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1 Introduction

In an attempt to find the structure underlying M-theory, West has proposed to study non-

linear realisations based on the Lorentzian Kac-Moody group E11 [1–3] and this proposal

has been developed further in [4–6].1 One of the reasons for considering E11 is that it

contains the covariance group GL(11) of eleven-dimensional supergravity as well as the

Cremmer-Julia sequence of split Ed symmetry groups of maximal supergravity [1, 8–10].

A convenient way of organising the infinitely many generators of the corresponding Lie

algebra e11 is by decomposing its adjoint representation under gl(11) and this immediately

reveals a possible connection to eleven-dimensional supergravity. One finds as the first

generators in this so-called level decomposition the adjoint of gl(11) (that is associated

with the vielbein), an antisymmetric three-form (that is associated with the three-form

gauge field), an antisymmetric six-form (that is associated with the magnetic dual of the

three-form) and a mixed symmetry generator with index structure (8, 1) (that is associated

with the (linearised) magnetic dual of the vielbein) [11–13]. These are but the first of an

infinity of generators contained in e11.

In order to construct a theory with E11 symmetry one has to consider also an ex-

tended (infinite-dimensional) space-time as well as a local symmetry that is associated

with a maximal subgroup of E11 that we will call K(E11) and that plays the role of a

generalised R-symmetry group.2 The infinite-dimensional space-time is associated with an

infinite-dimensional lowest weight representation of e11 that is called the ℓ1 representation

in the literature [16, 17], in accordance with the labelling of the nodes in the e11 Dynkin

diagram shown in figure 1. Thus, the Dynkin labels that we associate with the lowest

weight representation ℓ1 are (1, 0, . . . , 0) with 1 at the first node, and 0 at all other nodes.

Decomposed under the gl(11) ⊂ e11 subalgebra the ℓ1 representation comprises standard

translation generators as well as generators that are associated with the two-form and five-

form central charges of the D = 11 supersymmetry algebra [16].3 In the E11 framework

there is a coordinate zM for every basis element PM of the ℓ1 representation and all fields

depend on all these coordinates. A set of first-order equations of motion and a set of gauge

transformations have been proposed in [2, 3, 5] to describe an E11 invariant extension of

eleven-dimensional supergravity. This far-reaching proposal has a number of points related

1A conceptually different approach based on the hyperbolic Kac-Moody group E10 can be found in [7].
2In the literature one often finds the notation IC(E11) since it is defined as the fixed point set of a Cartan

involution. In order to obtain Lorentz symmetry SO(1, 10) ⊂ K(E11) one has to also allow for multiple

time signatures [14, 15].
3A coordinate ymn for the membrane central charge was already discussed in [18, 19].
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to the dynamics and gauge invariance that deserve further study. In this paper, we investi-

gate these points and we make a proposal for an extended framework which may overcome

some difficulties that we encounter in the original scheme.

More precisely, the non-linear realisation of E11 on a space-time based on the ℓ1 repre-

sentation leads to objects that transform in the tensor product of the coset representation

of K(E11) and the ℓ1 representation (viewed as a K(E11) representation). A construction

of dynamics that respects the E11 symmetry then could be based on requiring that the pro-

jection of the general Maurer-Cartan coset velocity to certain invariant subspaces of this

tensor product has to vanish. The equations obtained in this way will be a set of K(E11)

covariant first order equations that are similar to the (twisted) duality equations introduced

in [10]. Since the decomposition of the tensor product of ℓ1 and the coset representation

under K(E11) is not known, the construction of such subspaces can only be probed in a

pedestrian way in a level decomposition, starting for example from known duality equations

such as the one between the four-form field strength and its dual seven-form in D = 11

supergravity. The multiplet should then also involve first order equations for gravity. This

is the approach followed in [2]. The level decomposition does not allow, however, to prove

the existence of a suitable K(e11) invariant subspace, and one will eventually need to intro-

duce more sophisticated methods to define the theory. Note that the construction does not

assume these first order equations to be invariant under generalised gauge transformations.

In fact, it is expected from the point of view of unfolded field equations of higher spin gauge

fields (starting from gravity) that these first order equations are not gauge invariant [20–23].

First order duality equations imply second order field equations by integrability. Given

the K(e11) multiplet of first order duality equations one can in principle construct a K(e11)

multiplet of second order field equations in this way. The construction of a K(e11) multiplet

of second order equations has been initiated in [5] and continued to higher derivative orders

in [6]. There are two important aspects to this construction that have not been addressed

in detail in the literature. First, one forms a compatible system of equations, in the sense

that the K(e11)-multiplet of second order equations is automatically solved by the solutions

to the K(e11)-multiplet of first order equations by integrability. This requires in particular

the first and second order equations to transform consistently with respect to K(e11). The

second aspect concerns gauge invariance of the second order field equations. The dynamics

must be gauge invariant and so one may hope that these second order field equations are

invariant under the generalised gauge transformations acting on the fields of the theory in

much the same way that the Einstein equation and matter equations are gauge invariant.

However, it was explained in [6] that the order of the differential equations that can possibly

be gauge invariant increases linearly with the gl(11) level of the associated gauge fields, more

precisely the number of columns of the associated Young tableau. These gauge invariant

equations of high differential order can be integrated to lower order differential equations

at the price of introducing undetermined total derivatives. It is proposed in [6] that these

ambiguous total derivatives can be interpreted as certain (yet to be determined) gauge

transformations of the theory. As E11 contains fields with an arbitrarily high number of

columns, seeking a full set of gauge and K(e11) invariant differential equations of finite

order in derivatives, one has to introduce additional fields and this is the approach we will

– 2 –
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Figure 1. Dynkin diagram of E11 with labelling of nodes used in the text.

pursue in this article.

Independently of this additional difficulty, we argue in this paper that, as is visible

already at low levels, any kind of integrability condition or gauge invariance can only be

realised upon imposition of a section constraint. This section constraint is of the type that

has also featured prominently in recent efforts devoted to defining exceptional field theory

for finite-dimensional symmetry groups Ed with d ≤ 8 [24–26] using also earlier ideas on

exceptional generalised geometry [27–32] and double field theory [33–37]. In the context

of E11, the section constraint has been discussed in relation to generalised BPS conditions

in [38], but it has been also argued for example in [4] that the section constraint is not

necessary for the consistency of the full non-linear realisation of E11.

In exceptional field theory all fields depend on an extended space-time that is deter-

mined by the finite-dimensional analogue of the ℓ1 representation mentioned above. How-

ever, consistency of the gauge algebra and the theory requires that all fields in the theory

satisfy the (strong) section constraint, which effectively limits the dependence to that on the

coordinates of ordinary space-time, by requiring that certain combinations of two deriva-

tives vanish on any field, or on any product of fields (where the derivatives act separately

on one field each). In group theoretic terms, the section constraint says that the product

of two derivatives ∂M ⊗ ∂N has to vanish when projected to a certain subrepresentation of

the tensor product ℓ1⊗ ℓ1. Since most of our analysis is at the linear order in the fields, we

will only encounter the weak version of the section constraint here, where both derivatives

act on the same field, and thus only the symmetric part of the tensor product is relevant.

The section constraint then relies on the decomposition

(ℓ1 ⊗ ℓ1)sym = (2ℓ1)⊕ [ℓ10 ⊕ · · · ] , (1.1)

where ℓ10 denotes the e11 representation with Dynkin labels (0, 0, . . . 0, 1, 0), and (2ℓ1)

denotes the representation with Dynkin labels (2, 0, . . . , 0). The part projected out by the

section constraint is the complement of the (2ℓ1) representation that is shown in square

brackets. In the analogous discussion for the finite-dimensional Lie algebras ed with d ≤ 7,

the analogue of ℓ10 (i.e., ℓd−1) is in fact the only other irreducible representation, besides

(2ℓ1), in the symmetric part of the tensor product ℓ1 ⊗ ℓ1.
4 In these cases, one could

therefore alternatively write (∂M ⊗ ∂N )sym|ℓd−1
= 0. A discussion of section constraints for

arbitrary groups was initiated in [39].

In this article, we will present a new scheme that is based on an extension of e11 to a Lie

superalgebra which is the d = 11 analogue of the tensor hierarchy algebras extending ed for

d ≤ 8 [40–42]. This tensor hierarchy algebra provides a framework for constructing gauge

4In the last finite-dimensional case d = 8 the symmetric product contains in addition an e8 singlet.
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invariant objects by furnishing a differential complex of functions satisfying the section

constraint. The tensor hierarchy algebra also provides new generators in addition to the ones

of e11 and the associated fields allow a consistent description of the dualisation of linearised

gravity [11, Section 4].5 We will also explain how this algebraic structure could provide a

(linearised) two-derivative Lagrangian whose equations of motion, together with a duality

relation, reduce to the standard D = 11 supergravity field equations upon choosing the

standard D = 11 solution of the section constraint that only retains the eleven-dimensional

coordinates.

The tensor hierarchy algebra has two features that we find particularly remarkable.

The first is that it extends in a controlled way the adjoint representation of e11. The

resulting representation contains the adjoint of e11 as a subrepresentation but is not fully

reducible. In particular, the tensor hierarchy algebra introduces new generators starting

from gl(11) level three, the first of which has nine antisymmetric indices. It combines with

the irreducible (8, 1) hook structure of the e11 dual graviton generator to produce the correct

dual gravity equation with the correct gauge transformations. Understanding this has been

a long-standing puzzle. This point is explained in more detail in sections 4 and 5.

The second remarkable feature of the tensor hierarchy algebra is that it includes an

E11 module that allows to define natural field strengths in the theory. This module is

equipped with an invariant symplectic form, that descends from a non-degenerate bilinear

form with Z2-graded symmetry on the whole tensor hierarchy algebra. The symplectic

form together with an appropriate K(e11) invariant bilinear form on the field strength

representation can be used to write down a first order duality equation. This equation

is not gauge invariant (in generalised space-time) but corresponds exactly to the duality

equation of D = 11 supergravity. However, it is compatible with the gauge-invariant second

order field equations that we also construct.

