do exist without intro-
ducing any Stiickelberg fields. Therefore we demand gauge invariance of the second order
field equations of the theory based on Fji. In general, for potentials with more than two
columns one might expect gauge invariant equations only involving as many derivatives
as there are columns [69, 70| and indeed this is what appears in the recent work [6]. We
note that this approach entails equations of arbitrarily high derivative order and there is
no closed K(e;;) multiplet of gauge invariant equations (as K (e11) does not change the
number of derivatives).

Given the first order duality equations one can deduce second order equations as com-
patibility relations for them. Starting from Sy, 490544 i (3.24) we can form, for example,

1
8bSbauazag = 8bgba1a2a3 - ﬁgalazag,bl---bgablgbg b = 0. (3.36)

In usual supergravity this would be the field equation for A, 4,4, and its validity would
be ensured by the seven-form field strength being closed and it would be gauge invariant.
However, it is easy to check that 8b8ba1a2a3 is not gauge invariant with Gg,...q, and Gg,...q,
given in (3.24) and (3.12). Since the gauge and K (e;;) variations do not produce a Levi-
Civita tensor, there is no loss of generality in considering second order field equations in
terms of the field strengths without their Hodge duals. In fact, such terms should vanish
as a consequence of generalised Bianchi identities for the consistency with the first order
duality equations. Thus, we start from the ansatz

galagag = abgbalaza;g + alab[al Qagag}b + a28[a1a29a3]bb + 0(27 2) 5 (337)
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with Gayasasay, and Qg q,” from (3.8) and (3.10), respectively. Under the gauge trans-
formation (2.31) we for example obtain the following terms in the variation of Gg asa3a4
and Qg 4,%:

5Ega1~~~a4 = 8blbzah )‘a1~~a4b2 + 128[a1 8a2a3€a4] +e
0=Q,05" = 20"04, Eag) + (3.38)

so the field strengths are clearly not gauge invariant by themselves. Under these varia-
tions, (3.37) transforms as

0=Earazas = O (0" 0uMarasaspe) + (2 = 3) (D1a,0, 0096 — 0" 00i0s,60))
+2(1 + 3)0" Oyl Oy ag) - (3.39)

Nothing in (3.37), including its higher level extensions, can compensate for the first term
above, as well as the terms proportional to (a2 — 3). Therefore we conclude that

oy =3, (3.40)
and the combination
020y N asby = 0 (3.41)

has to vanish. This is indeed what happens if we impose the d = 11 analogue of the section
constraint encountered in exceptional field theories for finite-dimensional ey [24-26], which
at the lowest level in the gl(d) decomposition implies 8%°9), = 0. The same condition ensures
the vanishing of the last term in (3.39) without determining the value of a;. Thus the
gauge invariance of (3.37) is established to the level we are working for any «; up to the
section constraint.

The coefficient a1 can be fixed by considering gauge invariance at the next level. How-
ever, it is more convenient to fix it by demanding that the K(e;;) transformation of the
equation (3.37) leads to a sensible second order equation for the graviton. Upon K(e11)
variation of (3.37) one finds

5A€a1a2a3 = _3Ac[a1a280a3] - (aQ - 3)Ac[a1a2 o° Qag]bb
+(051 - 3) Acb[al ab Qagag]c + O(la 1) ) (342)

where

Eab = 0ae’ — 0 Qpeq + O(1,1) = 0,05 — 200,y + 0% ha (3.43)

is the linearised Ricci tensor and we have used hgp = h(qp). Since the last term is the
linearised Riemann tensor, we need to impose

a;=3. (3.44)

Note also that the field equation &g, 4 = abgbal.‘.a(; has the minimum order O(1,2), and
that is why it does not appear in (3.42), which holds to order O(1,1).
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We conclude that the second order field equations that are built out of the first order
duality equations constructed above and in [2, 5| is only gauge invariant if one imposes the
section constraint. The need for this condition was not seen in [5], since the invariance
under gauge transformations was not investigated there. From the point of view of E11, the
section constraint is part of an infinite multiplet that contains as leading contribution the
lowest weight representation ¢1¢, and is the complement of 2¢; in the decomposition (1.1).
This representation is analysed in more detail in appendix A.3.2° Note, however, that it
was emphasized in [6] that there were no gauge invariant second order field equations for
the gl(11) level 4 fields, even modulo the section constraint. It follows that one should
find obstructions in the construction of such gauge invariant second order equations mod-
ulo the section constraint when continuing the construction to gl(11) levels beyond those
considered here.

Nonetheless, one expects that in the Fy; formalism gauge invariance is satisfied up to a
certain level. In order to increase the level at which the equations are gauge invariant, one
apparently needs to also increase the order of the field equations. Our analysis exhibits that
demanding generalised gauge invariance of the field equations at a given truncation level
necessarily requires the fields to satisfy the section constraint. This is the case, for example,
for the first order duality equation G; = %xG4, and of the second order Einstein equation.
It seems that this pattern should extend to higher level fields, such that generalised gauge
invariance of the third order equation for the fields Bjg 1,1 considered in [6] might also
require the section constraint to be satisfied.?! Moreover, the compatibility of the second
order equations displayed in this section with the first order duality equations discussed
in the previous section also requires the section constraint to be satisfied. We conclude
that demanding any kind of generalised gauge invariance in the FE7; framework requires
constraining the fields to satisfy the section constraint.

4 Tensor hierarchy algebra and gauge invariant field strengths

We will now change gears and present a different construction based on the tensor hierarchy
algebra that provides a definition of the field strengths in a representation of ej;. At the
same time this construction will automatically remedy the issue with the trace of the spin

connection encountered above.

4.1 The tensor hierarchy algebra

For 4 < d < 8, the finite-dimensional Lie algebra ey was extended in [40] to an infinite-
dimensional Lie superalgebra. It was called the tensor hierarchy algebra, since its level
decomposition into eq representations R, for all integers p gives exactly the tensor hierarchy

20Checking similar equations for the other fields, different components of the section constraint are gen-
erated. Instead of providing the details here, we will present a more systematic construction based on the
tensor hierarchy algebra in the following section.

21Checking gauge invariance only for terms involving the ordinary derivative &, will not reveal the
necessity to impose the section constraint because one is effectively working on a solution of the section
constraint.
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that appears in gauged maximal supergravity in D = 11 — d dimensions for p > 1 [71, 72].
Moreover, R_; is the representation in which the embedding tensor transforms, and by
considering it as an element in this subspace of the algebra, the approach in [10] to D-
dimensional maximal supergravity can be extended to the gauged theory [41, 42]. The
possibility to interpret the embedding tensor as an element in R_; is the crucial difference
between the tensor hierarchy algebras for ¢4 are the similar Lie superalgebras of Borcherds
type that have also been considered in the context of maximal supergravity and exceptional
geometry [73-76], and in relation to ej; [77, 78].

In a further level decomposition with respect to gl(d), the eg representation R_; con-
tains a four-form as well as a seven-form (for d = 7,8). This observation suggests that the
field strengths of eleven-dimensional supergravity should transform in an e;; representation
that would be R_1 in a tensor hierarchy algebra analogously defined for d = 11. Although
the construction in [40] is not applicable to the cases d > 9, where the Lie algebras ¢, are
infinite-dimensional, we show in appendix B that there exists such an extension of ¢1;. We
shall in the following describe some of its features, and in the next subsection argue that it
indeed gives the right representation for the field strengths in the present set-up.

We denote the tensor hierarchy algebra for d = 11 defined in appendix B by 7. As
described above for d < 8, it decomposes into a direct sum of e11 representations R, for all
integers p.?2 This is a Z-grading, [R;, R;] C R+, which is consistent with the Zy-grading
that .7 has as a superalgebra (in the sense that R, is an odd subspace if p is odd, and
an even subspace if p is even). We sometimes write commutators for ease of notation even
though .7 is a Lie superalgebra, and [R;, R;] then denotes a graded commutator, i.e., either
a commutator or an anti-commutator depending on the parity of the product ij. It follows
from the Z-grading that Ry is a subalgebra of 7, and we shall denote it by t1;. Any
representation R, of e;; C t11 can be further decomposed into representations of gl(11),
and this decomposition corresponds to another Z-grading of .7, which is not consistent in
the sense above. We choose this other Z-grading such that the degree ¢ is not equal to the
gl(11) level ¢, but related to it by

Thus we have two different Z-gradings of .7, with degrees p and ¢. To distinguish them
from each other, we call them wvertical and horizontal, respectively. This is in accordance
with table 3, where we show the decomposition of R, for vertical degree —3 < p < 3 into
representations of gl(11) for horizontal degree —5 < g < 2.

A feature that the tensor hierarchy algebra .7 has in common with its analogues for
d < 8 (up to a singlet at p = —1 for d = 8) is the fact that it is conjugated to itself
through the action of a (vector space) involution such that for any vertical degree p, the
representations R, and Rg_4_, are conjugate to each other, Rp = Rg_q—p. This involution is

220ur embedding of ¢;; into 7 is different from (in fact, conjugate to) the embedding of eq into the
tensor hierarchy algebras defined for d < 8 in [40-42]. As a result, our representations Ri, R, ... for d < 8
are conjugate to those appearing in the tensor hierarchy. In particular, R; is here the conjugate of ¢; for
d < 8 (and contains the conjugate of £; for d = 11).
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related to the usual Hodge duality of the (p+1)-form field strengths of maximal supergravity
in D = 11 — d dimensions. In the case d = 11 it maps R_1 to itself, and as we will see, it
can be used to generalise the duality relation for the four- and seven-form field strengths
in eleven-dimensional supergravity to a self-duality relation valid for field strengths living
in the whole of R_;. In the further decomposition of the ¢4 representations R, into gl(d)
representations labelled by the horizontal degree g, the ‘reflection symmetry’ of the algebra
(up to conjugation of the representations) p <> 9—d—p is refined to (p, q) <> (9—d—p, —q—3),
which for d = 11 means (p,q) > (—p — 2, —q — 3) as can be seen in table 3.

As we will see in the next subsection, an important difference compared to the cases
d < 8 is that the representation Ry is not the adjoint of e;1. It contains the adjoint as an
irreducible subrepresentation, but is not fully reducible. In other words, the Lie algebra t;;
contains ey as a subalgebra, but is not semisimple; it is the semidirect sum of ¢;; and an
additional subspace. An example of a basis element in this additional subspace of t;; occurs
at (p,q) = (0,—3), where, in addition to the e generator F,,...,g m with irreducible (8,1)
index structure, t;; contains also an extra 9-index totally antisymmetric generator Fi,,...n,.
This additional generator Fy,,...,, vanishes when the range of indices is restricted to d <8,
and it is a scalar density under gl(9) for d = 9.2 For ¢ < —3 there will be further additional
generators. However, the generators at ¢ > —2 coincide with those of e11, as we explain in
appendix B. Thus the Cartan involution of e1; does not extend to the whole of t17.

In what follows it will be useful to introduce the generators of the subspaces R,,.

Schematically they can be grouped as follows??

PpMN _ MN _ p=

p=2 =

p=1 pM

p=20 t*

p=-1 % =%y t

p=—2 N =% yn " ts

p=-3 t*vnp =% ynp© Pg (4.2)

where the II tensors are suitable linear homomorphisms. The (anti-)commutation rules that
will be needed below in the construction of the theory are

{PM,PN}:2HMN7EPE, [PM,ta]:—DaMNPN,
{PMatI} = fMOé,JQJIta 5 [PM7Z0¢] = fMa,I tI>
{PM, Py} =DMy t,, [P=, Pyl = fFarrt’ (4.3)

2The extension of eg with this additional generator, which is the Virasoro raising generator L1, has been
applied to gauged supergravity in two dimensions in [79].

24Below and in the rest of the paper the indices o and M refer to level p = 0 and level p = 1 generators
of the tensor hierarchy algebra, respectively, and they contain generators in addition to those of Fi; and
its £1 representation described in section 2.
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where D*M 5 are the representation matrices of the Lie algebra t;; on Rj, and Q17 is the
inverse of the Ry symplectic form on R_1, such that the quadratic Casimir is

Cy :Q[L]tlt‘]—l—{ga,ta}—i-[PM,PM]—I-... . (4.4)

The existence of this quadratic Casimir is proved in appendix B. Note that it has weight p =
—2 and corresponds to the “reflection symmetry” (p, ¢) <+ (—p—2, —g—3) discussed above.?

An important point of the construction of the tensor hierarchy algebra is that it defines,
along the vertical Z-grading, a differential complex of functions depending on coordinates
M where the differential is defined through the adjoint action of the basis elements PM
in Ry as

d=(ad PM)oy . (4.5)
The requirement that this differential squares to zero,
d? = (ad PM) (ad PY) 9pr0n = TMY = (ad P=) 9p0n = 0, (4.6)

is equivalent to the condition that all fields in the complex satisfy the weak section constraint
(at the linearised level, the issue of a strong section constraint does not arise):

MY = 9p0n®(x) =0 . (4.7)

Note that one can equivalently define the standard de Rham complex from the graded
abelian superalgebra freely generated by anticommuting variables 6 of degree 1 and com-
muting variables ™ of degree 0, such that the differential complex is the module of super-
fields w(zx,d) and d = 9mag—m. A differential complex can still be defined for a non-abelian
superalgebra, provided one enforces a section constraint ensuring that d is nilpotent. The
differential complex defined above will serve as a basis for the construction of the field
equations in the next section, such that the degree p = —3 supports the gauge parameters,
p = —2 the potentials, p = —1 the field strengths, and p = 0 the Bianchi identities, as one
can anticipate by looking at table 3. It might seem counter-intuitive that the potentials do
not belong to the degree p = 0 component t;1, which is a subalgebra of the tensor hierarchy
algebra .7, but instead belong to a module in the co-adjoint representation of t;1. However,
this definition is determined by the property that the exterior derivative (4.5) increases the
degree p by one unit, and the fact that gauge parameters are defined in the ¢/; C R_3 mod-
ule and the potentials in ¢;; C R_o. Note moreover that the functions in R_o are valued
in the full representation without restriction whereas the physical potentials parametrise a
coset, and are defined modulo K (e11) in the linearised approximation. To avoid confusion
between the fields valued in R_5 discussed in this section and the physical potentials A%,
we shall denote the former by ¢“. We define therefore the fields

o= d)a(;z;)fa ) (48)

#5Note that only the gl(11) level £ = q — %p is defined by the action of an element of the superalgebra .7,

and is therefore preserved by the Casimir operators.
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their field strengths F = d¢ at p = —1 as

Fr= M1 ome®, (4.9)

and their Bianchi identities at level p = 0,

dF = (M, 1 1N 00N )t = 0, (4.10)
up to the section constraint. This field strength is by construction invariant under the
gauge transformations 62 ¢ = d=, for a p = —3 gauge parameter

= =2(x)M Py, (4.11)

satisfying the section constraint. More explicitly, this gauge transformation takes the form
2™ = DMy 9=V, (4.12)

and
62 Fr = fM o DN p oy onEL = fEp MY 2 oy onER =0 . (4.13)

The second equality follows from the Jacobi identity [{ P, PN}, Pol+2[{PM Py}, PNV)] =
0. The superscript .7 means that the variation is computed using the commutation relations
of the tensor hierarchy algebra .7, as opposed to variations without the superscript, which
we shall encounter later, corresponding to variations of coset fields that are compensated
so that they remain in the coset. By construction the gauge transformations are infinitely
reducible, and in the BRST formalism one can interpret the fields at lower degrees p =
—4, —b5,...as a sequence of ghosts for ghosts for the potentials at degree p = —2. Note
that in the gl(11) decomposition, the gauge invariance at a given horizontal degree g are
finitely reducible but in a FEj; covariant language we have an infinitely reducible gauge
invariance.

As we shall see later, only FE7; is expected to be a symmetry of the full equations
of motion, and furthermore only K (e11) at the linearised level. Therefore it is important
to understand the eq; representation content of the tensor hierarchy algebra. At vertical
degree p = 0, the generators are

= (0, 1, 12, L) € (enn, v 6, ) (4.14)

where the notation means that the total module is a vector space that decomposes into
a direct sum of vector spaces (but not e;; representations) associated with the irreducible
highest weight modules labeled by tgo). Here we have the irreducible highest weight repre-
sentations with Dynkin labels

t(10) = (0,1,0,0,0,0,0,0,0,0,0),
t(20> - (0,0,0707 07 07 07 O? 07 1’0)’ (415)

according to the labeling conventions depicted in figure 1. In general we shall use the nota-

tion tZ(p )

to denote the representation labeled by 4, at vertical degree p. The ellipses in (4.14)
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denote possible irreducible highest weight modules that could arise. Direct inspection of
possible irreducible representations at low levels suggests that there may not be any other
representation beyond the ones displayed in (4.14), but this remains to be fully investigated.

More precisely, the total module Ry has the following structure. It is known to contain
the adjoint representation of ej;. Furthermore, factoring out this representation yields a
highest weight representation of e1; in the sense that the highest weight state is annihilated
by the e17 raising operators, but the resulting weight space need not correspond to a single
irreducible representation of e¢1;. The notation in (4.14) indicates that the weight space

(10). Factoring out this representation, in turn, gives a new

(0)
2

contains the representation t
highest weight representation of ¢;; which contains v;’ and so on. This structure of the
module does not mean full reducibility of the ¢;; representation Ry. Indeed we shall show
that (e11, £2) is indecomposable while we do not know yet if the remaining components
decompose into irreducible higher highest weight modules. The fact that there exists an
indecomposable module (e¢11,%2) seems to be related to the fact that the highest weight
of 3 is a null root. One can show that the only gl(11) irreducible representations in the
level decomposition of Ry that do not appear in e1; itself are associated to the gl(11) level
decomposition of the highest weight representation fo (or its multiples). This implies that
one can have a non-trivial mixing of the two representations that cannot be reabsorbed into
a redefinition of them.?® Further details can be found in appendix B. The only property
that is ensured by the construction of the algebra is that e¢;; is a subalgebra, such that we
have the commutation relations

[tao,tﬂo] — COlOﬁOVO AL , (416)
[tao’tﬁi] — Z Daoﬁivj 1 4 Tocoﬁi,y0 £, (4.17)
Jj21

where DO‘O@'W are representation matrices of ej;, which, as a result of the Jacobi identity
involving {t®0,t% 7}, satisfy

Z 2D[040|’YinkD|ﬁo]77k6j = CaOﬁOnODWO'Yi(;j , (4.18)
E>1
whereas 7205, satisfy
1
Z D[a()'aiﬁjT"BOmj’yo = C(SO[OCO'YOT&)]%(SO + §Ca06050T50ai'Yo : (4.19)

j>1
The p = 1 generators decompose similarly as follows,
pM = (pMo pM ) e (e 0y, L), (4.20)
and similarly for Py, where

'C(ll) = (170707070,0,07070’0’0)’
e = (1,0,0,0,0,0,0,0,0,1,0) ® (0,0,0,0,0,0,0,0,0,1) . (4.21)

26For eg, the vector space replacing - is one-dimensional, and the corresponding generator is the Virasoro
raising operator [79)].
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Thus, the PM and P); obey the commutation rules

[tcm’ PM'L] — ZDaoMiNjPN]- ’ [tao7 PM,] - _ ZDQONjMiPNj ) (422)
Jj=0 Jj=0
One derives then that the generators at p = —2 commute with the ¢;; generators as
[taovfﬁo] = _COLOVOﬁo{’YO - Z Taowﬁofw ) [taovfﬁi] == Z Dao%ﬂz‘{% : (4.23)
i>1 Jj=1

We will see in the next section that the structure coefficients 7051 o do not vanish, so that
the module R_5 is not completely reducible. However, the structure coefficients computed
in appendix B satisfy

Ta0ﬁ270 _ D0105172 _ DOtoﬁQ71 =0, (4.24)

so that the vector space associated to the highest weight £19 in (4.14) does not mix as an
¢11 module with (211,572). It would be very useful if this extended to all higher highest
weight components such that the e;; module R_5 would decompose into the direct sum of
an indecomposable module (e1q,f2) and a (possibly reducible) module including all other
components, i.e.

TO‘OﬂiWO — Daoﬁlv_

K3

=DWi =0 Vi>2, (4.25)

but this is not necessary for the model based on the tensor hierarchy algebra we are propos-
ing.?” The structure coefficients computed in appendix B also satisfy

DeoMo = peolhii— 0, (4.26)

implying that the vector space associated to t(21> in (4.21) does not mix as an e;; module
with t(f). So once again, it would be very useful if the module R; decomposed into the
direct sum of the irreducible module ¢; and a possibly reducible module associated to the
remaining highest weights, i.e.