As another new result we present the decomposition of all equations in a language

adapted to type IIB supergravity. This is relevant since E11 is known to relate to type IIB

supergravity as well [44] and the section constraint (1.1) has type IIB as another maximal

vector space solution [45–47].

The structure of this article is as follows. In section 2, we review the construction

of the non-linear realisation of E11 and identify the building blocks for constructing field

equations respecting E11 symmetry. In section 3, we discuss potential paths to constructing

first order field equations and identify a particular candidate multiplet of first order duality

equations. In section 3.4, we investigate second order field equations that can be derived

from the candidate multiplet of first order duality equations and study their consistency with

K(E11). Moreover, we study linearised gauge transformations of the second order equations

and find that their gauge invariance requires as a novel feature the section constraint. Our

results in sections 2 and 3 extend the analysis in [2, 5] by including higher level fields and

by noticing the necessity of working modulo a section constraint.

5There is no obvious relation between our new fields and the section constrained forms that appear in

exceptional field theory [26] and that are not part of E11 either. The fields of [26] are relevant for the gauging

of the trombone symmetry and the field strengths defined in the present article do not accommodate these

gaugings.
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In section 4, we introduce our new scheme based on the tensor hierarchy algebra,

providing a construction of an E11 multiplet of gauge invariant field strengths (modulo the

section constraint). We also introduce a Lagrangian based on this construction in section 5

and show that its Euler-Lagrange second order field equations are gauge invariant and

agree with those of D = 11 supergravity. Furthermore we discuss the existence of a natural

set of first order duality equations compatible with the field equations. We also connect

our construction to non-geometric fluxes and the unfolding construction. In section 6, we

rediscuss our analysis of the preceding sections in a language where everything is written

in terms of type IIB variables rather than D = 11. This will bring out more clearly the

difference between our scheme based on the tensor hierarchy algebra and the original E11

formulation. In section 7, we offer some comments on non-linear extensions of our theory.

Section 8 contains some concluding comments. In two appendices we collect more technical

details on some of the arguments and calculations used in the body of this article.

2 Non-linear realisation of E11 and D = 11 supergravity

After reviewing first the non-linear realisation and the gl(11) level decomposition of e11, we

discuss the construction of dynamics associated with it following the E11 proposal [1, 5].

In most of the paper we will be dealing with Lie algebras that we write in fraktur font.

For Kac-Moody Lie algebras like e11 the definition of the corresponding groups is more

subtle than just taking the exponential map due to the existence of imaginary roots. One

can define an associated group by considering only the real roots and the associated one-

parameter subgroups. The Kac-Moody group is generated from these one-parameter groups,

see [48–50] for detailed discussions.

2.1 Non-linear realisation

The fields of the theory parametrise the coset E11/K(E11), and are functions on the E11

module ℓ1. To define the action of E11 on the module ℓ1, it is convenient to define the

semidirect sum e11 ⊕ ℓ1. We introduce the following abstract notation for the generators

of the various representations. The generators of the adjoint of e11 are called tα with

commutation relations

[tα, tβ ] = Cαβ
γt

γ . (2.1)

The generators of the ℓ1 representation are called PM . They transform in a representation

of e11 according to6

[tα, PM ] = −DαN
MPN (2.2)

and are abelian, [PM , PN ] = 0.

6In sections 4 and 5, we shall instead use the indices α0 and M0 for the adjoint and ℓ1 representations of

e11 in order to distinguish them from additional representations that arise in the tensor hierarchy algebra.

No confusion should arise, given the context in which the formulas are given.

– 5 –
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One parametrises an element z of the module ℓ1 as

z = zMPM , (2.3)

which parametrises an a priori infinite-dimensional extended space-time. g0 ∈ E11 acts

linearly on these coordinates through the action (2.2)

z → g0zg
−1
0 . (2.4)

The E11 group element g(z) depends on these coordinates. On g(z) we define the action of

global E11 and local K(E11) as

g(z)→ g0g(g0zg
−1
0 )k(z) , (2.5)

for k(z) ∈ K(E11). Here ‘local’ means that k(z) depends on the extended space-time.

In practice one represents the coset E11/K(E11) through a representative g(z) satisfying

a specific gauge condition (which is possible almost everywhere). Then k(z) becomes an

induced compensating transformation function of g0 and g(g0zg
−1
0 ).

The first building block for the dynamics comes from the Maurer-Cartan form

V(z) ≡ g(z)−1dg(z) , (2.6)

where the differential

d = dzM
∂

∂zM
(2.7)

corresponds to taking derivatives with respect to all coordinates zM of the ℓ1 module.

As a form it is valued in the adjoint of e11 and transforms as

V(z)→ k(z)−1V(g0zg −1
0 )k(z) + k(z)−1dk(z) (2.8)

under (2.5). The global E11 transformation only acts on the argument of V . The second

inhomogeneous term on the right is a connection term valued in the Lie algebra K(e11) of

K(E11). Under this subalgebra, e11 decomposes as

e11 = p⊕K(e11) , (2.9)

where p is a K(e11)-module, which we shall refer to as the coset representation. It is not

known whether it is irreducible or not, even in the affine case.

If one splits the Maurer-Cartan one-form V according to the decomposition (2.9) as

V(z) = P(z) +K(z) , (2.10)

then the ‘coset component’ P(z) transforms as a linear K(E11) representation,

P(z)→ k(z)−1P(g0zg −1
0 )k(z) , (2.11)

and the ‘connection part’ K as

K(z)→ k(z)−1K(g0zg −1
0 )k(z) + k(z)−1dk(z) . (2.12)

– 6 –
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It is convenient to define the vielbein basis7

g(z)−1dzg(z) = E(z)APA = E(z)M
AdzMPA , (2.13)

where the ‘vielbein’ E(z)M
A is the matrix representation of the coset representative g(z)

written in the ℓ1 representation where M is a ‘curved index’ transforming under E11 and

A is a flat index transforming under local K(E11). When one expands out the one-form P
in this basis, one obtains

P(z) = PM (z)dzM = PA(z)E(z)A . (2.14)

The remaining tangent space components PA(z) then transform under K(E11) both on the

A index (in the ℓ1 representation branched to K(E11)) and in the coset representation of

K(E11). The PA are the basic dynamical variables of the non-linear realisation of E11 with

the group element g(z) depending on variables z in the ℓ1 representation.

2.2 GL(11) level decomposition of E11 and its ℓ1 representation

We will require a more explicit parametrisation of e11 and its ℓ1 representation and use a

decomposition into gl(11) representations for this. As is visible from the Dynkin diagram in

figure 1, the Lie algebra e11 contains a gl(11) subalgebra, since the Dynkin diagram of sl(11)

is obtained by deleting node 11, and the Cartan generator associated to the deleted node

extends sl(11) to gl(11). The generators Km
n of this subalgebra satisfy the commutation

relations

[Km
n,K

p
q] = δpnK

m
q − δmq Kp

n (2.15)

with gl(11) tensor indices m,n, . . . = 0, 1, . . . , 10. Any representation of e11 can then be

decomposed into representations of gl(11). In the cases we consider here, these are finite-

dimensional representations that can be specified by sl(11) Dynkin labels together with a

level ℓ, which is the eigenvalue of 1
3K, where K = Km

m is the trace of the gl(11) generators.

We use the convention that is common in the context of hyperbolic and Lorentzian Kac-

Moody algebras [7], namely to use as Dynkin labels the negative of the lowest weight. We

give more details on our conventions for the gl(11) representations and the translation to

tensors in appendix A.

Table 1 lists the result of the gl(11) level decomposition for the adjoint of e11 at levels

0 ≤ ℓ ≤ 5 [11]. The generators En1n2n3 and En1...n6 are completely antisymmetric, while

the level ℓ = 3 generator En1...n8,m transforms in an (8, 1) hook tableau8 of gl(11):

En1···n8,m = E[n1···n8],m , E[n1···n8,m] = 0 . (2.16)

7Note that unlike the original papers [2, 16, 17], we do not include a factor ez
MPM in the group element

entering the non-linear realisation. The only purpose that it serves there is to obtain the vielbein E(z)M
A

from the non-linear realisation. Here, we obtain this simply as the representative of the E11 group element

g(z) in the ℓ1 representation.
8Projectors on tensors with hook symmetry are discussed more generally in appendix A, see (A.9).
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Level ℓ = q sl(11) representation Generator Potential

0
(1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Km

n hm
n

1 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) En1n2n3 An1n2n3

2 (0, 0, 0, 0, 1, 0, 0, 0, 0, 0) En1···n6 An1···n6

3 (0, 0, 1, 0, 0, 0, 0, 0, 0, 1) En1···n8,m hn1···n8,m

4

(0, 1, 0, 0, 0, 0, 0, 1, 0, 0)

(1, 0, 0, 0, 0, 0, 0, 0, 0, 2)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

En1···n9,p1p2p3

En1···n10,p,q

En1···n11,m

An1···n9,p1p2p3

Bn1···n10,p,q

Cn1···n11,m

5

(0, 1, 0, 0, 1, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0, 1, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 0, 1, 0, 1)

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

En1···n9,p1···p6

En1···n10,p1···p4,q

En1···n11,p1p2p3,q

En1···n11,p1···p4

An1···n9,p1···p6

Bn1···n10,p1···p4,q

Cn1···n11,p1p2p3,q

Cn1···n11,p1···p4

Table 1. Level decomposition of e11 under its gl(11) subalgebra obtained by deleting node 11 from

the Dynkin diagram in figure 1, up to level ℓ = 5. The level ℓ is the eigenvalue of the generator
1
3K

m
m. The degree q is defined in (2.21) and for the adjoint of e11 equals the level ℓ.

We will always use the notation that comma-separated sets of indices belong to an irre-

ducible tensor whereas a semi-colon denotes a reducible tensor. Conjugate to the positive

level generators one has negative level generators down to level ℓ ≥ −3 consisting of

Fn1···n8,m, Fn1···n6 , Fn1n2n3 (2.17)

with analogous symmetry properties. Together they constitute all tα of the adjoint of E11

for |ℓ| ≤ 3. Their complete commutations relations are given in appendix A. We note

that our conventions for the commutators differ slightly from the ones used in [5]. As an

example, we have

[En1n2n3 , En4n5n6 ] = En1···n6 . (2.18)

This is the reason for some differences in coefficients of our expressions below compared to

the literature.

The coordinate representation ℓ1 is a lowest weight representation of e11 with the fol-

lowing low-lying generators in gl(11) basis [16]

PM = {Pm, Z
mn, Zn1···n5 , Pn1···n8 , Pn1···n7,m, . . .} . (2.19)

The last two that are displayed here appear on the same gl(11) level ℓ = 9/2 and this

information is also summarised in table 2. The action of e11 on the representation in this
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ℓ q = ℓ− 3
2 sl(11) representation Generator Coordinate Parameter

3
2 0 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) Pm xm ξm

5
2 1 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0) Zmn ymn λmn

7
2 2 (0, 0, 0, 0, 0, 1, 0, 0, 0, 0) Zn1···n5 yn1···n5 λn1···n5

9
2 3

(0, 0, 0, 1, 0, 0, 0, 0, 0, 1)

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Pn1···n7,m

Pn1···n8

xn1···n7,m

xn1···n8

ξn1···n7,m

λn1···n8

11
2 4

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 0, 0, 0, 1, 0)

(0, 1, 0, 0, 0, 0, 0, 0, 0, 2)

(0, 0, 1, 0, 0, 0, 0, 1, 0, 0)

Pn1...n11

Pn1...n10,m

P̃n1...n10,m

Pn1...n9,m1m2

Pn1...n9,m,p

Pn1...n8,m1m2m3

yn1...n11

yn1...n10,m

ỹn1...n10,m

yn1...n9,m1m2

yn1...n9,m,p

yn1...n8,m1m2m3

λn1...n11

λn1...n10,m

λ̃n1...n10,m

λn1...n9,m1m2

λn1...n9,m,p

λn1...n8,m1m2m3

Table 2. Level decomposition of the ℓ1 representation of e11 under gl(11), up to level ℓ = 11/2.

This is a lowest weight representation and therefore the top entry is annihilated by all lowering

generators. The names of the generators already anticipate their roles as translation and central

charge type coordinates in a D = 11 interpretation. The degree q in this case differs from the gl(11)

level ℓ in the way indicated in the table and in (2.21).

decomposition is given in appendix A. We stress that the objects in (2.19) are not tensors

of gl(11) but tensor densities. Under the gl(11) generators Km
n one has for example that

[Km
n, Pk] = −δmk Pn +

1

2
δmn Pk . (2.20)

This is the reason that we introduce an additional degree q that uses as an offset the gl(11)

level ℓ of the lowest weight component in ℓ1 with respect to gl(11). This degree q is not the

eigenvalue of any semisimple operator of e11 but very useful to keep track of the number of

steps one has taken from the lowest component. Thus we have

q = ℓ for the adjoint of e11,

q = ℓ− 3

2
for the ℓ1 representation of e11.

(2.21)

Using this more explicit parametrisation of e11 and its ℓ1 representation in the gl(11)

maximal parabolic gauge, we can write the group element g(z) and its argument z more

precisely as

g = · · · e 1
8!
hn1···n8,mEn1···n8,m

e
1
6!
An1···n6E

n1···n6
e

1
3!
An1n2n3E

n1n2n3
eϕn

mKn
m

= 1 +
∑

α with ℓ≥0

Aαt
α + · · · , (2.22)

z = xmPm +
1

2!
ymnZ

mn +
1

5!
yn1···n5Z

n1···n5 +
1

7!
xn1···n7,mP

n1···n7,m

+
1

7!
xn1···n8P

n1...n8 + · · · .
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The local K(E11) invariance has been used to take a coset representative solely in terms

of non-negative levels.9 At this point ϕn
m at level ℓ = 0 is not constrained, and so it is a

general (11× 11)-matrix. This means that we have not completely fixed the local K(E11)

invariance but are left with a local Lorentz invariance coming from SO(1, 10) ⊂ GL(11) at

level ℓ = 0. This type of K(E11) gauge is referred to as a maximal parabolic gauge. We

have also used different letters for the coordinates and fields according to whether they are

part of the gravity or of the matter sector of the theory. Note the prefactor 1/7! in front of

xn1···n8P
n1···n8 , which turns out to be more convenient than 1/8!.10

In the explicit parametrisation of fields (2.22) one can then construct the PA of equa-

tion (2.14). Working at the linearised level one obtains the following components:

∂ahbc, ∂aAb1b2b3 , ∂aAb1···b6 , ∂ahb1···b8,c, . . .

∂a1a2hbc , ∂a1a2Ab1b2b3 , ∂a1a2Ab1···b6 , ∂a1a2hb1···b8,c, . . .

...
...

...
...

. . . (2.23)

Latin indices from the beginning of the alphabet are tangent space indices. We note that the

components in PA depending on the vielbein fluctuation ϕm
n only depend on the derivative

of the metric fluctuation

hab = ϕab + ϕba , (2.24)

so we shall use the symmetric tensor hab instead of the generic tensor ϕab. Note that this

does not mean that we have gauge fixed the local Lorentz invariance. Sometimes in the

literature the complete Maurer-Cartan form VA = PA + KA is used rather than only PA.

In this case the full ϕab appears. For completeness we have checked that our computations

lead automatically to the condition that only PA is involved in the first order equation

without assuming it to start with.

First order field equations will be constructed out of the objects (2.23) and in order to

maintain E11 symmetry the resulting equations will have to form a K(E11) multiplet since

the induced K(E11) action is all that remains when working with PA. The action of K(E11)

on the various quantities above have been worked out for example in [2] (see also [52, 53])

and we give them here in our conventions. For defining the action of rigid K(e11) it suffices

to give the action of the ‘level one’ generator

Λ =
1

3!
Λa1a2a3 (E

a1a2a3 − Fa1a2a3) (2.25)

since we are working in a manifestly Lorentz covariant formalism and all other K(e11)

generators can be obtained from this by multiple commutation.

9This is not always possible but we restrict ourselves here to work on a patch of E11 where it is. This

difficulty is due to the non-compact involution defining K(E11) with ‘Lorentz signature’. There is a second

difficulty with the parametrisation above that is due to the fact that some of the generators are associated

with imaginary roots and therefore not locally nilpotent such that the exponential map is not a priori

well-defined [51].
10This is related to the fact that Pn1···n8 appears at the same level as Pn1···n7,m, and one can combine

them into 1
7!
xn1...n7;mPn1...n7;m.
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Using the commutators of appendix A, the coset potentials transform under the lin-

earised action of this K(e11) generator as11

δΛhab = Λc1c2
(aAb)c1c2 −

1

9
ηabΛ

c1c2c3Ac1c2c3 ,

δΛAa1a2a3 = −3Λb[a1a2ha3]
b +

1

6
Λb1b2b3Aa1a2a3b1b2b3 ,

δΛAa1a2a3a4a5a6 = 20Λ[a1a2a3Aa4a5a6] +
1

2
Λb1b2cha1a2a3a4a5a6b1b2,c ,

δΛha1a2a3a4a5a6a7a8,b = 56Λ‹a1a2a3Aa4a5a6a7a8,b› + · · · , (2.26)

These transformations were obtained in [5] in a different normalisation of the fields and

without the symmetric gauge choice (2.24). The angle brackets ‹ › denote projection on

the (8, 1) hook representation (see appendix A). The derivatives transform as

δΛ∂a =
1

2
Λab1b2∂

b1b2 ,

δΛ∂
a1a2 = −Λa1a2b∂b +

1

6
Λb1b2b3∂

a1a2b1b2b3 ,

δΛ∂
a1a2a3a4a5 = −10Λ[a1a2a3∂a4a5] +

1

2
Λb1b2c∂

a1a2a3a4a5b1b2,c

+
1

6
Λb1b2b3∂

a1a2a3a4a5b1b2b3 ,

δΛ∂
a1a2a3a4a5a6a7,b = −105

8

(
Λ[a1a2a3∂a4a5a6a7]b + Λb[a1a2∂a3a4a5a6a7]

)
+ · · · ,

δΛ∂
a1a2a3a4a5a6a7a8 = 7Λ[a1a2a3∂a4a5a6a7a8] + · · · . (2.27)

In the last two equations the ellipses indicate terms involving derivatives of gl(11) level

ℓ ≤ −11
2 .

2.3 Gauge transformations and E11

The local gauge transformations of the above non-linear realisation of E11 are just the local

K(E11) transformation in (2.5). In order to obtain (generalised) diffeomorphisms, one must

introduce additional gauge transformations as was discussed in [3]. For this one introduces

gauge parameters ΞM that transform in the ℓ1 representation. In the present basis, this

means one has

ΞM = {ξm, λmn, λn1···n5 , ξn1···n7,m , λn1···n8 , . . .} . (2.28)

The reason for using different letters in the decomposition is that the ξ are associated

with the gravity sector (diffeomorphisms and dual diffeomorphisms) whereas the λ are

thought of as associated with the matter sector in this decomposition. One exception to

this labelling occurs for the antisymmetric parameter λn1···n8 that is also associated with

11These transformations correspond to the symmetric gauge for the potentials (in which ϕab = 1
2
hab),

but hold for the components of PA in ∂MAα for any gauge, and in particular for the parabolic gauge we

consider.
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dual diffeomorphisms. The reason it is denoted with λ rather than ξ is to reduce the risk of

confusion with the mixed symmetry parameter ξn1···n7,m with the same number of indices.