DaOMONi — DOZOMiNO =0 V1 > 1. (427)

2TWe make the following observations that may be useful for studying the question of decomposability of
the tensor hierarchy algebra. One can assign roots to the generators of .7 and the standard techniques of
identifying possible gl(11) representations associated with roots gives all the Young tableaux that are listed
for example in [12, Table 2] or [17, Appendix B.1|. These give a complete list of possible Young tableaux
that can occur at vertical degree p = 0 and any fixed horizontal degree ¢; the only issue then is to determine
what is called the outer multiplicity p of a Young tableau. For eq; this can be done by computer based on
the denominator formula; for the tensor hierarchy algebra we unfortunately do not have a similar structure
at our disposal, so we have to do it by hand. As was noted in [12] the only places where p = 0 occurs is
for null roots of e¢11 (besides spurious real roots). This observation can be proven by noting that null roots
always occur as special elements in the ‘gradient representations’ triggered by the affine subalgebra eg and
by the fact that one knows the multiplicity of null roots (it is equal to eight). The first null root is the
one that corresponds to the potential we call Xo. The inclusion of the corresponding ¢;; representation fo
increases the outer multiplicity from g = 0 in e11 to ¢ = 1 in the tensor hierarchy algebra for this and Weyl
related null roots. Continuing now to the next additional representations that we add we encounter Z19 on
p = 0. This is not a null root (all dominant null roots are of the form Xg, Xg9, etc.) and therefore starts
out with g > 0 in eq1; this p gets even bigger in the tensor hierarchy algebra. By forming suitable linear
combinations one should be able to find a lowest weight vector in this larger space that allows to split off
a lowest weight representation as a direct summand. An instance of this can be seen in (B.50).
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We shall assume this condition even though it is not ruled out that it may not be necessary.
Unlike the (4.25), this condition plays a more important role in the construction of the
linearised field equations, as we shall see in the next section. Then, decomposing the
potential as ¢ = (¢, X ), the field strength takes the form

Fr= M0 1 Ond™ + M0, 1 O X + Z FMo g1 O X0 (4.28)
i>2

If (4.25) were to hold as well, one could truncate the system consistently by setting X% =0
for ¢ > 2 keeping F1; symmetry.

The ¢;; module R_; may also be reducible, in which case we may want to consider only
the field strength associated to a minimal indecomposable module. However, this is neither
a highest weight nor a lowest weight ¢1; module, and there is not much known about the
classification of such Kac-Moody algebra modules.

Given our assumption (4.27), there exists a standard non-degenerate bilinear invariant
form AM™MoNo on the ¢; representation that we will use below in the construction of the
field equations. We remark that if our assumption (4.27) was not valid, we would require
the existence of a similar non-degenerate invariant bilinear form MM on all of R; to
construct our theory. In this case, the restriction of MM¥ to the space indexed by My will
not agree with the standard bilinear form. As a matter of fact, in our truncation scheme,
the difference will not be visible as all the higher level representations mentioned above will
be beyond our gl(11) level truncation, and only the lowest gl(11)-level component of X!
will appear to play an important role.

To define the field equations, one needs eventually to quotient by the right K(E;)
action to define the theory. Nonetheless, the differential complex described above will serve
as a main building block in the construction to be discussed in section 5. At this level,
@< is still understood as an element of the algebra without constraints, and all quantities
are in ej; representations. This provides a huge simplification, because the construction
of the field strength F is consistent with the gl(11) level (so that the horizontal degree
q is preserved unlike in the scheme described in section 3.2 where it is not). In the next
subsection we shall exploit this property to present explicit formulas for the transformations
and field strengths, and address the problem of defining field equations in the subsequent
section.

4.2 Explicit formulas for transformations

The full structure of the tensor hierarchy algebra .7 described above, and defined in ap-
pendix B, is not known but we can probe it degree by degree both horizontally and vertically.
Recall that the horizontal degree ¢ is related to the gl(11) level £ by ¢ = ¢ + %p and /¢ is
the eigenvalue of the Cartan generator %K ™, of e11. In this section, we shall give the
explicit form of the structure coefficients D Mo No» fMoa, 7 and IIMoNoz - and the explicit
transformations of ¢, F; with respect to ¢;1 in the level truncation we are working with.
We recall from the previous section that the ‘potential’ fields ¢* are associated with vertical
degree p = —2 in the tensor hierarchy algebra that is dual to p = 0. At this stage we do
not perform a coset construction, i.e., there will be fields associated with all generators at
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q=—-3 q=-2 | qg=-1 q=0
section constraint | p=2 | L™-"em [M-n7 | [ "
derivative | p = gnt--nTm o gni-ng | Gni.-ns gninz Om
field strength | p = —1 Fring ™" Forema | Fniomr | Fniomgms Fnromio
potential | p = —2 h:{m A,J{mng A;{l_'nﬁ hfll__.n&m, Xny ..o
gauge parameter | p = —3 e Aning Arong | &nonrms Ang.ong

Table 4. ¢- and p-degrees of selected objects in the tensor hierarchy algebra.

p = —2. Furthermore, the derivatives, gauge parameters and field strengths are associated
with vertical degrees p =1, p = —3 and p = —1, respectively. The assignments of horizontal
degrees ¢ within these vertical ones are summarized in table 4.

In order to exhibit the global F;; transformations

8¢ = —CPY g @7, (4.29)

it suffices to study the infinitesimal transformations under the level £ = ¢ = £1 generators
E™m23 and F, ngong of €11 as the higher and lower level transformations can be obtained by
iteration /commutation. We denote the parameters u,, of these transformations by e, nyns

and f™Mm273  respectively. More precisely, we write the general element at p = —2 as?®
~ 1 ~ 1 ~ 1 - -
¢ata = ... + gh’ril.“N&anl“.ng,m + @A'fil...n(;FnlmnG + 5AA'riﬂ’LgngFwnlnTHB + h:l_mKnm
1 > s, 1 - 1 N
+ gAZlnzn3En1n2n3 + aAjl_l---nﬁEnlmmi + Qh;il-lmn&mEnL..ng,m
1 -
+ gy X BT (4.30)

where the term in the last line corresponds to the new generator E™ "9 with coefficient
Xn,..no i the tensor hierarchy algebra that is not present in ej; and that is totally anti-
symmetric in its nine indices. The transforming rigid ej; element at level p = 0 we take as

1 . 1 .
gntHQnanlnzng, + ?enlngn;gEnannd (431)

and the important new commutator in the tensor hierarchy algebra is
[EMn2ns, E‘plmpe] — _3Fmnanapi-pe _ g fp1--pe[ninz.ns , (4.32)

whose dual version was given in (B.22). From the e;; commutation relations given in
appendix A, and those of the tensor hierarchy algebra given in appendix B, we derive the
following rigid F7; transformations at p = 0 of the ‘potentials’ lying at p = —2:

SRILTTSM — _pg f{ninans gnansmy 4 (4.33a)
SAMNG — _zof[nmznsA?iwo%} + §en7n8n9hfﬁl ng,ny ’ (4.33b)
28For the tensor hierarchy algebra at p = —2 we write the coordinate associated with the dual of gl(11)

m

as h;'™; it has no particular symmetry properties and so it is akin to the quantity ¢,™ appearing in the

parametrisation of the adjoint of e11 in (2.22).
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1

FATIE = gempzpsAT—Lansppopg + 3 frimne h;m’] ; (4.33¢)
Oh, ™ = %enplpzATplm - %fmplpzA:Lrplpz

- 1%52”‘ (€prpaps AZP2PS — fPPPS AL 00) s (4.33d)

5A’—1‘_1"2"3 - _éfplpzp?)ATtlnzn:splmps - 3610[”1"2 h:L_g]p ] (4.33¢)

GAT . ng = 20€(myng Ay 0 — % SPTSORE e (4.33f)

Ot g m = 56€cnimans A s 0 s (4.33g)

0Xn,mg = _286[n1n2n3A::4...n9] N (4.33h)

As can be seen in (4.30) and in the table above, fields with the superscript + or subscript
— belong to the part of R_o corresponding to the adjoint of e1; at £ > 0 and ¢ < 0 (that is,
q > —3 and ¢ < —3), respectively. The transformation rules of the latter are obtained from
the former ones by raising and lowering all the indices and by interchanging the parameters
e <» —f. The fields in the additional part of R_5 appear at £ > 3 (in particular X, n,
at £ = 3) and have no counterparts at negative levels. Note that this is the transformation
of fields in the whole of R_s (not yet the physical potential associated to the non-linear
realisation), so that the gl(11) level ¢ is preserved. The parameters ey,n,n, and fm172"3
have levels £ = 1 and ¢ = —1, respectively, and the fields have £ = (N — M) /3 where N is
the number of lower indices and M is the number of upper indices. The ellipses in some of
the equations indicate contributions from level ¢ = 4 and ¢ = —4 fields which are outside
the range we are considering.

The most important new ingredient in (4.33) for the tensor hierarchy algebra is the last
equation (4.33h) that gives the transformation of the new potential Xy, ., that is present
in the tensor hierarchy algebra but not in ey;. As we can see it transforms back into e
under the action of ey1, illustrating the fact that R_s is not the direct sum of the adjoint of
e11 and some other representation of e1;. This crucial fact is necessary to obtain the correct
linearised equations of motion in the following section.

The local gauge transformation (4.12), given by the structure coefficients DM 5 shown
in appendix A.2, more explicitly read as follows:

§Z pmem — _gglna-nzml gns] 4 8 gmims--nz grsl — 8 gma-ms €4 (4.34a)
- 3 3 ’
5:91421"'”6 _ _Ga[nl...ng,gng} o an1...n6p,q)\pq + 8n1-..n6plp2)\p1p2 e, (4_34b)
1 1
5514?1”2"3 = 38[”1”25%} + §an1n2n3p1p2)\plp2 + E@mmnzﬂn'“p47175>\p1mp5 (4.34C)
1
_ a8n1n2n3p1“'1175)\pl_”m +oe,
; 1 1
2™ = 0nE™ = O™ A = O P Ny — GO T g (4:344)
Lopree 8
— ﬁapl PUME gy — ﬂ(9mp1 P Xy
1 1 2
+ 5517{1 (28p1p2 >‘p1p2 + aapl---ps /\pr"’ps
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3 o 3
+ ﬁam PTAE o+ ﬂam p8>\p1--~ps> 4o,

1 1
5§A7J{1n2n3 = 38[”1)‘712”3} + iaplm)‘mmnaplpz + @81}1 p5§n1n2n3p1--~p47p5

I

5!ap1~~p5)\mn2n3pl_”p5 e (4.34e)
62 AL e = 601, Angeng) — 0P P26y g pn + O P2 Anycomgpips + ¢ (4.34f)
52t s = 800y Engeeongim + 240 ny Angeomgmy + -0+ (4.34g)
0Z Xy = 2400, Myomg] + - - (4.34h)

In these gauge transformations one has again a preservation of the horizontal degree ¢. Note
that there is no additional gauge parameter for the potential X,,, ., and the transformation
of the latter only involve the parameter A, ., that already enters in the transformation of
the dual graviton hy,, . .ng,m- The ellipses denote terms involving derivatives of level £ < —%
or gauge parameters of level £ > %, that are ignored in our computations. The first new
&) 11
2

module are §10,1, A11 and only appear at level £ = .

The structure coefficients fM I, occurring in the definition of the field strengths FI

gauge parameters that are in the ¢

given in (4.9), are determined by the Bianchi identities, and equivalently by the property
that the field strength (4.12) is gauge invariant modulo the section constraint

L™ =99, (4.35a)

[mnensna — gglmna gnsna] _ gnanangnamg (4.35b)

[rmananansnem — ]57<{minzgnanansnemy _ gp<minznsnansnemy g (4.35¢)
[rimansnansnens _ gglnana gnsnansneny] _ % grinanamansnonran gy | gminananansngnmg

(4.35d)

and transforms to itself with respect to Eq;. Using these constraints and the known gl(11)
irreducible representations appearing at each horizontal degree ¢ in R_1, one computes in
this way that

Fiems Sa[nlngAT_Ls...ns} + 168[n1...n5AT_L6n7n8]
— Dglmnabagtlna) gaunieenel g (4.36a)

]_-mnl...ng,p _ amhnL..ns,P + @ (857[31 alpInzAns...ng} + 957[21 8n2n3An4...ng]p
_ 33 _ _

o 6&6[%17@147_7{3”8} 4 206%18‘p|n2...n5A26n7n8] + 2157[218n2“.n6A717n8}P

. 5%6[711...77,5A716n7n8] - 2251[77;16n2...n7|q,p|h;rn8} + 5quan2...n7|p,q|h;rng}

— E(s[nl@nzmns},qh;zﬂ _ §5p 3[n1...n7|,qh;—ns] + 55[n16n2...n7|pq\h;-n8]
7 m m

7m

— 37 —



+ 457[21 8n2~-~n8]Qh;p + 5%a[n1-..n7qh;rns]>

+ Sa[nl"'m"ph;'nd + 3a<n1-~~n8,h;rlp> +..., (4.36b)

Fn1n2n3n4,m — —68<n1n2An3n4’m> 4 aq<n1n2n3n4,h+m>
- q

4 13P1p2p3<n1n27L3n4,m>A+ +

: o e (4.36¢)

ni-ene _ n1M2N3NAN5NE [n1---n5 7, + ne] n1--nep,g A+  _ Ani--nepip2 A+
Fm = Om AL + 60 hy,"% 40 Afpg — 0 Apips

+ 1925MMm <8n2n3A”4”5”6] _ pnenananslqy,+nel + ian?--n(s]le,qAJr
m - g 20

P1P2q
= 1128"2"'"61P1P2P3A;p2p3> +., (4.36d)
s = g g Lopmmmmmtnna ge (4.360)
Fp1m2ms = 9, AM2ns g gglminapdns] 4 %0”1”2”379“9214%)1”
+ %anmmsplmmm’qA'rJrermpsmq - %amnznsmpzpzmm Arriprpapspaps
+ g(gml <an2|qh;rn3} _ %3712”3}1)117211314;})2})3 _ %anzns}mmp&qA;mpsq
- (31!(9”2”3@1"'%‘41;--?6) .o, (4.36¢)
Fring ' = 28[mh:2]m +OMPAL LT %Ompl”'p‘*A:{lmplmm
+ é(ammmps’q LA
+ %6[731 <8p1p2 A;]plm T %81)1“% A;rz]m"'ps
6 p . 2
+ ﬂapl p%qh:z}pl---pmq + ﬂapl psh;]pl---m,pg)
_ %8p1"'p7’an1n2p1mp7 n %8mp1mp7Xn1n2p1~--p7
+ 121. 510 O P Xl (4.36g)
Frangngng = 4a[n1A:2n3n4} - %8”1”2/1%”2”3”41,11)2 - %aplpwsmmhﬁmanzmplpzpsmm
+ éaplmmmmXnmzngmplmmmps +..., (4.36h)
Feomy = M0y A+ O P2 o — %aplmxm...mmm +.n, (4.36i)
Fryongm = 9a[mh;2._,n9],m +0¢m Xy omgs + - e s (4.367)
Fnynio = Oy Xngoomgg] T+ v (4.36k)

where the ellipses denote terms of order O(4,4), that is, involving either potentials of
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horizontal degree outside the range —6 < g < 0 or derivatives of horizontal degree g < —3.
As noted earlier, ¢ is preserved in the expressions for the gauge invariant field strengths.
Indeed, reading off the horizontal degrees from table 3, we note that the field strengths
listed above have ¢ = —6, -5, —5,—4,—4,—-3,—-2,—1,0,0, respectively. Note that the list
of field strengths displayed above is exhaustive for —5 < ¢ < 0, however, there are other
field strengths at ¢ = —6 in the reducible representation (6,2) + (7,1). We do not display
these three irreducible components because they do not depend on the dual graviton field
hg,1, and they will not be relevant in the following. The components in (7,1) + (8) are
determined from conditions that will be explained in the next section.

It is worth noting that if we restrict the range of the indices to run from m =0,1,...,7
in (4.36), the terms depending on the nine-form potential vanish and the expressions for
the symmetry transformations as well as the field strengths discussed above reduce to
those one would obtain from the embedding tensor representation of eg. The field strength
representation can be defined using gl(11) tensor calculus and demanding that it is gauge
invariant modulo the section constraint and transforms to itself under ej;. It appears that
this construction faces an obstruction if one restricts oneself to an ansatz depending on the
fields in eq; only, so that the necessity of introducing a nine-form comes naturally in the
construction. So we want to stress that the nine-form does not come only as a consequence
of the construction of this representation based on the tensor hierarchy algebra, but is in
fact a consequence of the requirement that there exists such an eq7 representation in which
0¢ is indeed gauge invariant modulo the section constraint.

Using the definitions (4.36), one computes indeed that the field strengths transform as

SFM-ms 5fq[nm2]:q”3---”8} +...,

§F,, M-8 — _56f<N1N2n3fmn4---ns,P>

+% (857[77:1 f|QP|n2]:qn3-..n8] + 957[:;1 f|q|n2n3]_-qn4__n8]p

— g ol sl )
§Franenanam _ 6fp<”1”2]-"p”3”4’m> _ 4f[nmzn3]:n4],m T
§F,,m 6 — 20f[n1n2n3fmn4n5n6] _ 1257[21 fp\nznsjz‘pn4n5n6]

1
- 7:’711---716])11)27(]
+2€p1p2q te

1 1
GF™ = ifplm(m Plpzn) - éeplpng}-mpng(m,n)’

§F,,mn2ns — 73fp[”1n2fmpn3] + prlm [n1 5;112]:101122”3} _ éeplmpg)fmmmmplmps

3
nan, n n
em ﬁ”l 2N3p,4q 67[7116 ) F”Q 3}p1p2yq ,

1
m o __ mpip2 _ m p1p2p3 D
0Fnins" = €pipainaFna] 96p1p2p35[n1~7:n + epnyng F

2]

1 1
—ifmplm]:nlnzmm - §fp1p2p35[n7;blfn2]p1p2p3
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1
- _ P _ _ fp1pep3
0F nynongng = 6€p[n,ns Franal 6f Frinansnapipaps
ni-mny e[n1n2n3 ng--n7] 2 ni-nrpip2,q 2 ni-n7pi1p2p3
0Fnimgm = —84€(ninonsFngmgmy + -

6]:711"%10 = 4€[n1n2n3fn4~-~n10] 4 (4.37)

with respect to e11, with the ellipses denoting terms involving field strengths of level ¢ > %
or { < —Z, which we do not define in (4.36).

5 Field equations from the tensor hierarchy algebra

In this section we shall derive linearised equations of motion for the potentials. In addition
to the standard potential A parametrising the symmetric space Ej1/K(FE11), the theory
will involve an additional potential X in the t(lo) module (and possibly other potentials
completing the R_o module discussed in the preceding section) transforming together in
an indecomposable representation of e11. In this section we will restrict our analysis to the
linearised approximation, in which case only the symmetry K(F1;) is manifest. Extending
the indecomposable module discussed in the previous section to a non-linear realisation of
FE4 is beyond the scope of this paper, see, however, section 7. The structure coefficients
of the tensor hierarchy algebra described in the previous section will serve as building
blocks for deriving gauge invariant second order differential equations for the fields and an
infinite set of first order duality equations, necessary to avoid infinite degeneracy of the
physical states.

5.1 Twisted selfduality for F1; and field equations

To define the field equations we must consider the coset component of the Maurer-Cartan
form Py, in the gauge (2.22) as in section 2.1. We define the projection to the coset
component and K (e11) from the projectors

1
PEO/D’O ) (5§§ e H%%M’YO/J’O) ) (5.1)

respectively, which are defined from the e¢;; Cartan-Killing form kP and the K (e11)
invariant bilinear form on ¢,

MMONO = \/§ dlag(gmn7 Imini9manss 9ming * gm5n57 v ) ) (52)
with My, g, related to My, n, through the relation®
MaoﬁoDﬁo MONO - ﬁaoﬁoMNoPOMNOQOD/BO POQO ) <5~3)

*Tn the case of GL(d)/SO(d), equation (5.3) is the following statement. Fundamental indices M cor-
respond to standard vector indices m = 1,...,d and adjoint indices ap = 1,...,d? correspond to pairs
of fundamental indices ™, as on the generators K™,. For a symmetric matrix M™" constructed from
the fundamental representation, the corresponding symmetric matrix M™, ™2, in the adjoint is then
determined by M, ™2 ,,,05200, = Ongt 02 Mppy M™4(6426%,,) to simply be M2 M, n,. Another way
of understanding this equation is to note that the fundamental and its conjugate anti-fundamental repre-
sentation are related by the Cartan involution.
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and the inverse of MMoNo ig denoted by M MyN,- One can define the Cartan involution such
that g™ = n™", the SO(1,10) Minkowski metric, but any matrix conjugate to My, n, in
Eq1 defines equivalently a K(Fj1) subgroup, and we shall chose ¢"" to be an arbitrary
constant background metric. We want to keep a general constant metric gp,, to exhibit in
the following that the density factor in det g will come out correctly. With respect to the
projectors (5.1), the coset component of the ej;-valued Maurer-Cartan form (2.10) satisfies
Py Py, = Py, and P_Pyy, = 0.