The linearised gauge transformations for fields Aα parametrising the coset E11/K(E11)

as in (2.22) can be defined by using the fact that the adjoint appears in the tensor product

of the translation representation ℓ1 and its dual (2.30):

δΞAα = καβD
βM

N∂MΞN + bα . (2.29)

Here καβ is the inverse of the symmetric invariant bilinear form on e11 (see appendix A) and

DβM
N are the structure constants in the ℓ1 representation. The fields Aα are the compo-

nents of an element in the maximal parabolic subalgebra of e11 (see (2.22)) and the compen-

sator bα ∈ K(e11) is defined such as to remove any component of negative level generated

this way. For non-linear gauge transformations one must also introduce an appropriate

connection in a (gauge) covariant derivative ∇ replacing the partial derivative above,

δΞg(z) =
(
καβD

βN
M∇NΞM (x)tα

)
g(z) + g(z)b(g,∇Ξ) , (2.30)

where we have written out the local K(e11) transformation b(g,∇Ξ) that restores the gauge

fixing. The covariant derivative ∇M is not a priori determined directly from a group theory

construction [3]. Its definition is an open problem that we shall not address in this paper

since we shall almost always work at the linearised level.

The linearised gauge transformations (2.29) for our fields are then found, using the

commutators provided in appendix A, to be

δΞhab = 2 ∂(aξb) − 2∂(a
cλb)c −

2

4!
∂(a

c1···c4λb)c1···c4 −
2

6!
∂(a

c1···c6,dξb)c1···c6,d

− 2

7!
∂c1···c7,(aξ|c1···c7|,b) −

16

7!
∂(a

c1···c7λb)c1···c7

+
1

3
ηab

(
∂c1c2λc1c2 +

4

5!
∂c1···c5λc1···c5 +

6

7!
∂c1···c7,dξc1···c7,d +

6

7!
∂c1···c8λc1···c8

)

+ . . . ,

δΞAa1a2a3 = 3 ∂[a1λa2a3] +
1

2
∂b1b2λa1a2a3b1b2 +

1

4!
∂b1···b5ξa1a2a3b1···b4,b5

− 1

5!
∂b1···b5λa1a2a3b1···b5 + 3 ∂[a1a2ξa3] +

1

2
∂a1a2a3

b1b2λb1b2

+
1

4!
∂a1a2a3

b1···b4,cλb1···b4c −
1

5!
∂a1a2a3

b1···b5λb1···b5 + . . . ,

δΞAa1···a6 = 6 ∂[a1λa2···a6] − ∂bcξa1···a6b,c + ∂b1b2λa1···a6b1b2

− 6 ∂[a1···a5ξa6] − ∂a1···a6b,cλbc + ∂a1···a6
b1b2λb1b2 + . . . ,

δΞha1···a8,b = 8 ∂[a1ξa2···a8],b +
8

3

(
∂[a1λa2···a8]b − ∂bλa1···a8

)
− 8 ∂[a1···a7|,b|ξa8]

− 8

3

(
∂a1···a8ξb − ∂b[a1···a7ξa8]

)
+ . . . . (2.31)
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The ellipses indicate terms involving derivatives or gauge parameters of gl(11) level |ℓ| ≥
11
2 .12 These transformations extend the ones given in the original paper [3]. Indices have

been raised and lowered with the flat background metric. Alternatively, the coefficients

in all the transformations above can be fixed by the requirement that they commute with

the K(E11) transformations. We will use these gauge transformations later to check gauge

invariance of the field equations that we construct.

2.4 D = 11 supergravity and its first order duality relations

We will consider D = 11 supergravity [55] in conventions such that the bosonic second

order field equations are given (in tangent space indices) by

Rab =
1

12
Fac1c2c3Fb

c1c2c3 − 1

144
ηabFc1...c4F

c1...c4 , (2.32a)

DcF
ca1a2a3 = − 1

1152
εa1a2a3b1...b8Fb1...b4Fb5...b8 , (2.32b)

where Da = ea
m(∂m + ωm) is the tangent frame covariant derivative with the torsion

free spin connection ωm. The field strength is given by Fa1a2a3a4 = 4D[a1Aa2a3a4]. The

flat indices have ranges a, b, . . . = 0, 1, . . . , 10, with 0 indicating the time direction and

ηab = (−+ · · ·+) the flat Minkoswki metric.

As is well-known, the non-linear matter equation of motion (2.32b) can be recast in a

first order form by pulling a covariant derivative out of the Chern-Simons contribution on

the right-hand side, leading to

Dc

(
F ca1a2a3 − 1

144
εca1a2a3b1...b7Ab1b2b3Fb4...b7

)
= 0 , (2.33)

and the existence of a six-form potential Aa1...a6 satisfying

F a1...a4 − 1

144
εa1...a4b1...b7Ab1b2b3Fb4...b7 = − 1

6!
εa1...a4b1...b7 D[b1Ab2...b7]︸ ︷︷ ︸

=: 1
7
Fb1...b7

. (2.34)

By contrast, the non-linear Einstein equation is not amenable to a similar treatment [56, 57].

However, once one linearises the theory one can obtain a dual graviton field and write

the linearised Einstein equation in first order form [1, 11, 58–61]; the matter contribution

disappears in this approximation. We will perform the dualisation from the linearised

(vacuum) equation of motion Rab − 1
2ηabR = 0. Expanding the vielbein around flat space,

em
a = δam + ϕm

a, the Ricci tensor and scalar become at linear order

Rab = ∂aωcb
c − ∂cωab

c , R = 2∂dωcd
c , where ωabc = −∂[bϕc]a − ∂[bϕ|a|c] + ∂aϕ[bc] .

(2.35)

12We note that these expressions, as similar ones below for the tensor hierarchy algebra, are formally

infinite sums and therefore not fully well-defined algebraically. A discussion of this point in the context of

affine Kac-Moody algebras can be found in [54].
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Note that local Lorentz invariance has not been fixed here and the linearised vielbein ϕab

contains an antisymmetric part. Introducing a mixed symmetry field Ca1...a8;b with

ωab1b2 − 2ωc[b1
cηb2]a = − 1

8!
εb1b2

c1...c9∂c1Cc2...c9;a , (2.36)

one finds that the integrability of this equation (taking ∂b1 on both sides) implies

Rab −
1

2
ηabR = 0 , (2.37)

and therefore (2.36) is equivalent to the linearised Einstein equation.

It is important to note that the field Ca1...a8;b that one calls the dual graviton does

not satisfy C[a1...a8;b] = 0 from (2.36). This is indicated by the notation with the semi-

colon. Recall that we will always use the notation that a comma on a set of indices denotes

an irreducible Young tableau as in (2.16). Indeed, taking the trace ηab2 of that equation

leads to

ωca
c = 2∂[cϕa]

c = − 1

9!
εa

c1...c10∂c1Cc2...c9;c10 , (2.38)

so that the vanishing of the completely antisymmetric part would mean that the spin

connection has to be traceless, whereas it is not in general. Following [11, 62], one defines

the local Lorentz transformations at the linearised level as

δϕab = Λab , δCa1...a8;b = −
1

2
εa1...a8bc1c2Λ

c1c2 , (2.39)

such that one can fix the gauge by setting C[a1...a8;b] = 0, if one allows for an antisymmetric

component of ϕab with the constraint ∂[cϕa]
c = 0. Note that it is not possible, however, to

use Lorentz invariance to set ϕ[ab] = 0 and C[a1...a8;b] = 0 at the same time [68].

Alternatively, we can write linearised gravity in terms of the metric gmn = ηmn + hmn

(with hmn symmetric) by defining

Ωn1n2
m ≡ 2gmp∂[n1

gn2]p , (2.40)

such that the linearised equations of motion are equivalently written in terms of the Ricci

tensor Rab = ∂cΩcab − ∂bΩac
c and the duality equation (2.36) takes the form

Ωn1n2
m + 2δm[n1

Ωn2]p
p =

2

8!
εn1n2

q1...q9∂q1Cq2...q9;
m . (2.41)

The two definitions (2.36) and (2.41) are identical for ϕab = 1
2hab. However, in this case

there is no freedom to set the antisymmetric component of Cn1...n8;m to zero by a Lorentz

transformation since Cn1...n8;m is inert at the linearised level. This second formulation in

terms of gmn is closer to the E11 formulation to be developed below.

In the following it will be convenient to decompose the dual graviton into a

field hn1...n8,m with vanishing antisymmetric component and a nine-form field Xn1...n9

as follows13

2Cn1...n8;m = hn1...n8,m +Xn1...n8m . (2.42)

13This is not a complete decomposition into Lorentz irreducible representations since hn1...n8,m still

decomposes into a traceless and a trace component hn1...n7m,
m.
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Then the duality equation (2.41) splits into its trace and its traceless component as

Ωnp
p =

1

9!
εn

p1...p10∂p1Xp2...p10 , (2.43a)

Ωn1n2
m+

1

5
δm[n1

Ωn2]p
p =

1

8!
εn1n2

p1...p9ηmq

(
∂p1hp2...p9,q+

1

10
∂n1Xn2...n9q+

1

10
∂qXp1...p9

)
.

(2.43b)

If one considers the gauge fixing for linearised diffeomorphisms

∂bhab − ∂ahbb = 0 ⇒ 10∂[n1
Xn2...n10] = 0 , (2.44)

X9 is then pure gauge and there is an appropriate gauge for dual diffeomorphisms such

that X9 = 0.

Finally, we can also linearise the duality equation (2.34) to obtain

Fa1...a7 =
1

4!
εa1...a7

b1...b4Fb1...b4 . (2.45)

These first order duality equations are the ones we will now try to reproduce from a first

order dynamical system based on E11. The occurrence of the fields hab, Aa1a2a3 , Aa1...a6

and ha1...a8,b is not surprising from the perspective of E11 in view of the low level generators

of table 1. What is seemingly missing from E11 is the component Xa1...a9 as was already

noted in [1, 11]. Although X9 can a priori be set to zero in an appropriate gauge, we shall

see, e.g. in section 3.3, that its presence is important for the K(e11) invariance of the first

order equations.