In the linearised approximation, the coset component of the Maurer-Cartan form Py,
is simply the derivative of a Lie algebra element in the coset component:

1
Puy = §8MO (Aaot%) ) (5'4)
where the normalisation is chosen for convenience, and where
PP, A =0 (5.5)

ensures that A,,t* lies in the coset component. This is not a gauge condition on A,;
fixing a K (F11) gauge determines how the components of A4,, are expressed in terms of the
potentials in a gauge-fixed representative of the E11/K(F11) coset element. Parametrising
the Fq1 coset representative in the parabolic gauge (2.22) leads to the linearised Maurer-
Cartan form

1

1
3‘An1n2n3En1n2n3 + 7An1...n6En1mn6

gE_laMogE = 8]\40 <90annm + 6'

1
+ ghnl...ng,mEnlmn&m + .. > ’

1 1
= Pur, = O, <2habKab + ﬁAa1a2a3 (E710203 | [010203)

1
26!
Note that for e¢;;, the Killing form permits the interpretation of Py, as an element of
degree p = —2. Doing so we can identify the field A,,t* with the potential A%t,, at
degree p = —2 according to the discussion of section 4.1. In terms of (4.30), one obtains

+ Aal...ag (Ecu...as + Fa1...a6) + .. > . (56)

P, by substituting to the components of ¢*°

1 1
A+ = 7An1n2n3 ) A+ = 7An1---n6 ’

ninans 2 ni...Nng 2

1
nin2n3 _ — Nip1 ,N2p2 ,N3P3
AT = 29 g A paps

and similarly for all higher level fields, and

1
qul...ne — §gn1p1 . gnspGApl...pG , e (57)

1 1
h;;n = §hmn == §gmpgnqhqp . (58)
The gauge transformations for the fields are then obtained from (4.34) by summing the
contribution from AY , .. ... and their conjugate gn,p, Gnops Gnsps A2, ..., and similarly
for h,™ by summing (4.34) and its transpose, so that
o=h =0ZhT +6ZntT, SzA=0ZAT +06ZA, (5.9)
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in agreement with (2.31). In order to be consistent with the K(ej1) transformations, the
gauge transformation of the field X must also be modified. To do this we observe that 62 AT
and 62 A~ are obtained from one another by exchanging djs and EM and by lowering and
raising all indices using the background metric gn,,. We will therefore consider that the
gauge transformation of the field X“¢ is also modified in the same way, i.e.,

52X =0ZX + 02X, (5.10)

understanding that 62 X is obtained from 02 X by exchanging the 0y and the ZN and
raising and lowering the indices with ¢,,,. For example, one has

0=Xay a9 = 248[a1)\a2,.,a9] + 248[a1~~a8§a9] + O<4,4) . (5.11)

To define field equations for the Ey1/K(FEq1) fields h, A and the additional fields X%, we
need therefore to define in some way the equivalent of the projection to the coset component
for the additional fields X, consistently with the gauge transformation (5.10). Note that
if the assumption of the previous section about the reducibility of these modules were true,

(()1> module

one could consistently truncate the coordinate dependence to the one in the t,
and the additional fields to X! in t(lo) only. In this section we assume indeed that one
can set the coordinates in tél) to zero, whereas the second condition is not essential in
the following. This simplifying property would nevertheless be very desirable to define a
minimal extension of the E1; paradigm.

We shall define the physical K (e17)-covariant field strength from the projection to the

coset component of the field strength defined from the tensor hierarchy algebra F; as follows

Gr = M0 00 A” = 0001 00y A + D Mo 10X (5.12)

i>1

where we define for convenience A% = (A%, X“). More schematically, one can obtain all
the components of G; using (4.36) with the above substitutions (5.7), (5.8). Defining the
expressions (4.36) as F[A™,h*, AT X], one can formally write that

Glh, A, X] = F[A, h, A, X], (5.13)

where we avoid writing the dependence in the background metric g, for brevity. The
gauge transformation of A% can be written as

0gA® = (Da)MDNO <8MOENO + MNOpOMMOQoap()EQO) . (514)

The field strength G; defined as in (5.12) is not gauge invariant, even for gauge parameters
satisfying the section constraint. One gets instead

6=G1 = Mo, 1 (D*)No p MPO90 My o O, Do 270 (5.15)

where we used the gauge invariance of F; modulo the section condition (4.13) to simplify
the expression. One can check that this gauge variation does not vanish. This is not
a contradiction because it is indeed expected that one cannot write gauge invariant first
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order duality equations, as we already discussed, since the first order duality equations for
the metric field are not gauge invariant in ordinary spacetime. We shall see nonetheless
that one can define second order field equations that are solved by the solutions to a non-
gauge invariant first order constraint, and which turn out to be gauge invariant in a low-level
truncation. Assuming that this second order equation is indeed gauge invariant, we find that
no higher order field equations are needed in this set-up. In principle, gauge invariant first
order duality equations can be written at the expense of introducing additional Stiickelberg
fields as in [62].

The great advantage of the above construction is that Gy is defined in a representation
of e;1, and as such preserves the level up to the projection applied to the coset fields.
Therefore a component of Gy of gl(11) level £ admits contributions from level ¢4 derivatives
acting on coset potentials of level |¢ — ¢4| only. This ensures in particular that at a given
level ¢, one can only have ordinary derivatives of potentials at level |¢ + %| One can
therefore consistently consider the restriction of the fields to depend on the eleven space-
time coordinates for a given level truncation, without possibly missing contributions from
arbitrary high level fields, as it may be the case in the conventional F1; paradigm.

To define the first order duality equation we need an invariant bilinear form on the
R_7 module. For a finite-dimensional group G, the existence of a symplectic form in a
2n-dimensional representation implies that G C Sp(2n,R) and that its maximal compact
subgroup K C G is a subgroup of U(n) such that there is a K invariant bilinear form in this
representation. These building blocks permit to define consistent twisted self-duality equa-
tions for D /2-form field strengths in dimensions D = 4 mod 4, as one finds in supergravity
theories in space-time dimension four and eight.

Given that the R_; module admits an e;; invariant symplectic form Q7 one can un-
derstand E7; as a symplectic group acting in this representation. Provided that a symmetric
non-degenerate bilinear form M!” exists, one can write a first order duality equation for
the field strength G:

MG, =ql’g; . (5.16)

If R_1 were irreducible under ¢11, it would follow that M 1T existed and was non-degenerate.
Independently of the assumption that the module R_; is irreducible, we shall find evidences
for the existence of this bilinear form in the low level truncation. It may also be the case
that M!7 exists but is not unique; the low level expression we construct in the next section
is inspired by the first order formulation of supergravity. The duality equation relates levels
¢ and —/ in the gl(11) decomposition of the R_; representation since Q! has the reflection
symmetry discussed in section 4.1 and M’ will be seen below to be diagonal.

The equation (5.16) is reminiscent of the twisted selfduality equations appearing in
supergravity theories [10], where M’ includes all the factors in the metric fields and more
generally on the background Fy; /K (FE11) coset, whereas Q!7 only involves the Levi-Civita
tensor. Moreover, M'7 includes the appropriate factor of /9 of the background metric, and
we shall see that it reproduces the appropriate first order duality equations for the various
fields included in our truncation scheme.
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However, the duality equation (5.16) is not gauge invariant modulo the section con-
straint. It would be suitable to have a second order field equation that would be gauge
invariant, and would be automatically solved by any solution to this first order equation
satisfying the section constraint. The tensor hierarchy algebra implies the degree p = 0
Bianchi identity

d*(¢7ta) = QI Mo, 1 N0 5 100, ONe @t = 0 (5.17)

modulo the section constraint. The field A% belongs to the coset component, and the
corresponding field equation must therefore also belong to p. So we define the projected
structure coefficients

fMoao,I = P_IfoaofMoﬂo,] ) fMOOAi,I = fMoai,I . (518)

Because the relevant structure coeflicients of the tensor hierarchy algebra do not involve
the contraction of the indices «, 8 in this equation, it is also true that

QIJfMOa,IfNOB,JaMoaNOAﬁ =0, (5.19)

modulo the section constraint. One concludes that any solution to the first order duality
equation (5.16) automatically solves the second order differential equation

Mo MY 9y,G5 =0, (5.20)

with G; and fMo, ; defined from (5.12) and (5.18). Equation (5.20) is very suggestive of
the second order field equations one encounters in supergravity, and it turns out to be the
equation of motion of a Lagrangian

1
L9 =--GM"G,, (5.21)

uniquely determined by the invariant bilinear form M/, In the following section we
shall determine a K (e11)-invariant bilinear form M7/ that preserves the gl(11) level in
our truncation scheme, meaning that the Lagrangian (5.21) decomposes schematically as
LO ~ —3,|G“D|2 The property that M7 preserves the level is essential for the con-
sistency of the level truncation scheme.

However, we shall find that the second order equation (5.20) is not gauge invariant. The
lack of gauge invariance seems to be related to the asymmetry of the formalism between the
field A0 that is projected to the coset component and the additional fields X% that are
not. We will now describe how this problem can be circumvented at the price of introducing
another algebraic structure.

Following this line of thought, we therefore define the spurious field X, in the conjugate
representation fo. For this purpose we define the indecomposable module R*,, that is
obtained from R_o through the action of the Cartan involution. It decomposes into vector
spaces as R, = @it§0> =11 Bl B lo®. .., but should not be confused with the conjugate
module Ry that is obtained by conjugation and not the Cartan involution. This definition
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ensures by construction that R*, and R_y are identical as K (e11)-modules. The highest
gl(11) component of X,, is X™" it transforms accordingly with respect to ej; as

6Xn1...n9 — 28f[n1n2n3AT_L4-~~n9} + ep1p2p3(' .. ) . (522)

where the terms denoted by ellipses will not be needed at the level truncation we consider
below. We define its gauge transformation as the conjugate transformation 6Z X, such that
in particular

§Z Xmmo — g4plmnseml 4 04, 4) . (5.23)

This gauge transformation is by construction consistent with the indecomposable eq1-
module structure of R*,. So just as the coset projection of A is defined such that its gauge
transformation is d=A = 6Z AT + 62 A™, the gauge transformation of the physical fields
X% are defined such that =X = 62 X +0Z X. We will write o = (Kagp,0%, Xa,) € R,
keeping in mind that R*, is not conjugate to R_o. In particular, one can write the gauge
transformation

5Eg¢§a = (Maﬁ(Dﬁ)QOPO MPONOMQoMo)aNOEMO ) (5.24)

where Mg is defined from the condition that the dependence in the background metric
9mn drops out in this equation. M,g defines the conversion of ¢a to the physical field
M,pAP, but it does not define a K (e11) invariant bilinear form on R_. In the gl(11) level
decomposition, M,g simply lowers all upper indices with the background metric g, and
raises all lower indices with its inverse.

Just like the field strength F; defined from the tensor hierarchy algebra is by con-
struction ej; covariant and gauge invariant modulo the section constraint, we would like to
define a field strength from the potential ¢, in a representation of ¢;; that would be gauge
invariant modulo the section constraint. Although the tensor hierarchy algebra does not
provide such a definition, we shall now argue that one can define such a field strength 7y,
in the highest weight module #3.

For this purpose we observe the decomposition of the tensor product

21®Z2:(£1+€2)@Z3@..., (5.25)

into irreducible e1; representations. The terms on the right-hand side are highest weight
representations labelled by their highest weight, for instance, the first term has Dynkin
labels (1,1,0,0,0,0,0,0,0,0,0). The decomposition into highest weight representations
allows to define a projector HllMoo‘l from ¢; ® f5 to the module f5. To define the field
strength F7, in £3 we would need a similar projector from 1 ® R*, to the module /3. The
projection to f3 is determined by the property that it is a highest weight representation,
with a rank eight antisymmetric tensor of level —% as its highest level component in the
gl(11) decomposition. Checking the highest weight condition on an ansatz of gl(11) level
—%, i.e., one that is annihilated by the action of the ¢1; lowering generator F),, p,p,, one
determines the field strength component

F?’Ll-"ng — ap(h'r_annS,p + an...ngp) o 288[71,111214713”8] o 568[TL1...1’L5AT_’/6n7n8}
4 88[n1"'n7"ph;n8] _ 248P[H1~-"7h;r"8} +0(4,1), (5.26)
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in the level truncation we consider. One computes moreover that it is gauge invariant
modulo the section constraint,

SZF™M s = 00202 \y), (5.27)

up to derivatives that are beyond our truncation scheme. Terms involving & drop out
identically. Based on these observations, we assume that one can indeed define the field
strength Fy, in /f3,

Fr, = 1, M0%0 00 = T, M0%00y g day + T, M0 Oy Xy + DT, M0% 0y X, - (5.28)
i>2

We note that only Hf,\foa and H%Oal are e1q tensors.?’ In addition, we assume that f"h is
gauge invariant modulo the section constraint, i.e.,

6Z Fr, = T, Mo M, 5(DPYNo o My gy MT290 031,009,250 = 0 . (5.29)

This is true up to the level we have checked.
Assuming this field strength F7, in /3 indeed exists and is gauge invariant modulo the
section constraint, one can define the K (e11)-covariant physical field strength

Gr, = 17, M7 Mo Opgy A = T1}10 00, A% =TI}, O A% + > T} 00, X4, (5.30)

« Iiag L«
i>1

where we defined H%[g = I1;, M0 Mg, for convenience. Writing (5.26) as F[A~,hT, AT, X],
one can formally write that

Glh, A, X] = F[A,h, A, X] . (5.31)

As G; defined in (5.12), this field strength Gy, is not gauge invariant, but its gauge trans-
formation simplifies upon use of (5.29) to

659_]1 = H%&(DQ)NOP()&MO (8N0EPO + MNOROMPOQoaQOERO)
= H%g(Da)NOPUaMoaNoEPO . (5.32)

As a highest weight module, f3 admits a non-degenerate K (e1;) invariant bilinear form
M7t and one can define the Lagrangian

1 - 1 15 -
L=L?— §g11MIIJ1gJ1 = _igIMIJgJ - §gI1M11J1gJ1 ) (5'33)

that defines the second order equations of motion

Eo = FM0 M 00, Gy + T M 00, G (5.34)
where
TMy _ M, SMoy 1M
70, = Pﬂoaonll%ov 70, =50, (5.35)

30The Iy, M0 would vanish for i > 2, if the structure coefficients (4.23) were upper triangular.
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We shall prove in the next section that these second order equations are gauge invariant
modulo the section constraint within our level truncation scheme. We therefore conjecture
that one can define gauge invariant second order equations to all levels following this con-
struction, or a generalisation thereof involving possibly additional highest weight modules
in a similar way.

These equations (5.34) are automatically solved by the solutions to the first order
equations

Mg, =allg,, (5.368)

Gr,=0. (5.36b)

It may look rather drastic to set GIl to zero. One can interpret QII = 0 as a K(e11)-
multiplet of gauge-fixing conditions for the field X*'. This is then consistent with the first
order duality equations (5.36a) being not gauge invariant. It might be possible to define
gauge invariant first order equation by introducing appropriate Stiickelberg gauge fields.
We expect that within such a formulation, the Stiickelberg gauge fields would couple these
two equations non-trivially. Note that the identification of the correct physical degrees of
freedom requires the first order duality equation to be satisfied, which does not derive from
the Lagrangian (5.33). This is similar to the situation one encounters in the democratic
formulation of supergravity theories.

We shall now work out these second order equations within our level truncation scheme,
and exhibit that they are indeed gauge invariant modulo the section constraint.

5.2 Explicit field equations in the level truncation

It will be convenient to define the tensors in tangent frame, so we introduce the constant

a

vielbein e,,* associated to the background metric g,,, used in the previous section, with

determinant e = det e,,*. Since the various field strength components have the same number
of indices, we shall use different letters to define them according to their interpretation, as
in section 3.2. At low levels we have

Qal~~-a9,b = \/Eealn1 T eagngebmgn1~-~n9,m )
Qa1--~a10 = \/éealn1 T €a10n10gn1~~-n10 )
gal---a7 = \/gealnl ce ea7n7gn1--~n7 >
ga1a2a3a4 = \/Eealnl te €a4n4gn1n2n3n4 5
Qaung = \/Eealnleagnzembgnlngm ;
Hablb2b3 = \/Eeamenlbl€n2b2en3b3gmn1n2n3 )
@u,b — \/éemaenbgm,n7
,Habl.‘.bﬁ _ \/Eeamembl L engbegmmm% 7
eal...a4,b — \/éenlal . en4a4embgn1n2n3n4,m 7
Habl...bg,c — \/Eeamenlbl L. €nsbgepc gmnl..-ng,p ’

N8 — fgen b g, bs Grims (5.37)
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where the field strengths G are defined in (5.13) with F from (4.36) and G in (5.30) with
F from (5.28). For example, this gives

1 1
ga1a2a3a4 = 48[a1Aa2a3a4] - iablbzAmagag,az;blbz _ Zabl.‘.bsha1a2a3a4b1_“b47b5
1
+ gabl-~~b5Xa1a2a3tl4b1-~~b5 + cee
=70, A RN _ lablng s
ga1...a7 = (Ula; Aay...a7] + ai...arby,ba 2 aj...azbiby T oo+ - ( ] )

Comparing with (3.8) and (3.12), we see that the lowest order terms coincide, but there
are important differences for terms beyond order O(2,2). In our formulation the additional
fields arising from the extension to the tensor hierarchy algebra, in particular the field Xg
and its partners in {9, allow one to define an e;; representation for the field strength, so
that the K (e11) representation defining the duality equation is determined. This implies in
particular that the field strengths preserve the horizontal degree (modulo the projection of
the potentials to the coset component). In (3.8) and (3.12), there are more terms that are
introduced by the requirement of K (e11) covariance (without Xy), that do not preserve the
horizontal degree.

The gl(11) level of the field strengths in (5.37) are determined by their number N
of covariant indices and their number M of contravariant indices as %_11/2, so that
the action of E7; includes the additional factor in the square root of the determinant of
the vielbein. Note that the Lagrangian (5.33) includes therefore the relevant determinant
factor for a Lagrange density. The various lines in (5.37) correspond to different gl(11) level
components (where the level is related to the horizontal degrees ¢ in the vertical degree p =
—1 of the tensor hierarchy algebra as ¢ = £— %) The component N %% is added according
to its gl(11) level. The notation for the various components is in analogy with what happens
in double field theory and non-geometric fluxes [80]; such that G stands for ordinary p-form
field strengths, 2 for field strengths associated to the gravitation field or its dual, H for field
strengths associated to unfolding dualities that involve potentials with at least one column
of nine antisymmetrised indices, and © for field strengths associated to non-dynamical
dualities that involve potentials with at least one column of ten antisymmetrised indices.

In order to evaluate the Lagrangian (5.21), one has to work out the K(ej;) invariant
bilinear form M?” level by level. This can be done using the e¢;; transformations (4.37)
restricted to K (e11) by setting 172" = —gmipP1gnerzgnabse, ... The result is

171 1 1 1
L0 — _2<9'Qa1“_a97b9a1 ag,b _ gQal---amQal a0 | ﬁgar--mgal ar 4 Igar--wgal as

1 4
+ §Qa1a2anla2b - QabeaCC + 67_[&4 [t11¢12a3/"_la4]alaw3 + @mb@a,b

1 7 9
+ I@al"'%,b@al aq,b + ame[almae/Hw}m a6 ng[ma2ma9’b%a1a2...ag],b
1
where the field strengths are ordered with respect to their gl(11) level, starting from level
t= % and decreasing down to £ = —%. The list of terms is exhaustive up to level ¢ = —%,
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whereas we have neglected field strengths at level ¢ = —% that do not depend on the
dual graviton field. Although GL(11) representation theory does not distinguish a specific

canonical field strength among the linear combination of the level ¢ = —% field strengths
H,%!, ©% and ©7*

/Hcal'“ag’b + a&éb’@al"'a8> + ﬁ5£a19a2'“a8}’b, (540)
K (eq11) invariance determines the Lagrangian to depend on them through the combination

9
gH[al a2...a9,bHCL1a2ma9]7b -

1
b
gH al...ag,b,;"[ca1 a8,¢

1 1
+ §®a1...as@alma8 + ﬁ@al--.a77b@alma77b’ (5.41)

in our conventions, which justifies the definition of the field strength H;%' a posteriori. We
refrain from writing out explicitly the additional field strengths ©%, ©7! and ©%2 and their
K (e11) transformations for brevity, because they do not contribute to the field equations
described in this paper.

The K(e11) invariant contribution from the fields G;, in our level truncation scheme
produces a term quadratic in N8, such that the complete Lagrangian (5.33) becomes
11
28!

The relative coefficient is compatible with gauge invariance as we shall shortly exhibit.

L=LD — =Ny a N (5.42)

Note that upon restricting the fields to depend on the eleven coordinates ™ in L, all
the field strengths © drop out, while the contributions from the ‘gradient’ field strengths H
and A become equal to those of the ‘curl’ field strengths G and £ modulo a total derivative,
save for the term containing Q»!, which is the only one that contributes to the linearised
Ricci scalar. After integration by parts the Lagrangian reduces to twice the standard free
Lagrangian in the democratic formulation of supergravity, with the correct normalisation

1 171 1
55 ~ €R(h) — 5 <9‘Qa1~--a9,an1 ag,b __ gQal---amQal aio

1 1
G010 G 4!gal..‘azlgal"'a4> +... (5.43)

We expect this property to extend to all levels, such that each field would get a contri-
bution to its kinetic term from its ‘curl field’ strength and its ‘gradient’ field strength.
Though this Lagrangian produces the correct field equations, it is nonetheless formal. Its
energy momentum tensor involves, for example, infinitely many copies of the same degrees
of freedom through the unfolding mechanism and would therefore require an appropriate

regularisation.
Note that the level ¢ — % field strengths (both g“—%) and Q“—%)) have the
schematic form3!
G-3) = 26(‘”‘%’14(‘“"‘) ’ (5.44)
n>0

31Note that 9"~ 3 is the horizontal degree ¢ = —n derivative, A’ is the degree ¢ = £ — 3 potential,
and G is the degree g = £ — % field strength. The absolute value arises because the coset potentials are
identified for positive and negative ¢, compare with (5.7).
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so only the field strengths of level % >4 > —12—5 have non-trivial contributions up to order
O(4,4). Because the Lagrangian is of the form £ ~ —3,|G¢ D2 =3 _ |G| the
equation of motion for a level ¢ field is of the schematic form

g0 — Z 9= gt—n=3 4 Z 9= g-t-n-3) , (5.45)

n>0 n>0

where the field strengths can be either G or G.

To check the gauge invariance of the equations of motion following from this Lagrangian,
it will be convenient to introduce a set of spurious fields L% in the Lie algebra of K(E11)
and in fo, with the gauge transformation

5L = D*Moy

0

(D1, EN0 — MNOPo My 0, Op, Z0) (5.46)

such that the linear combinations A* = 1(A & L) defined as

1
it = Lt £ L),
1 1
At:ltlazag = 5(‘4&1&2&3 + La1a2a3) ) Afltl,__% = 5(‘4@1“116 + L[ll...aﬁ) 5
1
Xaiao = 5 (Xarag & Lay o) . (5.47)
transform according to (4.34) for Xt and (5.22) for X, The field

strength  (5.13) is  defined by construction using this substitution as
Filht, AT A= X )| =0, Fry[hT, AT, A7, X7 ]|p=0. In this section we shall prove in
the low level truncation that

Ea = fM00 1M 001, Gylh, A, X+ TI0 M 1014, G g, [, A, X) (5.48)
= 2fMo M Oy, Fylht, AT, A7, X
+ 200)0 MO 9y, Fyy W, AT AT, X7+ 0(4,3),

such that the dependence in the spurious fields L drops out automatically. Because the
right hand side is linear in the manifestly gauge invariant field strength Fy[ht, AT, A=, X ],
and F[hT, A, A= X ] it follows from this equation that the second order field equation
is itself gauge invariant in the low level truncation. If the equation (5.48) was valid for all
levels, this would show gauge invariance of the second order equations to all levels.

The fact that (5.48) does not depend on L can be understood in the schematic
form (5.44), (5.45) as the property that the fields ¢’ of opposite level ¢ always arise
with the same tensor structure such that the dependence in L drops out upon using
¢ = (A + sign ¢ L1D). Ignoring tensor structures and coefficients the identity to
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verify is

3 3 3 3
Z o= Flen=3) 4 Z 9-m—3) F(—t-m-3%)

n>0 m>0
— Z o-"=%) (Z a(—m—§>¢<4+m—n>> + Z 9-m=3) (Z 3(—n—§)¢<—e—m+n>>
n>0 m>0 m>0 n>0
_ Z Z a(—m—%)@(—n—%)((b(umm + ptmEm)
m>0n>0
— Z Za(—m—%)@(—n—%>A<|e+m—n|> — %5@) . (5.49)
m>0n>0

This scheme allows a consistent level truncation. We shall now exhibit that the cancellation
of L is indeed occurring for some relevant examples. One computes from (5.42), for instance,
that the equation of motion for the 3-form potential is

1
ga1a2a3 = _aa4ga1aga3a4 + Ba[alag Qag}bb + Sab[al Qa2a3]b + iablbgbg [alazHag]b1b2b3 (550)

1 1 1
+ §3a1a2a3b1b27'lb3b1b2b3 _ ZO (8[a1a2b1...b5,bﬁ 4 38[a1a2b1“'b6>Hag]bl...bg
1 1 1
+ @ (8a1a2a3b1...b4,b5 - 58a1a2a3b1...b5)chlmbsc + Eachagagbl...b4,c®blmb47c

1
+ 48[01Ha4a2a3a4] + 58b1b2%b3a1a2a3b1b253 + ablbz @awzasbhbz
1
4!
+ ...,

1
b1babsbab b1babsbab
+ @77 5H6a1a2a3b1“~b407b5_ ga 17ams 5(Hcalazazsbl"'bs#_Na1a2a3b1---b5)

where the ellipses stand for terms of the form OG- and 9-2GE). To check the
formula (5.48), we compute the same combination of field strengths using the component
expression for F;[hT, AT, A=, X ] and Fj,[hT, AT, A=, X ] to exhibit that the dependence
on L drops out,

-5 _3 _3 1 s
— 8“4}"@132113(14 + 38[a1a2f< 2)a3}bb + 38b[a1f< 2)a2a3}b + iablebg[aWQ}"( 2)a3}b1b2b3

1 S5y byboby L by bsbe | L by 1
+ §aa1a2a3b1b2]:( By, 102 — 40 Aaray 7 + ga[awz 1) F 7)a:s] by...bs

1 1 Dbrb 1 ~T)by..b
+ E <aa1a2a3b1...b4,b5 - 5aa1a2a3b1...b5>f 2(2 1--05¢ + Zaa1a2a3b1...b4,c]:( 2)01---0a,C

_5 1 b1b _Ivh
+4a[a1F( 2)a4a2a3a4] + 58 192 F=3) 3a1a2a3b1b2b3

b1b -z 1 b1b2b3bab, -9
+ 02 F 2>0«10«203b1»b2 + Ea e F 2>Calazasb1---b40,b5
1
5!

b1b2b3bab, -Ye
71727804 S(f( 2) ajazagby---bs,c T ‘Fa1a2a3b1--.b5) +.
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1 b1 abab.
= 40" 00 Ay + 570" Ay sty + 12000, Dazash
1
+ 1285[01&12 hbas] + 66b1b28[b1a1‘4a2a3]bz - §8b1b2a1a2a3ab3Ab1b2b3
1 1 1
- §ab1b2b3[a1a28a3]14b162b3 + @ (aa1a2a3b1mb4’b5 - 58a1a2a3b1"'b5>abGAbl...bG
1 5. bibsbs 18 bibo Vg A
- ZO laraz + § lar1az az]41by...be
1
- éaaulgagblMb4’C (381)11)2 Ab3b4c + acbl Ab2b3b4)
1 3
+ 58111&2&317162 (8b1b2 het — 4acblhcb2) + §ab1b2b3 [a1a2 o hCLB,]b3
1 1
+ EablabQ b6ha1a2a3b1'“b5,b6 - gablal& b6Xala2asb1'--b6 Tt (5'51)

where we write explicitly the level to avoid confusion between field strengths with the same
number of indices.?? The ellipses stand for terms of order O(4,4) beyond the considered
level truncation, and the terms of type 9°(0%Ag + 0° A3 + 97 hq!) and 971 (02hg 1 + 0% Ag +
071 A3), whose dependence in the negative level fields A~ would come from the field strength
derivatives 3% F-2) and 2) F(~2) that we have not included in the Lagrangian (5.42).
(We recall that the notation 97! includes both the derivatives ™! and 9®.) The first three
terms in the equation (5.51) reproduce the ones of (3.37) that we have obtained within the
Fq1 paradigm.

One derives similarly from (5.42) the second order equation for the six-form potential

Eal"'a(a = aa7gal'~~a7 - 158[a1a2ga3a4a5a6] + 158b[a1a2a3a49a5a6]b - 68[a1a2a3a4a59a6]bb

b1b2b ht
= (8a1...aﬁb17b2 - aa1..-a651b2)Hc e

1
+ 78[G1Ha7a2'"a7] + abeg/Hbl a1--agbiba,bs T iablbz (Hcal'"aablb2,c - Na1-~~a6b1b2)+ s

- (58b1b2b3[a1...a4,a5 - ab1b2b3[a1...a5)%a6}

(5.52)

where the ellipses stand for terms of the form -G , DG and 9-2g-),
Similarly one checks that this equation can be written in terms of gauge invariant field
strengths as

997 € 9 -5
Faiar — 150114, F,

azasasag)

_3 b _3 b
+ 15ab[a1a2a3a4]:( 7)a5a5} - 68[a1a2a3a4a5]:( Q)aﬁ}b

— (50 —9 )FC R _ (g — 9 )
bibabslai...aq,a5 bibabslai...as ag) ai...agby,b2 ai...agb1 b

e babs (- 2)b
+ 78[a1]:< 2)a7a2...a7] + 9" F=2) 1a1~~-a561b2,b3

—$)b1b
J’.' % 102¢C

9

1
+ §8b1b2 (f(_j)cal..‘aﬁblb%c - ]:ar“atsble) RIEEE

32For example,

(% n1 ny -5 n1 na
Faiiar = \/Eeal “r€ar Fngemr Fararazay = \/geal “r€ay Fningngng

(*%)b ni no b m (*%) m ninang
Faran = \/Eeal €ay “€m Fning Faiarazay = \/geal €nqaz€ngazCngayFm
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= 7079, A ~ 600005005 A azas] + 600b(ay -, s g

ag-ar)

- 428[a1---a5 aaeh “ — a[CL1 (38a2...a6]b1b2’b3 + 8a2...a6]b1b2b3)Ablbgb3

a7]
b1,b2 b1b2\ 7bs3 b1 ababs

+ (aal---a()‘ _8‘11---@6 )8 Ab1b2b3 +a 8 h‘almagblbg,bg

1

2

where the ellipses stand for terms in 0%(9%2A43 + 0°hy* 4+ 971 A3) that get contributions from
92F % and similarly for 9 F—%) and 971 F %), Note that Xg appears explicitly in this
equation, and its gauge variation in 0j Ag is necessary for the equation to be gauge invariant.
Let us finally give the Einstein equation R,® — %(527300 = 0 through the Ricci tensor

10725 X acbibabs + - - - (5.53)

1 1
Rab = 26[ancc] + QO[QQch} + 5861027'[(1176102 - 66101;"[02bc1C2 + 5801027_[1)@6102

1
bey...cad
8acl...04%d cL-ca

1
- abq HC2aClCQ + 552801027{03616263 + aac@b’c + abc@a,c - Z

1 1 1

- 8bclmc4”dacl...04d - gacl...%;iaqu% 5'8(;1...057_[17&01“.05
8 1 1 o 9 G
6'62801...05Hd61m65d+ T|8acl...C4@CI'HC47b 4[61)61“'64 c1...c4,Q O( “d (7%))’

(5.54)
which can also be written in terms of gauge invariant field strengths as
f f 1
28[bf<7%)acc] + Qa[a}‘(ig)bcd + 5861027_.(7%)(1{)6102 - 8(101;(7%)021)8162

1 5 5 1 5 5
+ 5861‘32]:‘(75)1)%102 - 81)61;(7?)62(161@ + *5bac102]:<7§)c3616203 + aac‘/_"(ij)b7C

3(1

(7§> 1 (71) 1 7
+ 0" Faet — Baaq...a;]: 2 beread Eabcl CFCDD 0 end
1 -5 1 7 8 -1
o 71861~~~C5f 20L bercs _ 7801..@5./—_-( é)baq...q’, + *52801...65-? 2d c1esd
1 z 1 - 9 9
t J70aer e FORA Y ST B+ 00T P FR)

1 1
= 40,0 h g + Oaey e, A2 — 5aaamAbClC? +OP92A,, . — 58"80102/1@0102
1
— gagaﬂ O A, ew + 0acy 0P he,” + 0" 0y 0y 12 — 204c0" g — 000" hy"

1 1
+ 5861626"’10%,11’ + 653 (400c0%hy® + 0y 02 hyg™) + ..., (5.55)
where the ellipses denote terms that involve at least one derivative of type 8° or lower level.

The equations of motion of the dual graviton hg; and Xy are

Rayasp = 0% (Qaycagp — Qay-aglblas]) + 89¢b,arGaz-as> — 100¢b.a1--asGa5-as>  (5-56)
+ 98[G1Ha9a2-~~a9],b - 8b/Hca1-..a87c + a<b,Na1---as> +..
b
R[al-nag] =0 (Q[a1~--a8|b|,ag] + Qa1'~~agb) + a[alNag...ag] - 4a[a1a2ga3~~~ag]
+ 148[a1,_,a5ga6,_.a9] + ...
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The ellipses stand for terms in §-3G-3, 9-1G-% g-HG-H) 9g-HG*H) that are
not determined at this order. One checks using the same argument that these equations are
indeed gauge invariant modulo the section constraint. Note that in this case the dependence
on Xy is very important, and the gauge transformation of Xg into both d;\g and 9%¢! is
required for the gauge invariance of the equations of motion to be satisfied in this level
truncation. We stress that the terms in A® are crucial for the dependence in Xg to be
consistent with gauge invariance. This concludes our computation that the second order
equations of motion deriving from the Lagrangian (5.42) are gauge invariant within the
level truncation that we consider.

As explained in the last section, the solutions to the first order duality equations (5.16)
solve automatically the second order equations (5.34) modulo the section constraint. We
shall now discuss in more detail the equations (5.16) within the gl(11) decomposition. One
derives in this case

1

by-++b
ga1--~a7 = ggay"a? ! 4gb1b2b3b4 )
_ 1 b1---b7
ga1--~a4 - 7'50,1 ‘ay4 gbl b7y
0 _ 1 c1co 0 d 15d 0 c3
ay-ag,b = _§5a1---a9 TIbd c1c2 + g c13beaces 5

1
Qamz + 5[a1Qa2]cC:§5a1azcl cgﬁbdchmcS;,da

1
Qb = @gabl P00, by s (5.57)

that transform indeed together with respect to K (e11) as

1
6<ga1v--a4 + ﬁ5a1-~-a4b1 b7gb1~-~b7>

1 1
_ 6Aa5a6a7 <ga1---a7 — agay--cwbl b4gb1b2b3b4>
1 S
— 6Ab[a1a2 <Qa3a4]b o §8a3a4} ' gnbd(chmcg’d B ch~-~69d)> (558)

and
c 1 c1--cg, bd
o Qalag + 5[(1190,2]6 - ggalaz n Qc1~~-cg,d
1 1
= iAbCIQ <ga1a201cg + ﬁgalazclcgbl b7gb1---b7>

1
5[(11 Acic2cs <ga21010263 + ﬁgaﬂclq%bl b7gb1-~-b7) (5.59)

1
beic b cicod
(Haz} 12— 105a2]Hd 1 ) B 10

The other field strength components H are related by duality to fields that we have not yet

+A Ac102035[a1H }616263 +Aa1agc®b7c+

cicalar

considered in this level truncation, and we shall discuss them separately below.
One can then check explicitly the Bianchi identity (5.19) explained in the last section,
such that these first order equations defined for the coset component, even if not gauge
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invariant by themselves, solve the second order equation at the considered truncation level.
So that upon using the duality equations, (5.50), (5.52) and (5.54) vanish automatically up
to the section constraint:

1
5a1a2a3 = §5a1a2a3b1 bs (88b1 QbZ.‘.bS - 8590(2;,1.‘.1,9,5 + 66b9b109b1..‘b10) =0,

1 1
8a1~~~a6 = gsal.“aﬁbl bs <58b1 gbz---bs + §8b6b79b1...b7

1oy 1oy
+ Ia”6 P9 by — gabb blOle...bl(J) =0

1o
€. Qeyeyy =0

10!

1
Rab = —ngacl €10 <10801902'-'C107b - 9ab961“'010> +

(5.60)

Let us finally consider the equations of motion for the dual graviton, defining for convenience
Rai--asp = Ray-agb + Ray--agp, that accommodates both hg 1 and Xy,33

Raiagd = o (Qa1~~ag,b — Qa1~~a9b) + 88(,[(“9@2...,18} — 128[ba1ga2...a8] (5.61)

—700a;--a19as5--as) + 840bay--asYas--as] T - - -

1 1
= _éeal---agclc20377bd <3861 QCQng - adC4 gClCQC364 + §6g1 80405 g02630465
1

4]

2
adC4---c7gClmC7 + g5él1ac4---cgg02m08 + ... > =0,

which is indeed automatically solved by the solution to the first order duality equation (5.57)
modulo the section constraint.

The gravity first order equation for the graviton and its dual are not gauge invariant,
even when restricting the dependence of the fields to the eleven coordinates ™. In ordinary
space-time, this problem is resolved by considering the second order duality equations for
the linearised Riemann tensor:

1
B[bl Qa1a2b2] - ggalazclmcga[blaclhCz---097b2} ) (562)

from which one checks that X, o, decouples. This was also observed in the work on
dualised gravity at the level of the gauge invariant Riemann tensor rather than the spin
connection [60, 61]. Generalising the Riemann tensor (rather than the Ricci tensor) in
exceptional geometry is known to lead to ambiguities [24, 29| and we do not expect the
above equation to be part of a gauge invariant K (e11) multiplet of well-defined second order
duality relations.

By construction (5.62) implies the standard equation of motion for the dual gravi-
ton field

168[a18[bha2...asc],c] = 07 (563)

33Where we do not write the field strengths of level £ = —9/2 that are dual to field strength of level
£ = 9/2 that are neglected in our truncation scheme.
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however, the second order gauge invariant equation (5.56) implies instead
9% (9a[a1ha2~~~a9},b + ab)(ar“ag) =0, ab(a[m hag“'ag],b + a[a1Xa2~--a9]b) =0. (564)

Note that these equations are gauge invariant thanks to the variation of the field X4, ...q .
Using the first order constraint, and the property that Qg 4,4,) = 0 when the field depen-
dence is restricted to the eleven supergravity coordinates, one obtains the space-time gauge
invariant first order constraint

Qal..‘agb,b = ab (hal...ag,b + Xal...agb) + 88[a1 hag...ag]b,b = 07 (565)

which can be used to get back the standard second order field equation (5.63). Together
with the constraint N'® = 0 from (5.36b), this equation imposes the constraint that the curl
of the trace of hg; vanishes as a (partial) gauge-fixing condition. This is consistent with
the interpretation of (5.36b) as a K(ej1)-invariant gauge-fixing condition. Note that this
situation, where the constraint is compatible with K (e;;) invariance, is quite different from
the problematic case of the gauge-fixing condition encountered in the original formulation
of the theory, for which we showed that there was no K(e;;) multiplet of gauge-fixing
conditions compatible with the vanishing of the nine-form Xj.

5.3 Unfolding dualities and non-geometric fluxes

We shall now extrapolate these results to higher level. At level £ = 4 there are three
additional ey fields: Ag 3, Bio,1,1, Ci1,1 and two additional fields in the 5 module: Xig2
and X117 (4.14) (all understood to be in irreducible representations of gl(11) according
to the displayed symmetrisations). Using the tensor hierarchy algebra one computes the
following field strengths,

Hmu.mo,mpzps = 106[n1(‘4n2---n1017p1p2p3 + X”Q---nl()][PhPQPBJ]) - 128[n1Xn2...n1o][p1p2,p3] )

@nl...nn,m,n = lla[nang...nH],m,n + a(m(cnl...nu,n) + an...nu,n)> . (566>

Note that the indecomposable character of the e representation is such that X111 is only
defined modulo an arbitrary shift in C1,1, and we have used this freedom to cancel the
contribution of Cj; 1 in Hip3. One can anticipate using the conservation of the level that
there is a duality equation of the form

<7—[ biboby }5[1717_[ b2b3]c>
a 3 a C

1 2 1
= —¢£,“! cmnbldlandangds <H01~--010,d1d2d3 + 3/Hc1-~~09[d1,d2d3}010> (5'67)

10! 3
such that Ag 3 is the field dual to the gradient of A3. Properties of the tensor hierarchy
algebra suggest that this structure extends to all levels. A potential Ar at gl(11) level
n for n > 1 transforming in an irreducible gl(11) representation can contribute to a field

strength component at level ¢ = —% —n in R_; obtained by acting on Ar with the usual
derivative 0 at level £ = —3. At the same time, for each irreducible gl(11) representation
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carried by Ap of e1; at level n > 1 there is a gl(11) highest weight representation (with
outer multiplicity at least one) obtained by tensoring Ar with the nine-form representation
at level n + 3. This is true since one can act with the affine subalgebra eg on any of the
generator and adding a block of nine antisymmetric indices corresponds to adding the affine
null root at level £ = 3. Applying this to the standard fields one generates all possible fields
dual to their gradients |7, 20, 23]. This is also consistent with the fact that the symplectic
form defines duality equations between level —% —n and level —% + n + 3 field strengths.
One can also anticipate a first order duality equation of the form

@al,..au,b,c = 5a1...a1177bd7766@d’6 . (5.68)

For a solution to eleven-dimensional supergravity depending only on the coordinates =™ the
field strength ©! vanishes, so that the field strength ©11,1,1 must vanish as well, or more
generally be pure gauge (since the first order duality equations are not gauge invariant).
We expect in this way that solving the duality equation for a solution to eleven-dimensional
supergravity will impose that all the fields with more than nine antisymmetric indices will
all be pure gauge. Such fields should nonetheless contribute non-trivially to non-geometric
backgrounds. Let us illustrate this through the example of a Romans mass in type ITA.34
According to [84], the Romans mass can be generated through a linearised metric

h' = ho' = my110, (5.69)
where 9110 is a component of the level % extended coordinate ¥, such that
O = m (88,88, — 636%) . (5.70)

In this case one will get a non-trivial Big 1,1 field, corroborating the observation that this
field should define the ten-form in massive type IIA.35 Note that the presence of the ad-
ditional fields X192 and X111 allows one to write gauge invariant second order equations,
eliminating the problem of having to consider arbitrarily high order equations for arbitrary
high level fields as was proposed in [6].