3 Dynamics for E11 and the section constraint

In this section we investigate possible first order dynamics that respect E11 symmetry. We

begin with some general analysis that will lead to the conclusion that at present no general

prescription exists that would yield unique dynamics. Then we probe a construction ‘by

hand’ that is built from the D = 11 equations above. In doing so, we shall extend the

results in [2, 5] by including higher level derivatives and fields. We shall then discuss in

some detail the important shortcoming of the formalism in that it gives traceless Lorentz

spin connection. We finally proceed with the two-derivative field equations, in which case

we find that gauge invariance of the equations of motion require section constraints.

3.1 First order dynamics: general remarks

Having established the Maurer-Cartan form as the starting point of the non-linear realisa-

tion, the next question to address is how to define E11 invariant dynamics from it. We are

aiming for a set of first order differential equations. Using as building blocks the components

PA of the Maurer-Cartan form (2.14), we have at our disposal E11 invariant quantities that

transform in the tensor product representation p⊗ ℓ1 of K(e11) where p denotes the coset

representation and ℓ1 is viewed as a representation of K(E11) ⊂ E11 (associated with the

A index). If a K(E11) gauge is fixed, then E11 acts on PM by the induced compensating
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K(E11) transformation in the coset representation of K(E11). After conversion to tangent

indices PA = EA
MPM therefore transforms in the tensor product of the coset represen-

tation of K(E11) with the ℓ1 representation viewed as a K(E11) representation. Given a

decomposition

p⊗ ℓ1 =
⊕

i∈I

Vi (3.1)

of the tensor product into K(E11) invariant and indecomposable subspaces Vi (labelled by

some index set I), setting

PA|⊕
j∈J Vj

= 0 (3.2)

for any subset J ⊂ I would clearly constitute a set of E11 invariant first order differential

equations that potentially define some ‘dynamics’. Obviously, setting all of PA equal to

zero (J = I) is a too strong choice since it would trivialise the whole dynamics whereas the

other extreme J = ∅ does not put any constraints on the dynamics. We also note that for

|I| > 1 the first-order dynamics of the non-linear realisation is not unique and the question

remains how to pick the right set J of equations.

For the case at hand, we are actually faced with the problem that no non-trivial de-

composition of the type (3.1) is known, where we stress that the decomposition can be into

invariant subspaces and not necessarily irreducible representations of K(e11).
14 This can

be traced back to the fact that the Lie algebra K(e11) is not a Kac-Moody algebra with

a triangular decomposition into raising, lowering and Cartan generators, see [63–65] for a

more detailed discussion of this point. In the absence of such a decomposition one can try to

construct an invariant subspace in a ‘level by level’ fashion using supergravity as a guiding

principle and aiming for a small invariant subspace
⊕

j∈J VJ in order not to overconstrain

the system. This is the approach we will follow below for E11, using linearised D = 11

supergravity in first order form as presented in the preceding section.

3.2 First order duality relations for E11

We now proceed to construct a tentative invariant subspace in the sense of (3.2) using

D = 11 supergravity as a guiding principle as done originally in [2]. For determining a

K(E11) invariant subspace it is sufficient to use the linearised building blocks (2.23).

The starting point of the construction is equation (2.45) involving the field strength

Fa1a2a3a4 of the three-form potential Aa1a2a3 . In the Maurer-Cartan form we have at our

disposal ∂aAb1b2b3 , which is generally not completely antisymmetric. Therefore projecting to

the antisymmetric part could correspond to the requirement above that one uses only a true

subspace of the general tensor product (3.1).15 The starting ansatz for the construction is

thus a four-form and we begin with terms not involving any epsilon tensors as this generalises

Fa1a2a3a4 . Indeed, the construction of all field strengths will not involve the epsilon tensor

14Incidentally, it is not even known whether p and ℓ1 themselves have invariant subspaces, not even in

the affine case when e11 is replaced by the affine e9 and ℓ1 by the basic representation of e9.
15A different interpretation was pursued in [31] for finite-dimensional En where the mixed symmetry part

of ∂aAb1b2b3 was interpreted as part of an exceptional connection.
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since it is not produced by the action of K(E11). We consider the most general expression

that involves all fields up to level ℓ = 3 and also derivatives up to the same level (relative

to the highest level derivative):16

Ga1a2a3a4 = 4∂[a1Aa2a3a4] −
1

2
α1∂

b1b2Aa1...a4b1b2 − 2α2∂[a1a2a3
b1b2Aa4]b1b2

+
α3

6
∂[a1

b1...b4ha2...a4]b1...b4c,
c +

α5

4
∂[a1a2

b1...b4c,
cAa3a4]b1...b4 (3.3)

− β1
24
∂b1...b5h[a1...a4]b1...b4,b5 +

β2
6
∂[a1a2a3

b1...b4,cAa4]b1...b4c

− β3
30
∂[a1a2a3

b1...b5Aa4]b1...b5 +O(4, 4) .

We are employing a notation for the maximum order of terms in an expression that works

as follows. For derivatives, we define a degree nd = −ℓ− 3
2 (equal to q for the corresponding

coordinate given in table 1), and for potentials, we set np = ℓ = q, so that

(∂a, ∂a1a2 , ∂a1···a5 , ∂a1...a7,b, ∂a1...a8 , . . .) have degree nd = (0, 1, 2, 3, 3, . . .) and

(ha
b, Aa1a2a3 , Aa1···a6 , ha1···a8,b, . . .) have degree np = (0, 1, 2, 3, . . .) . (3.4)

Note that ∂a1···a7,b and ∂a1···a8 both have nd = 3. The notation O(Nd, Np) then indicates

that we are presenting all terms which have nd < Nd and np < Np. On rare occasions, we

do not present all possible terms that may arise at order O(Nd, Np), in which case we will

use the notation O(Nd, Np, Nt), signifying that only the terms that satisfy the additional

condition nd + np < Nt are kept.

We now consider the K(e11) variation of this ‘field strength’ using (2.26) and (2.27)

while attempting to keep the result as small as possible, meaning that we try not to generate

too large Lorentz representations in the process. This is in line with the general discussion

in section 3.1. This will constrain some of the parameters in the ansatz. It is useful to

consider terms in δΛGa1a2a3a4 structure by structure. On the grounds of comparison with

supergravity we would expect a transformation into things related to the seven-form field

strength, the spin connection and possibly into the field strength of the dual graviton. This

last term, however, cannot be computed reliably in the present truncation.

Here and in the following we will often make use of the shorthand for indicating tensorial

derivatives of tensors where we only list the numbers of antisymmetric indices (lengths of

columns in Young tableau) separated by commas (see appendix A). In this notation a term

∂1A3 represents a generic structure of type ∂aAb1b2b3 whereas ∂2h8,1 would be any structure

involving ∂a1a2hb1···b8,c.

We now consider δΛGa1a2a3a4 , beginning with terms that vary into ∂1A6:

δΛGa1a2a3a4 |∂1A6 =
2

3
Λb1b2b3∂[a1Aa2a3a4]b1b2b3 +

1

2
α1Λ

b1b2b3∂b1Ab2b3a1...a4 . (3.5)

16Since ϕab is projected to its symmetric component hab in the coset there can be no terms of type

∂[a1a2
ϕa3a4] in the ansatz.
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In order for the terms on the right-hand side to combine into a seven-form (which would be

the smallest possible representation one can have), one needs to fix α1 = 1 and then gets

δΛGa1a2a3a4 |∂1A6 =
7

3!
Λb1b2b3∂[a1Aa2a3a4b1b2b3] . (3.6)

Next we consider terms of the form ∂2A3 where we obtain

δΛGa1a2a3a4 |∂2A3 = −6Λc[a1a2

(
∂cbAa3a4]b + 2α2∂a3

bAa4]
c
b +

1− α2

3
δca3∂

b1b2Aa4]b1b2

)

+ 6α2Λ
b1b2

[a1∂a2a3Aa4]b1b2 . (3.7)

Demanding that the last term be absent (since it would correspond to the generic five-index

tensor in ∂2A3) leads to the constraint α2 = 0. The remaining terms are then only in the

(not traceless) representation of type (2, 1) which is identical to that of the spin connection.

We note that in [2], a term of the form ∂[a1a2ϕa3a4] was added to (3.3), in order to constrain

the ∂2A3 terms in the first line of (3.7) to be even more restricted and to be antisymmetric

in their three free indices. However, this is not needed for it to belong to the representation

of the spin connection. In fact, although we have presented our calculation in terms of

the coset component P involving the symmetric hab only, we have also checked using the

ansatz in terms of V that the next term in ∂5ϕ1
1 arising from the variation of ∂[a1a2ϕa3a4]

in Ga1a2a3a4 cannot be of the correct structure. (This was not yet apparent at the level of

truncation considered in [2].)

Continuing to terms of the type ∂5ϕ2 we find the same constraint α2 = 0. If one next

analyses the terms of type ∂5A6 and demands that the terms in Λa1a2a3 combine into a

7-form and the terms in Λa1b1b2 combine at least into a 5-form instead of a generic tensor,

all remaining coefficients are fixed to β1 = 0, α3 = 1, α5 = 1, β2 = 1, β3 = 1 such that the

final fixed version of (3.3) is found to be

Ga1a2a3a4 = 4∂[a1Aa2a3a4] −
1

2
∂b1b2Aa1...a4b1b2

+
1

6
∂[a1

b1...b4ha2...a4]b1...b4c,
c +

1

4
∂[a1a2

b1...b4c,
cAa3a4]b1...b4

+
1

6
∂[a1a2a3

b1...b4,cAa4]b1...b4c −
1

30
∂[a1a2a3

b1...b5Aa4]b1...b5 +O(4, 4) . (3.8)

This result extends the previous expressions in the literature. We stress that the ansatz (3.3)

that was the starting point of this analysis included the most general terms up to this order.