It is interesting to compare our field strengths with the standard chain of NS fluxes
obtained by recursive T-dualities [80, 88]. Considering the reduction on a circle along the
z'0 direction, one can identify the NS fluxes with the field strengths

Hnln2n3 :gnlnz'rLglO ) fnmzm :inn2m ) anlm :Hmnmzlo ) RrMTens :@n1n2n310,10 .
(5.71)
To conclude this section, we shall analyse briefly the decomposition of the field strength
representation I2_; with respect to the branching gl(4) @ e7(7y C e11. Considering the field
strengths with all indices along s[(7) associated to a generalised torus one identifies

g77 g4) QQI) nga @1’17 Hlﬁv 64’15 @672) @7’17 @7,47 @7’7 €912 (572)

34For previous work on massive type IIA in connection with Kac-Moody symmetries see [$1-83].

35Note that ©11,1,1 cannot have an SO(1,10) invariant solution. This is consistent with previous obser-
vations that the potential for the Romans mass only appears after breaking the GL(11) symmetry as a
particular component of the Bio,1,1 potential [137 83, 85]. This non-covariance also arises in attempts to
defining an M9-brane ancestor of the D8-brane coupling to the Romans mass [86, 87].
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that reproduces all the components of the embedding tensor representation in four di-
mensions [72, 89-91]. The field strengths with one index u along R and all the others
along sl(7)

Gu6, Guzr Uty 1y, M € A ® eqr (5.73)

reproduce all the components of the conserved e7(7) current. The field strengths with two
indices pv along RY3 and all the others along s[(7)

Q/,Ll/7,17 g,uzzEn g,Lu/2a Quul S A2 ® 56 (574)

reproduce all the components of the Maxwell field strengths. One can then straightforwardly
check that the duality equations (5.57) restricted to these field strengths reproduce the
twisted self-duality equation satisfied by the Maxwell fields in N/ = 8 supergravity [8] in
the linearised approximation. Using moreover the ‘reflection symmetry’ of the algebra, this
implies that the branching of the representation R_; with respect to gl(4) © er7) C e
includes among infinitely many other representations

R1= (A ®912) @ (A1 ®er(r) @ (A2 ®56) © (A3 @ err) © (A4 ®912) @ ... . (5.75)

One can therefore anticipate that the first order duality equation (5.16) reproduces the
twisted self-duality equation introduced in [10], including the two-form potentials and the
non-dynamical 3-form potentials appearing in gauged supergravity [91]. Considering the
potentials up to level 8, one finds indeed the set of three-form potentials [89, 90|

(1) (2) (3) (4) (4) (5) (5) (6)
Auua? A;u/cr?ﬂ hm/05,17 Am/a6,37 B,Lwcr7,1,l7 A}Ll/0'6,67 B,ul/a?,4,l7 B,Lwcr7,6,27
(6) (7 (8)
B,uuo?,?,l’ Buuo7,7,47 B,ul/o?,?,? € A3 ® 912’ (576)

whose curl should appear in the four-form field strengths in A4 ® 912. Note moroever that
the non-linear field strength defined from the coset component of the Maurer-Cartan form
should naturally inlude couplings allowing for the interpretation of the fluxes in Ag ® 912
as non-abelian gauge couplings.

6 Type IIB

The section constraint (1.1) has two well-known solutions. The first is to consider only
the eleven-dimensional coordinates ™ (with m = 0,1,...,10) and relates the equations
above to D = 11 supergravity. The second is the type IIB solution where one retains the
coordinates x* with p = 0,1,...,8 and the coordinate yg1¢ that is interpreted as the T-dual
of the ninth spatial direction of D = 10 type IIA supergravity. It is not hard to check that
any fields depending on these ten coordinates satisfy the section constraint (1.1). In [47]
it was shown that for E; with d < 8 these are the only two inequivalent solutions of the
section constraint.

In this section, we will analyse the first and second order field equations that result
from our tensor hierarchy algebra analysis from the point of view of the type IIB solution
to the section constraint. Type IIB has been discussed in an FEp; context in [44, 85, 92|
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with correspondence between the two level decompositions given in [13]. A discussion of
the non-linear realisation of Ejp in a type IIB language was given in [93] and connections
between exceptional field theory and type IIB supergravity can be found for example in [24,
28, 45, 94-96|. Level decompositions of ¢;; for different subgroups GL(d) x F11_4 have been
mentioned for example in [89, 90, 97].

The type IIB solution of the section constraint means that we only retain the following
derivatives:

O (p=0,...,8) and 90 =0y, (6.1)
where Jy denotes the derivative in the ninth spatial direction in type IIB supergravity.

6.1 Level decomposition

We consider the decomposition of e1; under its gl(10)@sl(2) subalgebra obtained by deleting
node 9 of its Dynkin diagram shown in figure 1. gl(10) then is further decomposed into
g[(9) that is common to both type IIB gl(10) and M-theory gl(11) and corresponds to a
further removal of node 11 from the diagram, while keeping the s(2) associated with node
10 manifest. The representations are listed in table 5 and are bi-graded where the level ¢y
is associated with node 9 and the Kaluza-Klein level fki is associated with node 11 and
the reduction of type IIB from D =10 to D = 9.

The connection to the gl(11) decomposition of table 1 is that the level fxk corresponds
to the level presented there and from this one can immediately read off the connection
between the fields in the two theories. For example,

Appops = Cpipaps9 (6.2)

etc. We note that the decomposition of the fields in D = 11 also generates terms that are
not listed above. For example, there is a component

hul...us,i (63)

of the D = 11 dual graviton that would arise at level ({115, /kk) = (5,3) in the table above
and that we have truncated away.

In this section we are using the following index convention. Greek (curved) indices
i, v, ... liein the range 0, 1, ..., 8 and label the common gl(9) of type IIB and M-theory. The
tangent space indices of SO(1, 8) will be denoted by «, 3, . ... We treat the direction 9 that
corresponds to node 11 of the Fq1 diagram separately. Indices i,j = 1,2 are fundamental
indices of the global sl(2) of type IIB (and should be thought of as corresponding to the
directions 9 and 10 in the M-theory frame).

We note that the equations that we derived in the previous sections covered at most the
generators in the algebra up to level fxx = 3. Inspecting table 5 we see that this does not
cover all possible components of some of the ‘physical fields’ of type IIB theory, that include
all the fields of the type IIB supergravity and their duals, including the dual graviton. For

1B

1w Of the type IIB dual graviton occurs at level fxk = 4.

example, the component h
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Level /11 | Level fkk | s[(9) @ s1(2) representation Field

0 (1,0,0,0,0,0,0,1)(0) hiBY

0 0 (0,0,0,0,0,0,0,0)(0) hiB9
0 (0,0,0,0,0,0,0,0)(2) bi.;j
1 (0,0,0,0,0,0,0,1)(0) hiB?

. 0 (0,0,0,0,0,0,0,1)(1) Bio
1 (0,0,0,0,0,0,1,0)(1) Biw

) 1 (0,0,0,0,0,1,0,0)(0) Cipnpiz9
2 (0,0,0,0,1,0,0,0)(0) Chy.ia

; 2 (0,0,0,1,0,0,0,0)(1) By .59
3 (0,0,1,0,0,0,0,0)(1) Bipy s
2 (0,0,1,0,0,0,0,0)(0) WP 1699
3 (0,1,0,0,0,0,0,0)(0) W o

4 3 (0,1,0,0,0,0,0,0)(2) Dijpun ...
3 (0,0,1,0,0,0,0,1)(0) O e pr
4 (0,1,0,0,0,0,0,1)(0) W s
4 (1,0,0,0,0,0,0,0)(2) Gi s

Table 5. Level decomposition of Eq; under its gl(9) @ sl(2) subalgebra described in the text. The
i-index is a fundamental index of sl(2) while the u-index is a fundamental gl(9) index. The index
9 indicates the ninth spatial direction that is used in the duality to M-theory. The level fki is
identical to the gl(11) level £ used in table 1.

6.2 First order field equations

We begin by studying the first order equations that were given in (5.16) and (5.57).

From the decomposition tables one can deduce (up to numerical factors) the following

identification of type IIB potentials with potentials of the M-theory gl(11) decomposition:

Cu1u2u39 = AM1M2M3 )
Boi = €jih,’

BM1"'M59i = AM1~“M5i )

hiPY = A1,
héIBQ — _Zhiz’ 7
with 8910 = 99 and

1IB A

_ IIB
p1- 69,9 = h 9

M1 p6 B 6 T
as well as

1IB

_ i .
=% hyy i

Cltlu2u3u4 - _AM1H2M3H49107
Biuipai = Apypisi
By i = =Py 910, 5

1.
BBV =y 6
. o

¢/ =hi! — §5§hkk,

IIB

p1epe9y —hpy 9100

ay-ar9 — Xa1-~oz7910
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for the additional field arising in the tensor hierarchy algebra. We have fixed the numerical
factors in such a way that the subsequent equations become canonical. The notation above
introduces a superscript ™® for the metric h and its dual and for the trace component X
that is introduced by the tensor hierarchy algebra. For the gauge potentials in type IIB
we have employed the more standard notation B,,,; for the doublet of two-forms (and their
duals) as well as Cy, .., for the four-form.

The reduction of the field strengths (5.13) can then be computed where we retain only
the ten derivatives d,, and dg as dictated by the type IIB solution of the section constraint.
Using the mapping (6.4) one computes the reduction of G, m, as

gal...a4 = 46[04 Ca2a3a4]9 + a96’0{1042043044

= 5a[a1 Ca2a3a49} )
galagagi = 36[(11 Bazag]i ;
Gara2910 = 20, by (6.5)

We have converted the field strength into tangent space indices. For the seven-form field
strength the tensor hierarchy algebra construction gives

Gon.or = T, Mo aii0.0 — O0hlY g — Do XU g
= 88[&1}‘25...@79],9 — DXy, an9 >

Gai...asi = 600, Bay..ag)9i T 09Ba, ...agi
= 7010, Bas...ag9i -

gal.‘.a5910 = _56[04100(2...0(5] . (66)

Let us finally consider the level ¢11p = 5 field in the type IIB decomposition associated to
a gradient of the B-field:

1I1B
hal.“cwi,ﬁ = Bal...a79,ﬂ9i7 Xa’l---Oési = a1...a89,97 - (67>

The duality equation for the dual graviton in (5.57) gives in this decomposition

1
daBpyi = g%m"%g(8371372“.789,,892' + 95X 0 0.0i) - (6.8)
Note that €, g, also includes terms in 8910Aa1...a8i,5910 and 8910Xa1...a85i,910 that must
restore SO(1,9) C K(E11) covariance, since the field strengths we have defined belong by
construction in the module R_;. We conclude therefore that the type IIB equation should
take the form

aaBlnbzi = agaqmcg (gacchz-ncs),blbﬂ + 28[51|Xg1].3..cg,|b2]i) ) <6'9)
where the indices a, by,be, ...and cp,co...run from 0 to 9 of SO(1,9). This equation is

indeed the expected unfolding duality equation, as we were anticipating in (5.67), such that
Bg ;i is the field dual to the gradient of the field By;, and the field Xéf‘fi is necessary for
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the divergence of By; to do not vanish. Similarly as Xg in (5.62), the dependence in X§'7;
drops out in the second order unfolding duality equation

3
Eacl...098616[b1Bczmcg?blbz]i . (610)

380,8[171 Bbz bg}i = g

This corroborates the proposal that the (d — 2)-form fields satisfy to first order duality
equations realizing the unfolding mechanism [23]. The field X/ . arises naturally as
the general allowed total derivative when integrating the second order duality equation to
the first order constraint (6.9) [23].
The constraint Gy, = 0 of equation (5.36b) also gives Lorentz invariant gauge-fixing
constraints for the field X*!
Noag1o = =07 ago 5 = 0°hit ago0 — 07 X070 = 0.,

aq--ag9, aq -9,

Noy..azi = 85(Ba1...a79,69i + X(I)}?...aﬂg,gi) =0. (6.11)

Let us now carry out the same analysis in the original F1; paradigm, using the defini-
tions (3.8). One finds the same decomposition of the four-form

gaEllT..ou; = 48[&1 Ca2a3a4]9 + 890041&2043044

= 56[&1 Ca2a3a49} 3
E
gozlnagozgi = 36[&1 Bagag]i 9
5111042910 = 26[(11 hng]g ) (612)

as in (6.5). We have added an additional superscript “1 for the Fj; quantities in order
to distinguish them from the field strengths defined using the tensor hierarchy algebra.
However, for the type IIB version of the seven-form field strength (3.12) one obtains instead

GIn o = T0p, HLD

az..aq]9,9
gfll%..aﬁi = 60|a, Bas...ag)9i T 99Ba..agi + €7 00hay. agis”
= 7010y Bo...00)i + €7 Ooha..anis,” s
gfllf..asglo = —=50/0, Cas...a3) - (6.13)

These expressions clearly differ from the ones in (6.6). Looking at the type IIB reduction
of the duality equations (5.57) for the tensor hierarchy algebra (or the identical in this
truncation (3.24)) one sees that only the tensor hierarchy field strengths (6.5) and (6.6)
give the correct duality relations for type IIB gravity. Without the inclusion of XJP ., o
in (6.6) the duality equation for the dual graviton is not Lorentz invariant, since the field
strength GEM | is a (7,1,1) tensor, instead of an (8,1) tensor of SO(1,9). One gets also

an extra contribution to the 7-form field strength in (6.13) involving
thal...ozng,'B = aQBal...a5ﬁ9,ﬂ9i . (614)

If one assumes that the dependence in the field A,, . qgi8910 With the correspondence

Ba,..as9,89i = Aay..asi,5910 » (6.15)
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restores SO(1,9) invariance, one concludes that the type IIB seven-form field strength
should be

1
gtlllf..cwi = 78[&1 (Bag...cw]i + §Ba2...a7]clc276162i) ) (6]‘6)
such that an appropriate identification of the fields would require a non-trivial change
of variables. However, this does not explain the lack of Lorentz invariance of the dual
graviton equation, and one may expect to encounter an obstruction in trying to extend

the construction of the K(ej;)-multiplet of first order equations as in section 3.2 to the
next level.

6.3 Second order field equations

We now turn to the type IIB frame analysis of the second order field equations (5.34)
as derived from the tensor hierarchy algebra. The various components of the equations
decompose as

Earanas = =0 (4010, Cay-ag)o + 09Ca1as)
Earasi = 3030, Bayag)i + 0 (09Bayasi + 200, Bas)oi) »
Earazi = =0 (600, Bay-ag)9i T 99 Bay —agi)
Ear01910 = —59%0)0, Coyeas] — 0” (400, Cagara]9 + 09Cas 0
Ro' = €707 (09 Bag; + 20/ Bplo;)

Ea910 = R™,7,
. 9
Rij — D¢i] _ 552R11B997
1
R =R"™. P + 5553731“399 . (6.17)

The full 6-form equation &, o4 requires more care because we miss some components of
the dual graviton in type IIB that would contribute starting from level kg = 4 that has
not been derived. By evaluating the derived contributions one obtains

Earas = 8090 W2 5.9 — 000 X7 (6.18)

ap-ar9

This is not the standard form of the type IIB dual graviton equation®® but it coincides
nonetheless with the 11-dimensional supergravity equations (5.64). It can be reduced,
analogously to the discussion at the end of section 5.2, to the standard equation upon use
of the first order duality equation.

7 Comments on nonlinear dynamics

In this paper we have put forward a proposal to extend the E1; paradigm that solves some
of the problems of the original formulation that we have exposed. However, this proposal is
only defined in the linearised approximation and it is natural to ask if it can be generalised
to describe the complete non-linear dynamics. The first difficulty is to define a non-linear

%This would be 169,90 h1> .5 7 = 0.

O‘l"'O‘GB
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realisation that would reproduce the same indecomposable representation of K (FE11) in the
linearised approximation. Because the field A% is naturally valued in R_o rather than
Ry, there is no obvious way to define the non-linear realisation from a coset construction
T11/K(FE11) where T17 would be a group associated to the Lie algebra t;;, which is the
p = 0 part of the tensor hierarchy algebra.

Starting from the E71/K(FE11) non-linear realisation, it seems natural to start with the
F1 covariant quantity

Ity = 9EPM G5 - (7.1)

and to write the nonlinear field strength as

Gr =2f 00 1T0," + D M0, 1 Vi X + O(X?), (7.2)
i>1

where Jp,“° is the standard K(F7;) invariant current defined above, V4, is an appro-
priately defined K(ej1) covariant derivative, and the last term stands for some possible
non-linear terms in the additional fields X“¢ and their derivative. The connection part of
Vi, is not fully determined by the theory.

Since the representation t(lm of X is in the antisymmetric tensor product of two copies
of t(ll), one expects that the covariant derivative Vj;, X*! should be uniquely determined
by consistency from the covariant derivative relevant to define the gauge transformations
at the non-linear level V,, =0 as in (2.30). Note, however, that the definition of the latter
is already lacking in the original F1; paradigm. This problem is due to the fact that there
is no unique torsion free connection in exceptional geometry [28, 29, 98-100].

Defining these equations precisely is beyond the scope of this paper, but we would like
to discuss this proposal at low level to see if it has any chance to work in the first place.
Assuming that the field strength (7.2) can indeed be defined such as to provide a non-linear
realisation of Fj1, one may wonder if the Lagrange density (5.33) gives the correct field
equations at low levels.

At low level one can forget about the fields X and write the field strength Gy in terms
of the Ey1 left-invariant momenta Pj, as

H 1020 = \Jee, e, en262en3b3 < — (O + Ap pym0P1P2) AT171213
+3gP "l g,, + ;gp["lf%"’@"‘”’]quq)
Ooras’ = V0" (207 O, + Ay
0P A oy + ééf;‘l aplmAm}plpz) (7.3)

ga1a2a3a4 = \/Eemnl T ea7n7 (4(8[n1 + Ap1p2 [n1 8p1p2)An2n3n4]

1
_ 53}?11?2 Ay napips T 5A[n1n2n3 8P1p2An3p1p2]>
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Gay-ar = \/Eemnl ear (7(a[m + AP1P2 [maplp?)Anw-nﬂ

+ T0A [ nons (Ony + Ap1p2n4ap1p2)An5n6n7]>

to see if (5.42) would then reproduce the correct Einstein-Hilbert action coupled to the
three-form potential, when the fields are assumed to only depend on the eleven coordinates
™. Here the vielbein and the metric are understood to be the dynamical fields, and we shall
neglect all derivatives but 0,,. After some manipulations, one can write the Einstein-Hilbert
Lagrange density in terms of €,,,P as follows

4v/=gR = — 20, (V=99 Up")

1
_ \/fg<2gn1m gnzngqummeplmq _ ganmprnqq>
1
-3 /—g ganQ[Pgr}sapgqmargsn . (7.4)

The first term is a total derivative, and the second is precisely the term that (5.42) repro-
duces with the substitution Qp,n,™ = 2970, gp,),- However, the term in the second line
remains, and cannot be written in terms of €2, ,," only.

We see therefore that the correct action cannot be defined in terms of the field
strength (7.2) only. Omne may hope that the extra terms can be understood as some
kind of Chern-Simons terms for the field strength (7.2) and its potential, but this is far
from obvious.

Let us now discuss the fate of the twisted self-duality equation (5.16). The first main
difficulty is to be able to describe dual gravity at the non-linear level, so let us try to write
the Einstein equations in a suggestive way. The Riemann tensor can be expressed as

1 1
4Rmn = ——=—=0p, (mIn)ps O <\/—ggq”g””29r . ”) — ——=0q(m0 <\/_ggqun /”)
/=g p1( )p2Yq ir2 —g q(mOp )

- 2gpqgrsan’f’an$ + Qmqunqp + Qmprnqq (75)

1 T T S T S
+ 397 (Umlp” + 0o Qos” = 5 mis”) Drgmyg

1
- igpqgrs (8(mgn)pargsq - 87“gp(man)gsq> .

Let us try to use these equations to define a non-linear version of the gravity duality
equation. For this purpose we define the dual graviton field strength

1
Yoi.ngim = _ﬁgnlm - GnopeGmae™ O (Qryry T + 267, rs®) (7.6)
The Einstein equation
1
Rpnn — §gmnR = Tomn (7'7)
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can then be expressed as

1 11
8[n1Yn2...n10};m = §gpqamgp[n1 Ynz...nlo};q - ZQ[mrannz...nm];q

1 1
*Egmm s gnlopmspl'“pmq <4Tqm + 2gtugma[qgmta|r]gsu>

1
+ZOgn1p1 - -gmopwgmpu5p1"'pugtugq[pgr]sapgqtargsu + Imny (...) (7.8)

and more specifically for eleven-dimensional supergravity

1 21
B TOgnlpl e 'gmoploemmpquqm - ZFm[nlmnoanr..mo] - SFm[nlmnsFm...mo] (7’9)

and

1
a[nlyng..nlg];m - igpqamgp[nlyng...nm];q — 9mn ( .. )
11
= _ZQ[mnqung...nlo];q + 21Fm[n1...n6Fn7...n10] - 12Fm[n1n2n3Fn4...n10] (710)

1
- Zogn,lpl e gmopmgpl...pmqgtugrs (a(qgm)targsu _argt(maq)gsu _gmqgnpa[p|gnta|r} gsu) .

One can interpret the first line as a covariant exterior derivative of the dual graviton
field strength (with the dots meaning that we take the traceless component), the sec-
ond line is a wedge product of field strengths, whereas the last line cannot be rewrit-
ten in terms of €,,,,". This last line cannot be reproduced by equation (5.16) with an
ansatz of the form (7.2). Even assuming that this component would vanish, this equa-
tion does not define an integrable Bianchi identity that would permit to define the dual
graviton field, meaning that there is no local solution for Y;,, nym as a polynomial in the
fields gmn, 9™, Aninans> Any..ngs Pny..ng,m> Xny..ne and their derivative consistent with
the grading that satisfies (7.10).

It seems therefore that one must modify (5.16). Following [62], it is natural to consider
a solution to this equation of the form

Ynl...ng;m = ga[nl (hng...ng],m + Xng...ng}m) + Bn1-..n9,m (711)

where By 1 is a Stiickelberg gauge field that allows the restoration of gauge invariance, and
Xy is the antisymmetric component of the dual graviton. In the linearised approximation Y
is a total derivative and one can eliminate the Stiickelberg gauge field to get back linarised
dual gravity.

To incorporate such a Stiickelberg gauge field in the Fp; construction one can for
example consider an equation of the form

MG, =0l7G; 4+ B, (7.12)

where B! would be Stiickelberg type gauge field in the degree p = —1 representation of ey,
or possibly a proper K(ej;) subrepresentation within R_;. Considering for example the
level 3n + 1 field Ag» 3 which gauge invariant field strength is Rign 4 = dn+1A9n,3 in the
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unfolding formalism [23], it is to be expected that a similar analysis will lead to the need for

(n—2)

a chain of Stiickelberg type gauge fields By gn-1 3, Cfo) up to 018;73 . This proposal

027971,—2737
seems therefore to necessarily lead to an infinite hierarchy of higher order Stiickelberg gauge

fields needed for the integrability of the previous equation, that may write schematically

p=0: CO = Moo 1V, (277G, + B,
p=1: CJ(VI[)PM = [PMo v, CO) L
p=2: ¢ pMN — [pMo pN1y e 4

(7.13)

The first equation at degree p = 0 is the projection to the Bianchi identity and at the non-
linear level we expect there to be an infinite sequence of Stiickelberg fields C(?) needed for
all p > —1. The covariant derivative V is the non-linear extension of the differential d that
appeared in section 4 and the Stiickelberg field at degree p is projected to a suitable K (e11)
representation in R,. Thinking of the introduction of these Stiickelberg fields iteratively by
the horizontal degree ¢, the only way this construction could possibly make sense would be if
the higher rank Stiickelberg gauge fields were all associated to highest weight representations
of e;1 as for p > 0 we only have highest weight representations. Similarly for p = 0,
one would expect that Cé%) = O,ng) = 0, such that only highest weight representations
would appear.®” Then they would only contribute to the duality equation for high level
gauge fields. Along this line of ideas, one may need to use all components of the tensor
hierarchy algebras, understanding that level p > —1 are associated to Stiickelberg type
gauge fields reproducing somehow the tensor hierarchy [72| appearing in supergravity for
finite-dimensional groups F; with d < 8. For the tensor hierarchy, the representations
at vertical degree p support the dynamical p-forms of supergravity in 11 — d space-time
dimensions [40, 41].

8 Conclusions

Finding a unified description of all maximal supergravity theories in order to obtain a
better handle on the effective description of M-theory at low energy has been a long-
standing goal. There are various approaches based on (infinite-dimensional) symmetry
algebras [1, 7, 9, 10, 73, 77, 101, 102]. In the construction of this article, the starting point
was the proposal by West and collaborators that the Lorentzian Kac-Moody algebra e;;
should play a fundamental role [1]. We have reviewed some aspects of the e;; proposal and
have highlighted several open questions that we recapitulate.

First, there is no mathematical definition of the K (E;1) representation defining the first
order equation describing the dynamics of the theory in the sense of (3.1). Its construction
can only be carried out order by order in the gl(11) level decomposition starting from the

3"Note that under the reasonable assumption that the degree p = 0 subalgebra of the tensor hierarchy
algebra decomposes into an indecomposable representation ¢11@®¥¢2 and the remaining module, as is discussed
in section 4.1, the latter module téo) would provide an appropriate candidate for the definition of such a
Stiickelberg field.
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duality equation in D = 11 supergravity as discussed in section 3.2. In this way one cannot
be sure that there will not be obstructions at higher level, contradicting the existence of a
K (e11) multiplet of non-trivial first order duality equations. Moreover, K (¢11) symmetry
alone does not allow to prove that the ordinary derivative 9, of arbitrary high level fields
will not appear in the low level components of the first order equation. Since higher level
fields cannot be consistently truncated in the theory, this implies that one cannot show in
this way that one reproduces consistently the supergravity field equations when restricting
to eleven-dimensional space-time.

Second, as has been noted in [2] and discussed here in section 3.3, the first order ej;
duality equation for gravity that relates the spin connection to a suitable derivative of the
dual graviton is not entirely correct, as it lacks a required nine-form potential which is not
present in the theory. This problem seems to be related to the fact that the Maurer-Cartan
form V rather than its coset component P was used to define the dynamics, such that the
first order duality gravity equation does not transform homogeneously under Lorentz trans-
formations. Interpreting the gravity duality equation modulo a local Lorentz transformation
does not allow to identify unambiguously the required nine-form potential. However, in this
article we extended the computation of the first order duality equation to higher level with
the result that the terms transforming inhomogeneously under Lorentz transformations are
incompatible with K (e11). Thus, the first order duality equation should be written in terms
of the coset component P only. This implies in particular that the relevant object enter-
ing the duality equation is not the spin connection, but the object defined in (2.40). The
corresponding first order duality equation is then Lorentz invariant in the linearised ap-
proximation, and the nine-form potential is indeed missing. For a second order dualisation
of linearised gravity, an (8,1) hook field is sufficient as shown in [61] and also discussed
around (5.62). However, it is not clear whether this second order duality equation can be
part of a K (e11) multiplet of duality equations with non-trivial propagation.

Third, there is the issue of generalised gauge invariance of these equations. In [6],
it was observed that higher level fields have gauge invariant field equations of increasing
order in the number of derivatives at the linearised level. However, K(e;;) symmetry
preserves the number of derivatives, so one cannot define an irreducible K (e;;) multiplet
of differential equations of different orders. There is hence no gauge and K (E1;) invariant
system of differential equations if one truncates at some derivative order. To exhibit the
K (e11) symmetry of such a system, one would need to introduce an infinite hierarchy of
Stiickelberg type fields to be able to write down K (¢1;) invariant first order equations that
would imply this infinite chain of higher order equations for higher level fields. In this paper
we considered the more conservative approach that one should be able to define gauge
invariant second order equations as integrability conditions for the (not gauge-invariant)
first order duality equations whose integrability conditions are the field equations, without
introducing additional Stiickelberg type fields. We showed that this requirement implied
that the fields must satisfy the section constraint [24-26, 38]. The section constraint has
so far played only a marginal role in the work on FEi1, but one conclusion we draw from
our analysis is that it will likely be crucial for finding gauge invariant dynamics in any
FEqi-related set-up.
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In this paper we proposed a natural extension of the F1; paradigm based on the infinite
tensor hierarchy algebra .7 that includes e1; as a subalgebra. We have exhibited that this
allows us to resolve, at least partially, the three open problems summarized above. For some
of the points we could provide all level arguments while other aspects rely on assumptions
that we could only investigate at low levels in a level decomposition.

We proved that the tensor hierarchy algebra exists. It is a Z-graded superalgebra whose
degree p = 0 subalgebra is a non semi-simple extension of ¢;;. We showed that one can
define a degree p = 1 differential on fields valued in this algebra that depend on the ¢
module coordinates and satisfy the section constraint. This defines a differential complex
for the fields of the theory that gives a group theoretical foundation for the construction of
the gauge transformations, field strengths and Bianchi identities. We proved moreover that
the tensor hierarchy algebra admits a non-degenerate quadratic Casimir of degree p = —2,
which defines a non-degenerate symplectic form on the degree p = —1 module in which
the generalized field strength is defined. The potentials are valued in the degree p = —2
module, which is conjugate to the p = 0 module.

The symplectic form allows us to define a first order duality equation (5.16), by requiring
that the coset component of the Maurer-Cartan form P projected to the F11; module defined
by the degree p = —1 component of the tensor hierarchy algebra vanishes on a K(FE11)
invariant subspace. This first order equation is a natural generalisation of the twisted self-
duality equation xG = SG introduced in [10], where the Levi-Civita symbol is replaced
by the FE7; invariant symplectic form €2, while the metric and scalar factors are recast
into the field-dependent Fq; matrix M. Although the field strength G only includes the
p-form field strengths in the original twisted self-duality equation, both M and G involve
all the fields of the theory, including the metric g.,,. It is worth noting that while there
is no automorphism of the tensor hierarchy algebra extending the Cartan involution on
¢11, an analogue operation defines a Cartan image of the p = —2 module of the tensor
hierarchy algebra, which plays an important role in the construction of additional first order
constraints necessary to reproduce the correct degrees of freedom of eleven-dimensional
supergravity. Because these field strengths are both in representations of eq1, the gl(11)
level is preserved by the equations. Thus one is ensured that the low level equations cannot
have contributions from ordinary space-time derivatives of higher level fields. This allows
us to interpret safely the equations of motion when truncated to fields defined on the
eleven-dimensional space-time, and to compare them consistently with eleven-dimensional
supergravity field equations.

In addition to the fields parametrising E11/K (E11), the degree p = —2 module includes
infinitely many additional fields. This introduces in particular an additional nine-form
potential Xg, that cannot be set to zero consistently, along with its infinite set of higher
level partners defining the 5 module. We showed that Xg provides the missing component
of the dual graviton field, and that the first order equation discussed above reproduces the
correct duality equation for the dual graviton in the linearised approximation. We analysed
moreover the same equations in the type IIB frame, and exhibited that the corresponding
equations have also a well defined interpretation in type IIB supergravity, when restricting
the support of the fields to the corresponding ten-dimensional space-time. In particular,
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we get a first order duality equation exhibiting the unfolding mechanism advocated in [23].
On the contrary, the first order duality equations defined in the original E7; paradigm do
not seem to lead to consistent equations in the type IIB frame.

We define moreover a Lagrangian for the second order field equations, which are by
construction solved by the solutions of the first order duality equations using Bianchi iden-
tities. Comparing equations (5.50), (5.52) and (5.54) with the second order equations of 5]
in the linearised approximation, one finds that they agree at lowest gl(11) levels but differ
at higher levels. We note that the consistency between the first order duality equations and
the second order differential equations requires the fields to satisfy the section constraint.
In this paper we have exhibited these equations explicitly for the supergravity fields, and
checked that they are gauge invariant modulo the section constraint in the level truncation
scheme we consider (including all the supergravity fields and the dual graviton). Note that
the impossibility of defining gauge invariant second order field equations for higher level
fields explained in [5] is overcome in our construction by the presence of additional fields
in the ¢5 module.

The property that the field strengths are constructed from a representation of eq; is
also extremely useful in computing its components at higher level efficiently. Moreover,
this makes it possible to prove some statements at all levels. We have been able in this
way to exhibit some of the desirable properties for the general theory. The symplectic
form and the GL(11) representations appearing in the degree p = —1 module corroborate
the interpretation of the fields associated to null roots (potentials including nine-forms in
their tensor structures) in [23] to realise the unfolding mechanism. We also corroborate
the validity of the proposal that potentials including ten-forms in their tensor structure
source non-geometrical fluxes, and in particular that the Big 1,1 flux can be interpreted as
the Romans mass [13, 83, 85].

Despite this progress, we have made certain assumptions in our tensor hierarchy algebra
proposal that require further investigation to be proved rigorously. The tensor hierarchy al-
gebra as presented here introduces E7; modules that are strictly bigger than the irreducible
FE41 modules appearing in the original construction. In this paper we have assumed that
the degree p = 1 module of the tensor hierarchy algebra is reducible to the ¢; irreducible
module plus the remaining module. Although we provided indications at low levels that
this might be true, we have not been able to prove it. This assumption is very important in
order for our proposal to remain a reasonably mild extension of the original Fq; paradigm,
and there would be many new open questions if it was not true. This was discussed in
more detail in section 4.1. Also we have not proved the existence or uniqueness of a K (E1)
non-degenerate symmetric bilinear form M?/ on the degree p = —1 module. This non-
degenerate bilinear form is essential for the definition of the field equations. Its existence
would be guaranteed if the degree p = —1 module was either irreducible or decomposable
into an irreducible submodule (defining then the relevant field strength representation) and
a remaining module. We have nonetheless been able to define this bilinear form in the level
truncation scheme we considered in this paper.

It would also be very desirable to understand the gauge invariance of the second order
field equations at all levels. The fact that we have been able to prove gauge invariance
up to the level including the dual graviton is very encouraging, but it does by no means

- 70 —



guarantee that gauge invariance will not fail at a higher level. Would it fail, it would be
likely that one would need to introduce an additional Stiickelberg type field in a highest
weight F717 module to restore gauge invariance.

Even though the tensor hierarchy algebra underlies the construction of our dynamical
quantities, the actual symmetry of the linearised equations of motion is K(ej1) as in the
original construction. The generalisation of our equations to the non-linear level is expected
to exhibit the full E1; symmetry. However, there are many open questions regarding the
non-linear generalisation of the equations of motion. The first challenge is to define the
non-linear realisation such as to incorporate the additional component /5, consistently with
the indecomposability of the e1; module e1; & /5. We also exposed in section 7 that the
naive non-linear generalisation of our proposal does not lead to consistent first order duality
equations for the gravitational field. It is in fact to be expected that gauge invariance of
the first order duality equation must be realised in order to define the non-linear extension.

Analysis of the tensor hierarchy algebra suggests that the introduction of an infinite
sequence of Stiickelberg type fields depicted in (7.13) might be necessary to define the non-
linear theory. Since one may need to consider fields in all the components of the tensor
hierarchy algebra it would be very interesting if it could play a more predominant role at
the non-linear level, beyond the definition of the underlying differential complex.

For extending our formulation to the non-linear level, one needs to define a K(e11)
covariant derivative V, not only for the non-linear gauge transformations, but also for the
field strengths of the various fields of the theory, including Xg¢ and the Stiickelberg type
fields discussed above. This connection is not uniquely determined from the non-linear
realisation, and its definition is an open problem that remains to be investigated [3]. One
expects nonetheless that its definition on the gauge parameters, required to define the
non-linear gauge transformations, will determine consistently the covariant derivative of
the other fields of the theory. Clarifying these issues could shed some light on the elusive
non-linear dualisation of gravity beyond the proposal in [62].

In this paper we have discussed the restrictions of the fields to eleven-dimensional
supergravity and to ten-dimensional type IIB supergravity. It would be very interesting to
analyse other (partial) solutions to the section constraint to understand exceptional field
theories in this formalism [24-26]. An interesting future avenue would be to explore the
realisation of gauged supergravity theories in our formalism, building for example on [41-
43,90, 103, 104], or massive type ITA supergravity, building on [81, 83, 105]. We note that
in [106] the massive Romans theory was analysed and, based on an analysis of the gauge
algebra, an extension of the e algebra was proposed. The new generator appearing in this
investigation is different from the new generators found in the tensor hierarchy algebra in
our work as it sits at a different level in the level decomposition compared to the tensor
hierarchy algebra.>
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A Conventions for E;; and its representations

In this appendix, we give our conventions for the Kac-Moody algebra e¢1; with the Dynkin
diagram displayed in figure 1, and two of its representations. The first one is the representa-
tion #; for which the lowest weight is the negative of the fundamental weight corresponding
to node 1 in this labelling, i.e., with Dynkin labels (1,0,0,0,0,0,0,0,0,0,0) and that corre-
sponds to the representation in which the derivatives transform. The second e1; represen-
tation is the £1¢ representation that appears in the section constraint. It has Dynkin labels
(0,0,0,0,0,0,0,0,0,1,0). We reiterate that we label the lowest weight representations by
minus the Dynkin labels of the lowest weight vectors.

A.l Fq;

The Kac-Moody algebra e is the Lie algebra generated by Chevalley generators eg, fr, hr
(with I = 1,...,11 labelling the nodes in the Dynkin diagram) modulo the Chevalley
relations

[hr,eg) = Argey, [hr, f1l = —Arifr, ler, fsl = 6r7hy, (A1)

and the Serre relations

(ad er)' =17 (ey) = (ad fr)' =47 (fs) =0, (A.2)

where Aj; is the Cartan matrix given by the Dynkin diagram in figure 1. If two different
nodes I and J are connected with a line, then A;; = Aj; = —1, otherwise A;; = Ayr = 0.
On the diagonal we have A;; = 2 (no summation).

In ey covariant expressions we use the indices «, 3, ... for the adjoint representation,
and M, N, ... for {1, with corresponding basis elements t* and P,;. However, in the appli-
cation to eleven-dimensional supergravity it is more convenient to describe the structure of
e11 and of ¢1 in terms of gl(11) level decompositions, where the gl(11) subalgebra is obtained
by removing node 11 from the Dynkin diagram. Any representation of ¢1; then decomposes
into a direct sum of gl(11) representations which can be assigned integer levels ¢. For the
adjoint, the gl(11) representation at level —¢ is the conjugate of the representation at level
£, reflecting the structure of positive and negative roots.

The decompositions of e1; and ¢; into gl(11) representations for low levels are given
in table 1 [1, 11, 12| and table 2 [16, 17|, respectively, together with our notation for the
corresponding potential fields, coordinates and parameters. In the adjoint representation,
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we denote the generators at the first three positive levels by Ey nons, Eny-ongs Engemng,m,
and those at the first three negative levels by Fi, nongs Fniongs Fni-ng,m- Our convention
is such that

Ernans _ pmap1pnapz pnsps Fopipops (A.3)

belongs to the ‘compact’ subalgebra K(e11). The metric appearing here is the invariant
metric of so(1,10) and therefore the subalgebra is a Wick-rotated form of the standard
maximal compact subalgebra obtained by the Cartan involution. The involution is some-
times called temporal involution and discussed in for example [14]. The generators at level
—/ are then defined with the opposite sign compared to the those at level £ > 2

Erne = [prmanans | pransne] Frpong = —[Frinonss Fransnels (A.4)
Enmem — g[E[n1n2n37En4--~ns]m] _ %[E[nr“ns,ETwns]m]’
8 4
Fnl---ns,m = _g[F[nlngngv Fn4~~~ng]m] = _g[F[nlmnGa Fn7n8]m} . (A5)
The last equations can be inverted to
[Eranens  ppLeps] — ¢ Erinenapipspe] — 3 ppi--ps[ninz,ng ’
[Frinans, Fpl"'ps] = —6 anzng[pl---ps,pa] =3 FP1---p5[n1n2,n3} : (A.6)

For the gl(11) representations we employ the following notation. Every tensor
displayed is either an irreducible representation (if it has only upper or only lower indices)
or the full tensor product of two irreducible representations (if it has both upper and
lower indices). In the irreducible case it thus corresponds to a fixed Young tableau where
each box corresponds to an index m,n,... = 0,1,...,10. Indices in the same column are
antisymmetric, usually written with the same letter, and different columns are separated
by a comma. For example, the generator appearing at level ¢ = 3 in ey satisfies the
symmetry and irreducibility constraints

E[ny--ng],m — Enl---ng,m7 E[nl---ng,m] — 0 . (A7)

Antisymmetrisations occur always with strength one, and the first equation above just
reflects the convention that indices in one column are automatically antisymmetric by
the Young symmetries. The second equation is the Young irreducibility constraint.
Occasionally, we use < > to denote projection on an irreducible representation of this type,
for which the Young tableau is a hook with two columns, only one box in one column, and
an arbitrary number of boxes in the other. With this notation, both conditions (A.7) can
thus be expressed together as

Enl“'n&m _ E(nl---ng,m> . (A8)
We define the projector on the (k, 1) hook symmetry structure in general as
T(nl---nk,m> = T[nlnk]m _ T[nlnkm] . (Ag)

for a general tensor T™"™™ with k + 1 indices without any particular symmetrisation.3’

39When a tensor already includes a comma, as in the case above, one understands that the comma

is at the same place before and after the projection so that e.g., Erinz{nz-mgm> _ pringng-nglm
Erinzna-ng,m]
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Any tensor density with both upper and lower indices transforms in the full reducible
tensor product of the two irreducible representations, i.e. it contains traces. For example,
at £ = 0 in the adjoint of e;; we let K™, denote the generators in the adjoint of gl(11)
which is reducible and decomposes into a direct sum of two irreducible representations: the
traceless part s[(11) and the trace K = K™,

Sometimes we use a shorthand notation for the gl(11) tensor densities where the sub-
and superscripts denote numbers of (lower and upper, respectively) antisymmetric indices
in the blocks corresponding to columns in the Young tableau separated by commas. For
example, the generators of ¢;; above at levels £ = 3 and £ = 0 are then denoted by E®!
and Ky, respectively.