Thus there is no definite degree structure (as defined in (3.4)) that governs the resulting

expression. This implies in particular that one cannot prove that the full expression does

not involve ∂a derivatives of higher gl(11) level fields, which might make the interpretation

of this field strength in eleven-dimensional supergravity problematic. The K(e11) variation

of this expression is given by

δΛGa1a2a3a4 =
1

6
Λb1b2b3Ga1...a4b1b2b3 − 6Λb[a1a2Ωa3a4]

b +O(3, 3) , (3.9)
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where to this level of truncation

Ωa1a2
b = 2∂[a1ha2]

b + ∂bcAa1a2c +
1

4!
∂bc1...c4Aa1a2c1...c4

+
1

3
δb[a1

(
∂c1c2Aa2]c1c2 +

4

5!
∂c1···c5Aa2]c1···c5

)
+O(3, 3) , (3.10)

and

Ga1...a7 = 7∂[a1Aa2...a7] −
35

2
∂[a1a2a3

b1b2Aa4...a7]b1b2 +O(3, 3) . (3.11)

These are the highest terms that can be trusted, given the order to which we have presented

our ansatz for Ga1a2a3a4 , because after a K(e11) variation any higher term in the varied

expression has the possibility of contributions from level ℓ = 4 potentials in the original

field strengths that could vary into the same structure.

One can, however, ‘improve’ for example Ga1···a7 by terms up to ∂7,1, ∂8 and h8,1 and

run through the same logic as for Ga1a2a3a4 . This means that one computes the variation of

the improved ansatz and demands that the variation produce only small representations.

In this way one finds the following improved expression for Ga1···a7 :

Ga1...a7 = 7∂[a1Aa2...a7] −
35

2
∂[a1a2a3

b1b2Aa4...a7]b1b2 + 7∂[a1
bha2...a7]bc,

c

+ 7∂[a1...a6
b,cAa7]bc + 21∂[a1...a5

bc,
cAa6a7]b − 7∂[a1...a6

b1b2Aa7]b1b2

+O(4, 4, 6) . (3.12)

Note that here we have not included terms of the form ∂8h8,1, which would have total

level nd + np = 6, and hence the order O(4, 4, 6), as explained below (3.4). This is the

E11 generalisation of the field strength Fa1...a7 of the six-form Aa1···a6 that also appears

in (2.45). Its variation under K(e11) is given by

δΛGa1···a7 = −35Λ[a1a2a3Ga4a5a6a7] +
1

2
Λb1b2cΩa1···a7b1b2,c +O(3, 3) , (3.13)

where

Ωa1···a9,b = 252
(
∂[a1a2Aa3···a8 + 2∂[a1...a5Aa6a7a8

)
ηa9],b +O(3, 3) . (3.14)

For our purposes here, it suffices to vary Ωa1a2
b without adding any improvement terms.

Thus, under K(e11) the quantity Ωa1a2
b defined in (3.10) varies into

δΛΩa1a2
b =

1

2
Λbc1c2Ga1a2c1c2 +

1

9
Λc1c2c3δb[a1Ga2]c1c2c3

+ Λc1c2[a1Ha2]
bc1c2 − 1

9
Λc1c2c3δ

b
[a1
Ha2]

c1c2c3 + Λca1a2Θ
b,c +O(2, 2) , (3.15)

where

Ha
b1b2b3 = −∂aAb1b2b3 + 3∂[b1b2ha

b3] +
3

2
δ
[a1
b ∂a2|chc

a3] +O(2, 2) , (3.16)

Θa,b = ∂c(ahc
b) +O(2, 2) . (3.17)
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As for Ωa1···a9,b, we proceed by improving the ansatz for it as

Ωa1···a9,b = 252
(
∂[a1a2Aa3...a8 + 2∂[a1···a5Aa6a7a8

)
ηa9],b (3.18)

+9γ1∂[a1ha2···a9],b + ηb[a1
(
γ2∂

cha2...a9],c + γ3∂a2ha3···a9]c,
c
)
+O(3, 4, 5)

and its K(e11) variation yields

δΛΩa1···a9,
b = −168γ1

(
Λb

[a1a2∂a3Aa4···a9] + Λ[a1a2a3∂a4Aa5...a9]
b
)
+ δb[a1(· · · )

= −γ1
(
24Λb

[a1a2Ga3···a9] − 28Λ[a1a2a3Ga4···a9]b + 28Λ[a1a2a3Hb
a4···a9]

)

+ δb[a1(· · · ) +O(2, 3) , (3.19)

up to the trace components, where

Ha
b1...b6 = ∂aA

b1...b6 +O(2, 3) . (3.20)

The last entry (Nt = 5) in the order displayed in (3.18) is due to the fact that terms of the

form ∂5h8,1 are not included.

One might be worried at first sight at seeing non-antisymmetrised derivatives of the

potentials in (3.16), (3.17) and (3.20). This is not a problem if one considers that e11

includes at level ℓ = 4 potentials of the type A9,3, B10,1,1 and C11,1 whose field strengths

include H10,3 and Θ11,1,1, leading to the conclusion that there should be well defined first

order equations between H1,3 and H10,3, and between Θ1,1 and Θ11,1,1. We do indeed find

part of such duality equations in the K(e11) variation of the first order gravity equations.

Proceeding to include higher level contributions to these equations we expect them to take

the form

Tab1b2b3 ≡ Ha
b1b2b3 − 1

10!
εa

c1...c10Hc1...c10,
b1b2b3 = 0 , (3.21)

T a,b ≡ Θa,b − 1

11!
εc1...c11Θc1...c11,

a,b = 0 , (3.22)

Tab1...b6 ≡ Ha
b1...b6 − 1

10!
εa

c1...c10Hc1...c10,
b1...b6 = 0 . (3.23)

These would correspond to duality equations that appear in the unfolding approach [23],

but in a first-order form.

We now postulate the E11 version of the duality equation (2.45) to be

Sa1...a4 ≡ Ga1...a4 +
1

7!
εa1...a4b1...b7Gb1...b7 = 0 . (3.24)

Putting the results above together we obtain under K(e11)

δΛSa1...a4 = − 1

3! · 4!Λ
b1b2b3εa1...a4b1b2b3c1...c4Sc1...c4 − 6Λb[a1a2Sa3a4]

b , (3.25)

where

Sa1a2b ≡ Ωa1a2
b − 1

9!
εa1a2

c1...c9Ωc1...c9,
b = 0 . (3.26)
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Requiring that the K(e11) variation of Sa1a2
b gives back equation Sa1a2a3a4 fixes γ1 = 1 and

γ2 = γ3 = 0 in (3.18). One obtains then

δΛSa1a2
b =

1

2
Λbc1c2Sa1a2c1c2 +

1

9
Λc1c2c3δb[a1Sa2]c1c2c3 −

28

9
Λc1c2c3εa1a2c1...c9T b,c4...c9

+Λc1c2[a1Ta2]bc1c2 −
1

9
Λc1c2c3δ

b
[a1
Ta2]c1c2c3 + Λca1a2T b,c +O(2, 2) , (3.27)

where the T tensors are equal to the corresponding Θ and H tensors (3.16), (3.17)

and (3.20), at this level of truncation.

The duality equations (3.21), (3.22) and (3.23) are not invariant under the gauge

transformations (2.31). However, taking the derivative of, for example, the duality equa-

tion (3.21) in the following fashion,

∂[a1Sba2a3a4] = ∂bF
a1a2a3a4 − 1

10!
εb

c1···c10 Rc1···c10
a1a2a3a4 = 0 , (3.28)

where

Rc1···c10
a1a2a3a4 ≡ 40 ∂[c1∂

[a1Ac2...c10],
a2a3a3] , (3.29)

gives an equation that is gauge invariant, and is known to appear in the unfolding ap-

proach [23].17 Just as for gravity, we can expect only the second order equations to be fully

gauge invariant (for two-column fields).

In this section we have revisited the proposal of [2], to construct a K(e11) multiplet of

first order duality equations starting from the duality equation G7 = ⋆G4 (2.45) in super-

gravity, with the requirement that the total set of first order constraints is small enough

to allow for dynamical equations. We confirmed that one obtains in this way a duality

equation for the gravitational field Ω2,1 = ⋆Ω9,1 that enforces, however, the additional

constraint that the spin connection be traceless, incidentally violating general covariance.

Pushing the program to higher levels, we see the premises of an infinite chain of unfolding

duality equations advocated in [23] that relate level ℓ to level ℓ+ 3 fields

H1,3 = ⋆H10,3 , H1,6 = ⋆H10,6 , H1,8,1 = ⋆H10,8,1 , H1,9,3 = ⋆H10,9,3 , . . . (3.30)

Here, the field strengths on the left-hand side are derivatives of a potential AR at level ℓ

with R being given by some Young tableau not containing any column with ten or eleven

indices, and the field strength on the right-hand side is the curl of the next dual potential

A9,R at level ℓ+3. The terminology of “unfolding” refers to the fact that there is a field A9n,R

dual to each gradient (∂1)
nAR of a given field AR,18 such that all the degrees of freedom

of the fields are unfolded into infinitely many potentials in one-to-one correspondence with

the solutions to the wave equation.19

17The integrability condition of the gradient ∂bF
a1···a4 then gives, from (3.28), the condition

∂[b1∂b2]F
a1···a4 =

1

2 · 9! εb1b2
c1···c9 ∂c10 Rc1···c10,

a1a2a3a4 = 0 ,

which is an equation of motion satisfied by A9,3.
18The derivative ∂1AR is dual to curl dA9,R, the derivative ∂1A9,R is dual to dA9,9,R, and so on, such

that by recurrence ∂n
1 AR can be reduced to (⋆d)nA9n,R.