In the adjoint representation, the generators are true tensors of gl(11) and transform
as, for example

(K™, EPP2ps] = sl pravsim. (K™ s Foupaps] = =307, Frypalm - (A.10)

Therefore, the action of K counts the number of upper minus the number of lower indices,

which is three times the level £. By contrast, in the lowest weight representation ¢; the

generators are not true tensors of gl(11) but rather tensor densities of non-trivial weight.

Here, the eigenvalue of K is the number of upper minus the number of lower indices plus %
The commutation relations of gl(11) are

(K™, K] = 60K™, — 5 K?, (A.11)

and those of type [E, F| up to level £ = £3 in ey are
[Emmn?’a Fp1p2p3] =18 5[[;11;22 K;;]] —2 53111?221?7;3 K, (A'12)
(770, Fype] = 480 (9808 K™y = 81730 K) (4-13)

[Enl"'n&m’ Fql.-.q&p] — 35840 < 5;111 qZBKmp + 5(11[71;8 TL7K”8]p -+ (5;:[;1 nf;?Km o]

plar-qr 3 a1-gs °p 3 14917g2qs] P

_5m[n1..~n7K 3] ]+ 5n1 Ty §M e 75m 5[”1 n?éng} )
(A

14)
120 5[171172173 [P4Pspe] 7

P1-P6
[Fn1n2n37 E ninansg

I =
(721, Fryopg] = =120 800200 By (A.15)
[Fruingng, BPV P99 = —112 (5%[11252 Ep3ps] _ 5[17111'2252 Epa p8]q)
[ETens, Fp,--ps, q] = 112( 6%?120:3 Fps-. ‘P8l T 5[2112222 p4"‘p8}q)’ (A.16)
[Fpomg, BT795P] = —13440 (6196 parasle _ gPl0 45 pasaras]y
[Enlmnﬁv Fq1-~-qg,p] = 13440 (5[n1 x FQWZS} 5”[21 n25 FQGQ?‘JS]) ’ (A'17)

The Chevalley generators can be expressed in terms of the basis elements above in the
following way (i = 1,...,10):

ei =K', fi = K, hi=K' — K™%, (A.18)

1
e = E2101L fi1 =Fo1o11, hi1 =K99+K1010+K1111—§K . (A.19)
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The Kac-Moody algebra e1; admits a symmetric invariant bilinear form (‘Killing

form’) [107] that we denote by (t*,t%) = k5. It is given by

(hr,hy) = A1y, (er, f1) =417,

for the Chevalley generators, which gives
1
(K", KPq) = 63,6™q — iéglépqv

nin2ng — Q| Sn1n2ns3
(E ’Fp1p2p3) - 3 5p1p2p3 )

(E™776 By pe) = 6167177

p1-pe ?
(En1~~-ng|m7F 8

n-aslp) = 9 ~ lar7gzqs] P q1qs Op

A.2 The £, representation

8l (g T gnsl g g g

(A.20)

(A.21)
(A.22)
(A.23)

(A.24)

Our notation for the low-lying generators of the lowest weight ¢ representation was given

in table 2. They are

ning ni...ns ni...n7,m ni...ng
P, 7M™ 7 , pra-nmm p

(A.25)

In the semidirect sum of e1; and ¢1, the basis elements of ¢17 act in the following way at

low levels:

[Fryns,ms Bpl = 0,
[Fry-ng, Pm] =0,
[anzns, Pl =0,
(K™, By) = —07"Py + %wpp,
[Eranzns p] = —3g§lm znanal,
[E™ P,| = —6lm Zmamel

[Enl-ung,m, Pp] _ géglpnlmng . gél[)nlpngmng]m - 85}[)n1Pn2--~n8],m,

[Fnl--~ns,m7 qu] =0 y
[Fryomg, 2P =0,
[anzmv qu] = 6077

[ning

Py,

3]
(K™, ZP1] = —2 6P Zzdm 4 %5;”2”1 ,
[Emnens | zpd) = — zmnanspd
[E™M 6, ZP4) = — p™rnepd _ ¢ ppalrns il
_ o pmnepq | o pri-ne[p.d] 7

[Fnl"%s,mv Zp1-~~p5] =0,
[Fomgs ZP7P5) = 720 671 P8 Py

[n1-ns
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[Fnlngng,a Zpl"-ps] — —60 §lP1p2ps Zpaps] ’

ninans
[K™,, ZP1"P5] =5 5%’1 7/P2P3papsm + %577Lflzpl~-p5 7

[Eranzns  zpieps] — prananapieps _ 5 prin2na(pip2papa,ps)
)

— prnznspips g ppi-ps[ninz.ns] (A.28)
8!
[Fruy o ngms PPYP8] = 5(5%1:%88Pm — 5511[nf.§.n7pns}) ,
[Fryoomg, PPYP5] = —7) 57[1011.:'55 ZpPps],

[F”1"2n37 Pplmpg] =42 51[{311522532104“'1’8] ’
1
[Kmn? PP1-..p8] =8 57[{91P|m|172~--p8] + 5577?Pp1mp8 , (Azg)
[Fnl-..ng,rm P‘h..-q%p] =7-7! (5511 5‘[;12‘5222%77] Pns} N 5%5F21q;7pn8]) |
[P P0P) = 3780 (51007506 707l . gPlas a5 zasar])

ﬁ 5[(11%113 ZQ4---Q7}p+5p[q1q2 Zq3"'q7]

[Fn1n2n37pq1---q7,P] = 4 ( ninan3 ninans )7

1
[Kmm Pq1-~q7,P] _ 757[;11 pa2--arlm.p + gp pHranm 4 §57qu1~“q7,17 ] (A.30)

A.3 The section constraint representation £1¢

In table 6, we list the low-lying generators of the lowest weight representation f1g of e17 in
a gl(11) decomposition. The representation ¢1y arises in the symmetric tensor product of
two ¢1 representations. Writing things dually one can think of the various components in
the following way

m __ qmn
n s .
= gmng (A.31a)
[ nenang 3a[n1n26n3n4] N an1n2n3n4m8m ’ (A31b)
[m2nanAns e, M @ <a[n1n26n3n4n5n6}m . am[n16n2n3n4n5n6])
7
- § (8pn1n2n3n4n5n6,m8p - apm[n1n2n3n4n5,n6]8p> (A 310)
7 ’ '
[in2n3nansnent _ 38[n1n26n3n4n5n6n7] . §an1n2n3n4n5n6n7,m8m + 8n1n2n3n4n5n6n7m8m )
(A.31d)

These constraints can be generated using the action of ¢17 on the lowest weight vector L™.
We stress that f19 is only the beginning of the full section constraint. According

to (1.1) there will be more ¢1; lowest weight representations that constitute the full section

constraint. Continuing the symmetric tensor product to the next term for e1; gives

(El ® fl)sym = (241) D [510 & (42 + élO) D.. ] . (A.32)

The lowest weight representation fo+¢1g starts contributing from gl(11) level £ = 7; at that
level it contains only the s[(11) representation (0,1,0,0,0,0,0,0,0, 1) that is also contained
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Level £ | ¢ =¢—3 | sl(11) representation | Generator structure

4 1 (0,0,0,0,0,0,0,0,0,1) m

: 2 (0,0,0,0,0,0,1,0,0,0) [nn

6 5 (0,0,0,1,0,0,0,0,0,0) L
(0,0,0,0,1,0,0,0,0,1) [ nnem
(1,0,0,0,0,0,0,0,0,0) Ao
(0,1,0,0,0,0,0,0,0,1) [1n9,m

. A (0,1,0,0,0,0,0,0,0,1) Frt.ng,m
(0,0,1,0,0,0,0,0,1,0) 1. ngmams
(0,0,1,0,0,0,0,0,0,2) LP1-nsmp
(0,0,0,1,0,0,0,1,0,0) L mamams

Table 6. Level decomposition of the ¢1¢ representation of F1; under gl(11). This is a lowest weight
representation and therefore the top entry is annihilated by all lowering generators. The name of
the corresponding tensor structure reflects its role in the section constraint (1.1). At level £ =7
we have for the first time a degeneracy in the tensor type, indicated by two letters L and L. The
degree here is related to ¢ by ¢ = ¢ — 3.

in the £;o representation as is visible from table 6 such that this gl(11) tensor structure
appears in total three times in the section constraint. The third section constraint of type
(9,1) that belongs to £2 + ¢19 does not have any contribution up to the derivative order we
are considering here.

B Construction of the tensor hierarchy algebra

In this appendix, we present a proof of the existence of the tensor hierarchy algebra based
on the formalism of local Lie (super)algebras as developed by Kac [107]. We shall give two
different characterisations of the tensor hierarchy algebra; one direct algebraic construction
using (anti-) commutation relations and one dual characterisation using the BRST formal-
ism. We will also demonstrate the existence of an involution that is used in the first order

duality relations.

B.1 Local Lie algebra constructions

As in both formulations we will make use of Kac’s construction based on local Lie (su-
per)algebras, we briefly recall the basic statements from [107].

A local Lie superalgebra is a direct sum 71 @& % & 7 of three vector spaces together
with a bilinear bracket

TaAxAN—=>%, HxAh—=N, THxITa—=>Ta,  (zy ey (Bl
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such that [z,y] = —(—1)!#I1¥/[y, 2] for any two homogeneous elements z,y € T, ® T ® T,
and the Jacobi identity

[, [y, 2] = [[2,9], 2] = (=) [y[z, 2] (B.2)

is satisfied whenever the brackets in this identity are defined.

As shown in [107, Prop. 1.2.2], any local Lie superalgebra can be extended to a unique
minimal Z-graded Lie superalgebra .7 = @cy %, constructed in two steps. First, modulo
the relations given by (B.1), the local Lie superalgebra 71 ® % @ 71 generates a maximal
Lie superalgebra 7 = DBz T, where 9, = 9, for k = 0,+1, and the subalgebras
T = D, <0 Ty, are freely generated by 7 and 7.1, respectively. Among the graded
ideals D of .7 (which means that D is a direct sum of subspaces D N F, for all integers k)
intersecting the local part -1 & J @ 7 trivially, there is a maximal one. In the second
step we factor out this maximal ideal D from .7 and set 7 = .7 /D.*° This minimal Lie
superalgebra 7 will be the tensor hierarchy algebra in our case. (There also exist other,
non-minimal, Lie superalgebras that can be constructed from a local Lie superalgebra but
they will play no role in our analysis.) Using Proposition 1.5 in [108], one can show that
any ideal D of 7 is in fact graded in our case, and thus the tensor hierarchy algebra 7
that we define is simple.

B.2 Direct algebraic characterisation

The first characterisation of the tensor hierarchy algebra is a direct application of the Kac
construction.

B.2.1 Definition of the local Lie superalgebra

In our case, the local Lie superalgebra 7 1 ® 9y ® A is defined as the tensor product of
two Z-graded vector spaces A and U.

The vector space A is the exterior (Grassmann) algebra of a d-dimensional vector space,
and is thus (as an algebra) generated by d elements 6,, with an associative product such
that 0,,0,, = —0,,0,,. As a Z-graded algebra, A can be decomposed into a direct sum

A=ANBMN B DAy (B.3)
of subspaces such that A;A; = A;4;, where, for any £ = 0,1, ..., the set of all monomials
in..,nk = Hmem ce an (1 <np<ng <...<np< d) (B.4>

is a basis of the subspace A;. We write this as Ay = (0p,..n, ). As a Zg-graded algebra, A
decomposes into a direct sum A = A(g) @ A1) where Ay, C A(g) if k is even and Ay C Ay if
k is odd. For any m = 1,2,...,d we define the interior product ¢ on A as the linear map
("™ Ay — Ag_q given by

By, = KO Oy (B.5)

4%Tn the context of standard Kac-Moody algebras, the local Lie algebra corresponds to the simple Cheval-
ley generators and relations, and the maximal ideal corresponds to the Serre relations.
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The Z-graded vector space U = U gy @ U(y) is spanned by gl(d) tensors E™"2"3 E™,
E™n™ P™  F (where, following our conventions, E™1"™2"3 —= Elmnans] gnq pmn — E™™)
such that

Uy = (E™M™") @ (E™), Ugy = (E™") @ (P™) & (F). (B.6)
We then decompose the tensor product A ® U into a direct sum 71 & F ® Z; such that
Ti=K&(F), =A@ (P™), Ji=Ae(E") e E™) 6 (E™). (B.)

The Zo-degree of an element au € A ® U, where a € A and u € U, is given by the product

of the Zg-degrees of a and u. We write this as |au| = |al|u|.
The bracket on 7 1 @& .y ® Z is defined by the following commutation relations,
[aE™M™2"s pF) = %(Jﬂl 2a)b Pl 4 g(—1)lal(L[nla)(ﬁb)P"S] + 3a(c1m2p) Pl
(B.8a)
[aE™"™ bF] = a(.'"b)P™ + i(—l)'“‘(L(ma)bP”), (B.8b)
[aE™ bF] = abP™, (B.8c)
[aP™ bF] = a(/"b)F + %(—1)'@‘@%)1)17, (B.8&d)
[P™,bP"] = a(s™b) P + (1)l (;ma)bP™, (B.8e)

1
[aP™, bE™ "] = (i) B2 4 3(= 1)l ()b — (-1l (mapp B

3

— 3(=1)Pl( 1 2 ) pErslm 175(_1)|¢1\(L[manbna]a)bEm

3

9
- _N\lal/,m, [n1,n2 na] [n1,m2 |m]| n3)
—16( D™ "2 0)bE +—16(L 2a) (™M) E™, (B.8f)

[aP™, DE™P] = a(/™b)E™P + 2(—1)l4l (,("a)pEP)™ — %(—1)|“|(Lma)bE”’p,
[aP™, bE"| = a(/™D)E™ + (=) ("a)bE™ — %(-1)‘@'(%)1@". (B.8g)

One can verify that all Jacobi identities are satisfied and thus .7 1 ® % @ 71 provides a
starting point for the local Lie superalgebra construction.

The reason for starting with this particular local Lie superalgebra comes from super-
gravity and its relation to e1;. This connection will become more apparent below when we
list some of the further generators of .7 in gl(11) form. The tensor hierarchy algebra .7
associated to eq for 4 < d < 8 was defined in [40]. The construction in this appendix is a
different gl(d) covariant definition and has the advantage of also being applicable also to the
case d > 9. For d = 11 we obtain the tensor hierarchy algebra .7 considered in this paper.

B.2.2 The tensor hierarchy algebra

The tensor hierarchy algebra .7 is now defined as the minimal Lie superalgebra with the
local part above, and can be constructed from this local part following the steps in sec-
tion B.1. It then comes with a Z-grading 9 = @kcz %, where we for any = € 7 set
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q(z) = k. This Z-grading is not consistent: x does not necessarily have the same Zs-degree
as the integer ¢(z). However, .7 can be equipped with a different Z-grading that is consis-
tent. We denote the Z-degree of a homogeneous element x with respect to this consistent
Z-grading by p(z). For the local part A ® U it is given by p(au) = p(a) + p(u) where p(a)
refers to the Z-grading of A above, p(a) = k if a € Ak, and p(u) is given by the assignments

p(F)=3, pP") =1, pE™""")=0, pE™")=-1, pE™)=-2. (B.9)

As in section 4.1, we refer to p and ¢ as vertical and horizontal degrees, respectively.

As will be shown below, the subalgebra at (p,q) = (0,0) is gl(d), and the gl(d) level is
given by

{=q+ 3 (B.10)

=qt g :

We can now probe the tensor hierarchy algebra degree by degree both vertically and

horizontally. It then follows that the subspace J_, is the tensor product of A and a

one-dimensional vector space spanned by an element G. We choose a normalization of it
such that

[aF,bF] = (-1 (ab)G. (B.11)

The commutation relations of the form [71, 9 9] = . are then given by

[aE™ ™2™ h(G] = é(_l)m\(ﬁlbnzﬂsa)b}? + z(L[anza)(Lns]b)F
* g(—l)‘“' (1) (120" Ib)F + ("0 D) .,
[aE™", bG] = 0,
m 2 lal (,m 4 m
[aE™ bG]| = g(—l) (¢ a)bF—l—ga(L b)F, (B.12)

and those of the form [%, 7 o] = T2 by
2
[P, bG] = —(—1)a(/™b)G — S ("G (B.13)

Continuing to ¢ = —3 we find that 7_3 is the tensor product of A and a d-dimensional

vector space spanned by an element H,,, such that

[aF,bG] = %(Lma)me — é(—l)‘“'a(amb)Hm. (B.14)

The commutation relations of the form [, 9_3] = _5 are then given by

[aE™"2"3 hH,,| = —?—25,[21 ("2.7la)bG
— géml(L”Qa)(L"‘"’}b)G — 3(—1)'“‘57[77;1(10”%"3]6)6?, (B.15a)
(@B, bH,] = —(~1) 68 (0 a)pa — J63a()C, (B.15D)
[aE™ bH,,] = —(—1)9l67 abG, (B.15c¢)
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and those of the form [%, 7_3] = J_3 by
[aP™,bH,] = —(=1)\a("b)H,, — (:™a)bH,, + 0" (:Pa)bH,. (B.16)

At the first positive horizontal degrees beyond ¢ = 1, the structure of the tensor hierarchy
algebra is more complicated. We will not describe it in detail here, but refer to table 7
where some of the generators at ¢ = 2,3 are given, together with those described here for
—3 < g < 1. See also table 3, where other symbols are used for the gl(11) tensor densities,
and some of them have been dualised using the s[(11) invariant epsilon tensor (making
table 3 valid only for d = 11, whereas table 7 is valid for any d).

We identify two important subalgebras of 7. First, by restricting to horizontal degree
g = 0 but allowing for arbitrary vertical degrees we find the extension of gl(11) to the
Cartan superalgebra W (d), which is the derivation superalgebra of A [107]. Second, the
subalgebra generated by E™ ™" and 0, p,ns F' at p = 0 is eq. To see this we set

K™, = —g,P™ — gfldaglappp, Fvmans = Oy F - (B.17)
The commutation relations of E™"2"s F, .. .. and K™, are exactly those of ¢4 in gl(d)
decomposition and the Lie algebra they generate is by construction e¢4. It is contained in
the subalgebra t; of 7 consisting of all elements with p = 0. However, for d > 9 this
subalgebra contains also additional generators, in particular Hg at (p,q) = (0, —3), which
can be seen in table 7. This Hg plays an important role in the low level considerations in
the body of the paper as it is related to the new field Xg that carries the dual of the trace
of the spin connection.

To see how the additional generators appear, we continue along p = 0 and set

Gryoomg = Oy G Hoyoongim = Onyoong Hom (B.18)

at ¢ = —2 and ¢ = —3 respectively. The generator Gy, ...n; corresponds to Fj,..n, in
appendix A*!, as can be seen by comparing (B.11), for a,b € A3, with (A.4). The generator
Hy,..ng;m transforms under gl(11) in the full tensor product of the two representations
corresponding to the blocks of indices on the two sides of the semicolon, and can in the
usual way be decomposed into irreducible parts as

Hpyongm = Hipymgom] Hyyomgn = Hupyoonigom — Hip,y oo (B.19)

In the case where a € Az and b € Ag in (B.14), the fully antisymmetric part drops out of the
right hand side, and the equation (B.14) reduces to the second row of (A.15) (with Hy,...ng.m
replacing Fp,,..ng.m according to the different notations used here and in appendix A).
However, when we consider the full tensor hierarchy algebra 7 we can take for example
a € Ag and b € Ay, writing

Fring = Opiny F, Gryonn = Onyooms G, (B.20)

“IThe ¢q generator Fy,...ne in appendix A should not be confused with the generator 0,,,...ns F appearing
in the extension of ¢4 to .7 that we consider here at (p,q) = (—3,—2). This is the reason why we use
different letters for different ¢ < 0 in the present appendix.
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and then (B.14) gives

[anz? Gp1-~~p7] = —Hpinopy-pr + 2Hp1---p7[n1,nz]

= _Hnmzpl"-m —7H, (B'21)

1n2[p1-pe,p7]

where now also the fully antisymmetric part Hg is present on the right hand side.
From the irreducible pieces in (p,q) = (0,—3) given in (B.19) and the commutator
in (B.15a) we can deduce the following commutator in the p = 0 subalgebra tg:

(B M, ) = 168610206 (B.22)
This commutator (when dualised to p = —2 as will be argued below) is the reason for (4.33h)

that is used crucially for the gauge invariance discussion of the tensor hierarchy algebra
structures. The relation above demonstrates that within the tensor hierarchy algebra the
coefficient 7291 in (4.23) does not vanish.

Since eq is contained in the subalgebra t; C 7 at p = 0, the subspace of 7 at any
vertical degree p is a representation R, of ¢4. As we will see below, R, is the conjugate of
Rg_4—p for any p. In the case d = 11, this means that the adjoint of e;; can be obtained
from R_, by factoring out additional generators, in particular the trace part of P3', which
is dual to the additional generator Hg in Ry. To make this more clear, set

Eranans lsnl n2n3P1-Ps (3

Y] P1D8 1
Eriene lem---nﬁpr--mF
5l P1+D5 9
~ 1
ningim _ ~ _nitngp1p2ps m
B - ?E Pp1p2p3 ) (B-Q?’)

in accordance with the notation in table 3. In the same way as in (B.19), the generator
Emms™ can be decomposed into the irreducible parts E™1 8™ and E™18™ . We now

get, for example, the relations

nin2n3 IP1p2p3] _ FN1N2n3pip2p3
E  EPpps) = | Pip2ps

[Foy nomg, EP1P6] = 120 §[P1p2ps fpspavs] (B.24)

ninans

which can be compared to (A.4) and (A.15). However, when we act with E3 on E® we
see that this is not the adjoint representation of ej1, since, compared to (A.6), we get an
additional term containing the fully antisymmetric generator E£?,

[Emnens, Em---pﬁ] — _gppips[minzing] _ g ppi-pslninz,na] _ g ppi--peninang (B.25)
When we act on E®! and E® with F3 we find
Fuunanes BP 751 = 112 (533, Bl — slpaps Boeley  (B.26)
in accordance with (A.16), and

[Fn1n2n37 Epl"'pg] =0 ) (BQ?)

which means that E9 can be set to zero consistently as a generator in the ¢ representation
R_5 (but not as a generator in the full Lie superalgebra 7).
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P ¢q=-3 |¢g=-2]|q¢=-1]¢=0 q=1 q=2 q=3

3 Hy Hsy| Gs F

2 H; Hgy Gy I3

1|---| Hs Hra Gs 12 pl

O|---| Hy Hsi | Gg F3 Pt | B3 ES B8t
=1+ |Hwo Hon | Gr Fy | B' |E® EY E5 E4! E; 81
=2 |-+ | Hi1 Hyon| Gs I Pl | B By B | B Byt | BB
=3 |- | Hi2 Huin| Gy Fgs Pl B33 Bt B B Byt | By

Table 7. Part of the tensor hierarchy algebra .7 for a general d, decomposed under gl(d).

B.2.3 Existence of an invariant bilinear form

We will now prove the existence of a non-degenerate supersymmetric and invariant bilinear
form Q(x,y) on 7. Here supersymmetry (following the mathematics terminology) means
Zs-graded symmetry, that is Q(x,y) = (=1)*IMQ(y, x). Invariance means

Q[z,y], 2) = Uz, [y, 2]) (B.28)

for all elements x,y, z regardless of their Zs-degrees. Our proof follows to a large extent
the proof of Proposition 7 in [109]|. The bilinear form that we will define has the properties
T, ;) =0 unless i + j = —3 and Q(R;, Rj) = 0 unless i + j = 9 — d. Thus it gives a
symplectic form on R_; in the case d = 11.

We say that a bilinear form 2 defined on some subspace of 7 is invariant with respect
to some subspace % of .7 if (B.28) holds for all x,y, z such that both sides of (B.28) are
defined and y € % .

For s > 3, suppose that 2~ is a bilinear form on the subspace 41 &+ & Fo_o of
7 which is supersymmetric and invariant with respect to all .7 with k # 0, or equivalently,
with respect to Zi1. Let Q) be an extension of Q61 to T o @ -+ O T, defined in
the following way. First, set (.7, .7;) = 0 if one of the integers ¢ and j is equal to (s — 1)
or (—2—s) and i + j # —3. Then, for w € F;_; and z € J_s_9, write w and z as sums of
terms [u,v] and [z, y], respectively, where

UV E ANDB- B T o, T YET s 1B B I 1. (B.29)

We can without loss of generality assume that there is only one term in each of these sums,
and write w = [u,v] and z = [z,y]. We then define Q) (w, 2) = (=1)**Q) (2, w) by

0 (w,z) = Q(S)([u, v], [z, y]) = Q(S_l)([[u, v], ], y). (B.30)
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Using the supersymmetry and invariance of Q=1 with respect to Zi1, and the Jacobi
identity, we then get

(0] ) = 07 o ol )~ (1) ) )

= — (=1 (v, 2], [u, y]) + (-1)7 QD ([, ], [v,y])

= (—1)* QD (([u, 2], y], w) + (=17 (u, [, [v, y]])
= Q6 (u, [[v,2],y]) + (=1)" Q¥ (u, [z, [v,y]])
= Q0D (u, [v, [z, ])). (B.31)

Thus Q) is well defined and invariant with respect to all .7, with k # 0, or equivalently,
with respect to 1.
We define a linear (volume) form on A by

V(grime) = gt (B.32)
if p=d, and V(§™ ") = 0 otherwise. Then the bilinear form Q) on .7 »® .7 ; defined by

QO (aF bG) = (—1)1FVPIOO) bG, aF) = V (ab),
QO (aF, aF) = Q0 (aG,aG) =0 (B.33)

is invariant with respect to 7.1 ® J ® J;. We then define QM) by (B.30) with v € 71,
vE A, x €T 1 and y € T 5. Explicitly we get

QW (aP™ bH,) = V(ab)s™. (B.34)

By the invariance of Q) with respect to 7.1 ® Jp @ i and a calculation similar to (B.31)
it then follows that Q1) is well defined and invariant with respect to 7. Finally we define
02 on .7 4% @ F again by (B.30) forue ph,ve S andx,y € T 4®---HI_1. By
the same calculation (B.31) it follows that Q%) is well defined and invariant with respect to
1. We can then recursively extend the bilinear forms Q%) and define a bilinear form
on the whole of .7 which is supersymmetric and invariant with respect to 7 for k # 0. It
then follows that €2 is invariant also with respect to .%,. The non-degeneracy of the bilinear
form € follows from its invariance and the fact that .7 is a simple Lie superalgebra.

B.3 BRST form of the tensor hierarchy algebra

The BRST formalism we shall now use give an equivalent definition of the tensor hierarchy
algebra .7 corresponds to defining a nilpotent differential § transforming the parameters
of the algebra (rather than working with the generators). An important point is that the
parameters are ‘ghosts’, meaning that their Zo Grassmann degree is shifted: Grassmann
even generators of the algebra are associated with Grassmann odd parameters whereas
Grassmann odd generators are associated with Grassmann even parameters. In this way,
the nilpotency 62 = 0 of the differential

1
§ch = iCABCchC — (ATy)? = 6cATy | (B.35)
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is equivalent to super-Jacobi identity on C4gc. Here, ¢ denotes a generic parameter asso-
ciated with a generator T4 and C4 ¢ are the structure constants of the algebra. This way
of writing the transformations, i.e., commutators, makes some of the calculations simpler.

The parameters we are using in this section are related to the superform generators of
the last section through

ATy =+ W™ Hy) + (w0, G) + (S, F) + (Vyn, P™)

1 1
g7 (Cnrnang B") 4 (T E™) 4 O, E™) ., (B.36)

where (+,-) is understood as the standard pairing for generalised forms using the top form
in the exterior algebra.

B.3.1 Local Lie superalgebra and tensor hierarchy algebra

We now rephrase the definition of the tensor hierarchy algebra in the BRST formalism
starting from the local algebra. As Z we will take the W (d) superalgebra of super diffeo-
morphisms defined by Kac in [107]. It can be parametrised by a Grassmann odd vector-
valued extended form in d dimensions, which we will defined as Grassmann even according
to the BRST formalism. This means that we have a parameter V,,, that lies in the tensor
product of the vector representation of GL(d) with the exterior algebra A in d dimensions.
The W (d) algebra can be written as

SV = Vit "V (B.37)

where (" is the contraction operator whereas the forms are multiplied through the wedge
product. It is easy to check that this transformation is nilpotent. However, this is not
the complete transformation in the local algebra as one has to include contributions from
1. These will be displayed below. The decomposition of V,, in form degree is dual to
the column ¢ = 0 of table 7.

The remaining elements of 7.1 can be written in terms of a Grassmann-even scalar-
valued form S (for ¢ = —1) and a Grassmann-odd rank-three generator ¥ n,ns, a
Grassmann-odd rank-one generator A, and Grassmann-even symmetric two-form gener-
ator Ty, ,, for ¢ = 4+1. These are all forms valued in the exterior algebra A in d dimensions
and correspond to the generators also listed in (B.7).

In BRST form the transformations in the local Lie superalgebra (cf. (B.8)) take the form
w
0S =V S+ gannS, (B.38a)

1
Vi = Vol"Vip + Ump pp P1P2S + <2Lp¢mnp + Tm7n> 1S

1
+ T (PP Ympipy + 4" T + Am) S, (B.38b)
w
5¢n1n2n3 = %Lp¢n1n2n3 + 3Lp‘/[n1 ¢n2n3]p - gbp%wnlngng ) (B38C)
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SN = Vot M+ PVinhp = 5 Vo + 3772 Vot
+ PPV D pons — U2V s (B.38d)

w
0T mn = Vpl Tinn + 20V, Ty p — gbp‘/;;Tm,n + PPV Un)pips - (B.38e)

One can check that the transformation § becomes nilpotent with these rules and there is no
redefinition that would allow to remove some of the generators. Therefore the above is an
equivalent presentation of the local Lie superalgebra that can be used as a starting point
for Kac’ construction. The algebra defined in this way is dual to .7 and we shall now list
some of its other generators.

It follows for example that the level ¢ = —2 component is parametrised by a Grassmann
odd generalised form w, the level ¢ = —3 by a Grassmann odd co-vector generalised form
Un, and the level ¢ = —4 by a Grassmann even 3-form, an even 1-form, and a Grassmann
odd symmetric tensor.

One can compute the extension of the BRST transformations (=commutation relations)
to these levels. One gets the following identities

1 1 1
0S8 = V.S + §L"Vn5’ — E@ZJanmL"lL"%%w + an3wn1n2n3bnlbn2w

1 1 1 1
—gL”%"i”wmmngL”lw + @Lmbmﬂi”ibnmmw - ﬂ)\nbnw + 4—8L”)\nw +...

2 1 1 1
dw = Vyllw + gLPVpW + 52— §¢n1n2n3Lnl V20" 4 <2Lp7/)mnp + 3Tm,n> S

1 1
—E <3Lp1Lp2me1P2 - 4LnTm,n + 3)\m> (SR S

o™ = Vo™ = Vol + PV + 50w — 20" Sw + L (B.39)
We have focussed on these g-levels as they are dual to the local algebra by an involution

that exchanges level ¢ with level —3—¢q. This is the invariant already encountered above in
the direct formulation.

B.3.2 Involution and symplectic invariant

We shall now show that there is an involution relating the W (d) representation on level
q of the algebra to the conjugate W (d) representation of the level —3 —¢ component, and
which is obtained by the use the Hodge-star operator on the generalised form. Here, level
q follows from Kac’ construction and is displayed in table 7.

Denoting a general field of the tensor hierarchy algebra .7 by
c= (- ;U W Yningng, Tmony, Ami Vins S5 -+ ) (B.40)
we define an antisymmetric bilinear form on .7 in components as the top-form component of

Q(Cl, 62) = (331WQ + Vi + - — 35w — Voo™ + ... ) (B.41)

top
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One can check using the above transformations that this is invariant to the level given. We
shall now show, starting from the local algebra, that an extension of the invariant Q(z;, z9)
to all levels exists.

We need to check that this bilinear form satisfies
Q[z,y], 2) = Qz, [y, 2]) (B.42)

for the three cases in which: all x, y and z are level ¢ = —1, when x is level —2, y level 0

and z level —1, and when z and z are level —2 and y level 1 and z, y degree zero and z

degree —3. The first case trivially follows from the associativity of the wedge product
((5152)53) 0 = (51(5253) )sop - (B.43)

The second follows using integration by part, i.e. the property that the top form of a total
contraction vanishes

2 1
<(VnL”w + L”Vmu) S) = <w (VnL”S + L"Vn5>> . (B.44)
3 top 3 top

The last one is obtained in the same way with few more steps as

1 1
ny,ng , N3 ng ni ,na
<< - 6’11[)’)11712’!1;;[’ [ CL)l + ZL ¢n1n2n;;L L Wl

1 1
na2 ,n n n1 , N2, N:
— gL 2 Y manst w1+ —48L L ngms W1 | W2

top

1 1
ni, N, n: n ny,n
= — (wl < - gwmnzngL L2 g + ZL SUnimangt L W2

1 1
na , M: n ny , ny ,N;
— =" Y gt W+ = W2
8 48 top

and

1 1 1 1
—— A" "\, = — R — "\, , (B4
<( 5yt w1 + 15t w1>w2>t0p <w1< 5yt w2 + 5 w2>>top (B.45)

where the minus one comes from the fact that we have reverse the Grassmann degree of
the generator to define the Cartan differential.

The last case follows by the manifest invariance with respect to the zero level symmetry

(Vimt"Vay + " VinVam)o™) — (Vim(Vapt"v™ + " Vo, o™ — "V 0"))

top = top -

(B.46)
These identities show that there is an antisymmetric invariant bilinear form on 7 that
pairs level ¢ with level —3 — ¢q. The projection on the top component in form-degree also
relates level p to level —2 — p.
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B.4 Remarks on the relation between FE;; and the tensor hierarchy algebra

The tensor hierarchy algebra contains F,; as a subalgebra and we will now fix d = 11 for
concreteness. We know that level p = 0 (see table 7) contains Ej; but also additional
new generators beyond the Kac-Moody structure. As we had already seen we crucially
obtain one new generator X, n, associated with ¢ = —3. This is the beginning of an Fq;
multiplet associated with the highest weight representation ¢o of Fq1. We shall now probe
whether there are additional E7; multiplets contained in p = 0 and what their reducibility
structure is.
First we decompose the forms as

1

6
1 M- N4 1 ni-ns

+19m...n4F + gem...nsB +...

0 6”1”2”3
ninans

1
S=M+86,L"+ 5enmA’“"? +

1
wmnzns = fn1n2n3 +6m (menzns - 35[777;1Fpn2n3]p> + §0n1n2Bn1n2n1n2n3 +...

T = Fonn +0pBP pn + ...
Am = B+ ... (B.47)

Here, we have used the fields already encountered to parametrise the algebra, although
we shall see that they parametrise in fact an element of the co-algebra. In this notation
the B-fields parametrise the Bianchi identity, and one finds for instance three independent
Bianchi identities

1
By, P'P2P* = 20y, F,, (PP — 33[P1P2Fn1n2ps]+35[[£11 apz\anQ]qPS] _ 53717177217:3!11!121:1mn2qlq2

1 1
_55[[21apzps]qmzqunz}qmqs + 5(;T[%71171;228p3]q1...q4];1qlmq4 +o

1
B, = 9, F""2 ap(mFmpnz) + 5(57(7?111 anz)pl---melmm + ...
1

1
B™ = S0 i, 4 o0 Fy (B.48)

where one sees that B,, is indeed not a linear combination of the trace of the two others.
The Bianchi identities are dual to the entries listed as (p,¢) = (—2, 1) in table 7. This entry
is dual to (p,q) = (0, —4) under the involution of the preceding section. The fact that there
are three vectors in the representation implies that something for the Fq; representations
needed to extend Fqp in the tensor hierarchy algebra. We already know that one needs /o
(which triggers the important field X,,, ,, discussed at length in this paper). However,
the adjoint of F1; and ¢ together contain only two vectors for ¢ = —4 and therefore we
deduce that 7 also contains the highest weight representation ¢1 that starts at ¢ = —4.
We expect that there is an infinite number of F;; highest weight representation needed to
extend F1; to the level p = 0 of the tensor hierarchy algebra 7.

We note however a difference between the representation £9 extending the adjoint rep-
resentation and the others. Indeed, taking the variation with the zero form component
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of ¥n,nyns only, which is associated to the action of the raising generator E™"2"3  one
derives that

Enlnznstvp = /" "2 s (B.49)
whereas 4 3
Franens (/\m + ngTm,p _ 5Lpl Lp2¢mp1p2> =0. (B.50)

It follows that the trace d—9 form component of (PV}, defines a primitive vector with respect
to Ey that varies to the adjoint representation, whereas A, + %LPTTM, — %Lplbp2 Ymp1ps does
not vary to the corresponding representation. For Fqi, this component includes the lowest
weight vector of 19 in 75 and the lowest weight vectors of £1 + f19 @ f11 in J_3. This
implies that the corresponding representations do not decompose as a direct sum in the
first case, but do for the second. That this extends to all other higher representations was
used as an assumption in section 4.

We use the convention that the forms are written as
1 1
Vin = &n + 0 Vi" + §0n1n2an1n2 + ggnlnsvmnﬂmng +... (B51)

and we define the irreducible gl(11) components with a hat, as

V,,mnens — menzm + 15[”1 f/nzn:ﬂ
3m

9

nin2q _ yyning
vy = e

wmpzpsmm = ¢p1p2p3n - *5[7“1/’192173 el + 115 7[;11;21’%3] )
Vpipag © = ﬁmmn - 5 f}gl%] ) Upgrge " = 1&;0’
Tonp" = Tonp + éé?mi},) , T’ =Ty . (B.52)
Using these definitions one computes that
symne — _¢p1p2p3fp1p21’3 + 2¢p1p2 [n1 fnz}plpz
N T
SV, mnans — _3¢mmp2 [nmzfm]mpz + %5%“1&1,1;,21,3”2"3]]”’11’2”3

1 ninan T ni £nan
16< wm+)\ )f1233Tm,q[ 1f23}q

1

-5 < p+ A )57[21]0"2”3“’ (B.53)

and consistently with the property that t,, + 3\, corresponds to the element of ¢;; asso-
ciated to the field Cyq 1 that

5(72}171 + 3)\m) = *Qan1n2n3en1n2n3 . (B.54)

Then the field zﬁm + 15Tm corresponds to the field Xy11 in ¢2 plus an arbitrary multiple
of 1,1 that is not uniquely fixed by the representation (beacuse of its indecomposable
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character). The field 31&m + 4T, + 5Am, corresponds instead to the field Y;;; defining the
highest weight component of the ¢19 module. The FEj; transformations (B.50) and (B.53)
imply that there is no mixing between e;; @ ¢ and £1g.

Using a similar decomposition in irreducible components

Upipaps T2 = ¢p1p2p3n1n2n3 + 5[mwp2p3]n2n3] T 411 [;11;22%35 Jns] T 1(155 5gfgzzbgdw7
T ™" = T ™™ — 141 Sy, A=A+ ﬁd,w (B.55)
one computes that
OV rnansna — —4zﬁmp1p2 [nanzng pralpipe 4 %(51/3,”17[”1"2]‘“"3"4@ - 5,[leﬂp1p2"2”3f”4]p1p2)
46T plrima pronily — L, o pransnil _ yogfmayna pronie
+% (im[m ﬁﬂl}lw + )\m[n1> framanal (B.56)

In this case one finds that the corresponding components of tP1 P29y, 5, — 3y, and P15,
belong to /i, whereas the corresponding components of 5\, + 47T, , — 3P P2, py
define the highest weight vectors of ¢1 4+ £19 and ¢1;. The commutation relation following
from (B.50) and (B.56) are such that there is no mixing between ¢; and ¢1 + £19 @ ¢1;.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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