19We note also the alternative formulation in terms of ‘Ogievetsky generators’ given in [66].
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We identify also the appearence of gauge non-invariant non-dynamical dualities that re-

late field strengths involving the exceptional ∂2 derivative of potentials of level ℓ in some rep-

resentations to the curl of level ℓ+4 fields that carry a column of 10 antisymmetrised indices

Θ1,1 = ⋆Θ11,1,1 , Θ4,1 = ⋆Θ11,4,1 , Θ7,1 = ⋆Θ11,7,1 , Θ6,2 = ⋆Θ11,6,2 , Θ8 = ⋆Θ11,8 , . . .

(3.31)

and more generally the exceptional derivative of level −3/2 − n of potentials of level ℓ to

the curl of level ℓ+ 3 + n fields that carry a column of ten antisymmetrised indices. They

are non-dynamical because the left-hand side does not include ordinary derivatives so that

they vanish identically when interpreted in eleven-dimensional supergravity. The duality

relation then implies that the fields including a column of ten antisymmetrised indices have

a vanishing curl, and are therefore non-dynamical, as expected from the standard free field

analysis. We shall argue in section 5.3 that backgrounds with such field strengths turned on

are non-geometrical, and that the latter can be identified with components of the embedding

tensor in gauged supergravity.

As was emphasized above, the field strengths that appear in this construction of the

field equations are not governed by any grading; the only requirement that is imposed on

the terms is that they have the correct Lorentz tensor structure. Therefore there is no

argument to rule out the contribution of standard derivatives ∂1 of potentials of arbitrarily

high level contributing to for instance Ga1a2a3a4 . Simple examples would come from ordinary

derivatives of the form ∂1A92n,3 where one simply contracts all 2n of the columns of nine

indices in a pairwise fashion. Therefore it is not clear whether one can safely interpret the

equations restricted to eleven-dimensional supergravity in a given level truncation. Similar

terms were discussed in [2].

3.3 On the trace of the spin connection

As already emphasised, in order for the first order dual gravity equation to be formulated

in a gauge invariant formulation, one needs a nine-form potential, which does not appear

in e11 at gl(11) level ℓ = 3. If one were to give up gauge invariance, one would need

to find a consistent K(e11)-multiplet of gauge-fixing conditions that would represent an

additional K(e11)-multiplet of first order constraints. However, one has to make sure that

the gauge-fixing conditions are not too strong, e.g., , they should not contain ∂aAb1b2b3 = 0

for arbitrary indices. If one starts with a Lorentz-covariant ansatz for a metric gauge of

the form ∂chac − α1∂ahc
c + α2∂

b1b2Aab1b2 + · · · = 0 and demands that its K(e11) variation

only includes the derivative of the three-form gauge field through the Lorenz gauge term

∂bAa1a2b, this fixes the two coefficients with the result

δ

(
∂bha

b − 1

2
∂ahb

b +
1

2
∂b1b2Aab1b2 +

1

5!
∂b1...b5Aab1...b5 + . . .

)

=
1

2
Λab1b2

(
∂cA

b1b2c + 2∂cb1hc
b2 − 1

2
∂b1b2hc

c +
1

6
∂b1b2c1c2c3Ac1c2c3 + . . .

)
. (3.32)
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Varying it again under K(e11) this then gives consistently the original condition on the

metric together with a Lorenz gauge for the six-form potential

δ

(
∂cA

a1a2c + 2∂c[a1hc
a2] − 1

2
∂a1a2hc

c +
1

6
∂a1a2b1b2b3Ab1b2b3

)

= −Λba1a2

(
∂chb

c − 1

2
∂bhc

c +
1

2
∂c1c2Abc1c2 + . . .

)

−1

6
Λb1b2b3

(
∂cAa1a2b1b2b3c − 10∂[a1a2Ab1b2b3] + . . .

)
. (3.33)

One concludes that an appropriate K(e11)-multiplet of first order gauge-fixing conditions

must involve the harmonic gauge ∂bha
b − 1

2∂ahb
b = 0 for the graviton rather than the

one in (2.44). In the harmonic gauge for the metric, it is not consistent to gauge fix the

nine-form component of the dual graviton to zero. We conclude that there is no K(e11)-

multiplet of first order gauge-fixing conditions that is consistent with the condition that

the nine-form vanishes.

We will therefore discuss whether such a nine-form may possibly arise in the theory.

Inspecting the table 1 or the tables of [12], the lowest level field that includes a nine-form

in its so(1, 10) decomposition is the ℓ = 5 field C11,3,1. A suitable triple trace of this field

yields a nine-form potential, C9. However, the local gauge transformation of this potential

will not agree with the required gauge transformation, δΞX9 = dλ8, since we have

δΞCa1···a9b1b2,
b1b2b3,

b3 = 9∂[a1ξa2···a9]b1b2,
b1b2b3,

b3 − 2∂b1ξa1···a9b2,
b1b2b3,

b3 + · · · . (3.34)

The first term is of the correct form, but the second is not. We expect a similar phenomenon

for higher level fields whose trace may yield a nine-form. For this we note that the analysis

of [67] shows that for any generator of a given Young tableau, the ℓ1 representation contains

corresponding gauge parameters of the form where a single box is removed from the Young

tableau in all possible admissible ways. In the example above with a potential C11,3,1

this means that there are parameters of the form λ10,3,1, λ11,2,1 and λ11,3. These can be

paired with ordinary derivatives in the gauge transformation (2.29) to yield the linearised

gauge transformations of C11,3,1. In equation (3.34) above, we have only displayed the

transformation under λ11,2,1 that suffices to make our argument as all gauge parameters

are independent. A similar calculation to (3.34) will then show for any higher level gauge

potential of mixed symmetry type that even if its so(1, 10) decomposition contains a nine-

form, the gauge transformation of that nine-form will not be of the standard type that is

needed in the dual gravity equation. The fact that there are no pure nine-forms contained

in the adjoint representation of e11 follows from the arguments in [12]. From this discussion

we conclude that one cannot reconcile the standard gauge transformations required for the

trace of the spin connection with the gauge symmetries present in e11.

An additional problem in the analysis of the duality equations arises as follows. Their

construction as described in the previous subsection is such that the terms in the equations

are determined up to order O(nd, np, nt) (see below (3.3) for the definition of this notation).

The problem with this procedure is that the ordinary derivatives of a potential will arise at

arbitrarily high levels. Therefore, even if we encounter a potential or its trace playing the
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role of X9 at some level that is needed for the dual graviton equation, the latter could be

spoiled by a term that could arise at some higher level which would involve the ordinary

derivative. For example, the level ℓ = 8 field B10,9,3,2 could spoil the dual graviton equation

Sa1a2
b = 0 by a contribution of the form

εa1a2
a3···a11εc1···c11∂c1Bc2···c11,a3···a11,

b1b2b
,b1b2 . (3.35)

Turning to the problem associated with the incorrect gauge transformation rule for the nine-

form potential that might arise at higher levels, assuming that the set of first order equations

must reproduce the corresponding equations in the bosonic sector of eleven-dimensional

supergravity, the system described above will not give the trace part of the dual graviton

equation. A related discussion of this issue without reference to gauge transformations can

be found in the appendix of [2].

As we shall see in section 4, the difficulties associated with the trace of the spin con-

nection are circumvented in the extension of the theory that we propose in this article.

3.4 Second order E11 field equations and the section constraint

So far we have not considered the behaviour of the first order equations under gauge trans-

formations. One reason for this is that we already know from ordinary gravity theory that

the first order duality equation is not gauge invariant unless one introduces a Stückelberg

field [62]. The duality equation for gradients of the physical fields are not gauge invariant

either. However, gauge invariant second order duality equations do exist without intro-

ducing any Stückelberg fields. Therefore we demand gauge invariance of the second order

field equations of the theory based on E11. In general, for potentials with more than two

columns one might expect gauge invariant equations only involving as many derivatives

as there are columns [69, 70] and indeed this is what appears in the recent work [6]. We

note that this approach entails equations of arbitrarily high derivative order and there is

no closed K(e11) multiplet of gauge invariant equations (as K(e11) does not change the

number of derivatives).

Given the first order duality equations one can deduce second order equations as com-

patibility relations for them. Starting from Sa1a2a3a4 in (3.24) we can form, for example,

∂bSba1a2a3 = ∂bGba1a2a3 −
1

7!
εa1a2a3b1···b8∂

b1Gb2···b8 = 0 . (3.36)

In usual supergravity this would be the field equation for Aa1a2a3 and its validity would

be ensured by the seven-form field strength being closed and it would be gauge invariant.

However, it is easy to check that ∂bSba1a2a3 is not gauge invariant with Ga1···a4 and Ga1···a7
given in (3.24) and (3.12). Since the gauge and K(e11) variations do not produce a Levi-

Civita tensor, there is no loss of generality in considering second order field equations in

terms of the field strengths without their Hodge duals. In fact, such terms should vanish

as a consequence of generalised Bianchi identities for the consistency with the first order

duality equations. Thus, we start from the ansatz

Ea1a2a3 = ∂bGba1a2a3 + α1∂b[a1Ωa2a3]
b + α2∂[a1a2Ωa3]b

b +O(2, 2) , (3.37)

– 24 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
0

with Ga1a2a3a4 and Ωa1a2
b from (3.8) and (3.10), respectively. Under the gauge trans-

formation (2.31) we for example obtain the following terms in the variation of Ga1a2a3a4
and Ωa1a2

b:

δΞGa1···a4 = ∂b1b2∂b1λa1···a4b2 + 12∂[a1∂a2a3ξa4] + · · ·
δΞΩa1a2

b = 2∂b∂[a1ξa2] + · · · , (3.38)

so the field strengths are clearly not gauge invariant by themselves. Under these varia-

tions, (3.37) transforms as

δΞEa1a2a3 = ∂b
(
∂cd∂dλa1a2a3bc

)
+ (α2 − 3)

(
∂[a1a2∂a3]∂

bξb − ∂b∂b∂[a1a2ξa3]
)

+2(α1 + 3)∂b∂b[α1
∂a2ξa3] . (3.39)

Nothing in (3.37), including its higher level extensions, can compensate for the first term

above, as well as the terms proportional to (α2 − 3). Therefore we conclude that

α2 = 3 , (3.40)

and the combination

∂b1b2∂b1λa1...a4b2 = 0 (3.41)

has to vanish. This is indeed what happens if we impose the d = 11 analogue of the section

constraint encountered in exceptional field theories for finite-dimensional ed [24–26], which

at the lowest level in the gl(d) decomposition implies ∂ab∂b = 0. The same condition ensures

the vanishing of the last term in (3.39) without determining the value of α1. Thus the

gauge invariance of (3.37) is established to the level we are working for any α1 up to the

section constraint.

The coefficient α1 can be fixed by considering gauge invariance at the next level. How-

ever, it is more convenient to fix it by demanding that the K(e11) transformation of the

equation (3.37) leads to a sensible second order equation for the graviton. Upon K(e11)

variation of (3.37) one finds

δΛEa1a2a3 = −3Λc[a1a2Eca3] − (α2 − 3)Λc[a1a2 ∂
cΩa3]b

b

+(α1 − 3)Λcb[a1 ∂
bΩa2a3]

c +O(1, 1) , (3.42)

where

Eab = ∂aΩbc
c − ∂cΩbc,a +O(1, 1) = ∂a∂bhc

c − 2∂c∂(ahb)c + ∂2hab , (3.43)

is the linearised Ricci tensor and we have used hab = h(ab). Since the last term is the

linearised Riemann tensor, we need to impose

α1 = 3 . (3.44)

Note also that the field equation Ea1...a6 = ∂bGba1...a6 has the minimum order O(1, 2), and

that is why it does not appear in (3.42), which holds to order O(1, 1).
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We conclude that the second order field equations that are built out of the first order

duality equations constructed above and in [2, 5] is only gauge invariant if one imposes the

section constraint. The need for this condition was not seen in [5], since the invariance

under gauge transformations was not investigated there. From the point of view of E11, the

section constraint is part of an infinite multiplet that contains as leading contribution the

lowest weight representation ℓ10, and is the complement of 2ℓ1 in the decomposition (1.1).

This representation is analysed in more detail in appendix A.3.20 Note, however, that it

was emphasized in [6] that there were no gauge invariant second order field equations for

the gl(11) level 4 fields, even modulo the section constraint. It follows that one should

find obstructions in the construction of such gauge invariant second order equations mod-

ulo the section constraint when continuing the construction to gl(11) levels beyond those

considered here.

Nonetheless, one expects that in the E11 formalism gauge invariance is satisfied up to a

certain level. In order to increase the level at which the equations are gauge invariant, one

apparently needs to also increase the order of the field equations. Our analysis exhibits that

demanding generalised gauge invariance of the field equations at a given truncation level

necessarily requires the fields to satisfy the section constraint. This is the case, for example,

for the first order duality equation G7 = ⋆G4, and of the second order Einstein equation.

It seems that this pattern should extend to higher level fields, such that generalised gauge

invariance of the third order equation for the fields B10,1,1 considered in [6] might also

require the section constraint to be satisfied.21 Moreover, the compatibility of the second

order equations displayed in this section with the first order duality equations discussed

in the previous section also requires the section constraint to be satisfied. We conclude

that demanding any kind of generalised gauge invariance in the E11 framework requires

constraining the fields to satisfy the section constraint.

4 Tensor hierarchy algebra and gauge invariant field strengths

We will now change gears and present a different construction based on the tensor hierarchy

algebra that provides a definition of the field strengths in a representation of e11. At the

same time this construction will automatically remedy the issue with the trace of the spin

connection encountered above.

4.1 The tensor hierarchy algebra

For 4 ≤ d ≤ 8, the finite-dimensional Lie algebra ed was extended in [40] to an infinite-

dimensional Lie superalgebra. It was called the tensor hierarchy algebra, since its level

decomposition into ed representations Rp for all integers p gives exactly the tensor hierarchy

20Checking similar equations for the other fields, different components of the section constraint are gen-

erated. Instead of providing the details here, we will present a more systematic construction based on the

tensor hierarchy algebra in the following section.
21Checking gauge invariance only for terms involving the ordinary derivative ∂m will not reveal the

necessity to impose the section constraint because one is effectively working on a solution of the section

constraint.
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that appears in gauged maximal supergravity in D = 11− d dimensions for p ≥ 1 [71, 72].

Moreover, R−1 is the representation in which the embedding tensor transforms, and by

considering it as an element in this subspace of the algebra, the approach in [10] to D-

dimensional maximal supergravity can be extended to the gauged theory [41, 42]. The

possibility to interpret the embedding tensor as an element in R−1 is the crucial difference

between the tensor hierarchy algebras for ed are the similar Lie superalgebras of Borcherds

type that have also been considered in the context of maximal supergravity and exceptional

geometry [73–76], and in relation to e11 [77, 78].

In a further level decomposition with respect to gl(d), the ed representation R−1 con-

tains a four-form as well as a seven-form (for d = 7, 8). This observation suggests that the

field strengths of eleven-dimensional supergravity should transform in an e11 representation

that would be R−1 in a tensor hierarchy algebra analogously defined for d = 11. Although

the construction in [40] is not applicable to the cases d ≥ 9, where the Lie algebras ed are

infinite-dimensional, we show in appendix B that there exists such an extension of e11. We

shall in the following describe some of its features, and in the next subsection argue that it

indeed gives the right representation for the field strengths in the present set-up.

We denote the tensor hierarchy algebra for d = 11 defined in appendix B by T . As

described above for d ≤ 8, it decomposes into a direct sum of e11 representations Rp for all

integers p.22 This is a Z-grading, [Ri, Rj ] ⊂ Ri+j , which is consistent with the Z2-grading

that T has as a superalgebra (in the sense that Rp is an odd subspace if p is odd, and

an even subspace if p is even). We sometimes write commutators for ease of notation even

though T is a Lie superalgebra, and [Ri, Rj ] then denotes a graded commutator, i.e., either

a commutator or an anti-commutator depending on the parity of the product ij. It follows

from the Z-grading that R0 is a subalgebra of T , and we shall denote it by t11. Any

representation Rp of e11 ⊂ t11 can be further decomposed into representations of gl(11),

and this decomposition corresponds to another Z-grading of T , which is not consistent in

the sense above. We choose this other Z-grading such that the degree q is not equal to the

gl(11) level ℓ, but related to it by

ℓ = q − 3

2
p . (4.1)

Thus we have two different Z-gradings of T , with degrees p and q. To distinguish them

from each other, we call them vertical and horizontal, respectively. This is in accordance

with table 3, where we show the decomposition of Rp for vertical degree −3 ≤ p ≤ 3 into

representations of gl(11) for horizontal degree −5 ≤ q ≤ 2.

A feature that the tensor hierarchy algebra T has in common with its analogues for

d ≤ 8 (up to a singlet at p = −1 for d = 8) is the fact that it is conjugated to itself

through the action of a (vector space) involution such that for any vertical degree p, the

representations Rp and R9−d−p are conjugate to each other, R̄p = R9−d−p. This involution is

22Our embedding of e11 into T is different from (in fact, conjugate to) the embedding of ed into the

tensor hierarchy algebras defined for d ≤ 8 in [40–42]. As a result, our representations R1, R2, . . . for d ≤ 8

are conjugate to those appearing in the tensor hierarchy. In particular, R1 is here the conjugate of ℓ1 for

d ≤ 8 (and contains the conjugate of ℓ1 for d = 11).
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related to the usual Hodge duality of the (p+1)-form field strengths of maximal supergravity

in D = 11 − d dimensions. In the case d = 11 it maps R−1 to itself, and as we will see, it

can be used to generalise the duality relation for the four- and seven-form field strengths

in eleven-dimensional supergravity to a self-duality relation valid for field strengths living

in the whole of R−1. In the further decomposition of the ed representations Rp into gl(d)

representations labelled by the horizontal degree q, the ‘reflection symmetry’ of the algebra

(up to conjugation of the representations) p↔ 9−d−p is refined to (p, q)↔ (9−d−p,−q−3),
which for d = 11 means (p, q)↔ (−p− 2,−q − 3) as can be seen in table 3.

As we will see in the next subsection, an important difference compared to the cases

d ≤ 8 is that the representation R0 is not the adjoint of e11. It contains the adjoint as an

irreducible subrepresentation, but is not fully reducible. In other words, the Lie algebra t11

contains e11 as a subalgebra, but is not semisimple; it is the semidirect sum of e11 and an

additional subspace. An example of a basis element in this additional subspace of t11 occurs

at (p, q) = (0,−3), where, in addition to the e11 generator Fn1···n8,m with irreducible (8, 1)

index structure, t11 contains also an extra 9-index totally antisymmetric generator Fn1···n9 .

This additional generator Fn1···n9 vanishes when the range of indices is restricted to d ≤ 8,

and it is a scalar density under gl(9) for d = 9.23 For q < −3 there will be further additional

generators. However, the generators at q ≥ −2 coincide with those of e11, as we explain in

appendix B. Thus the Cartan involution of e11 does not extend to the whole of t11.

In what follows it will be useful to introduce the generators of the subspaces Rp.

Schematically they can be grouped as follows24

...
...

p = 2 PMN = ΠMN
,Ξ P

Ξ

p = 1 PM

p = 0 tα

p = −1 tαM = Πα
M,I t

I

p = −2 tαMN = Πα
MN,

β t̃β

p = −3 tαMNP = Πα
MNP,

Q PQ (4.2)

...
...

where the Π tensors are suitable linear homomorphisms. The (anti-)commutation rules that

will be needed below in the construction of the theory are

{PM , PN} = 2ΠMN
,Ξ P

Ξ , [PM , tα] = −DαM
NP

N ,

{PM , tI} = fMα,JΩ
JItα , [PM , t̃α] = fMα,I t

I ,

{PM , PN} = DαM
N t̃α , [PΞ, PM ] = fΞM,I t

I , (4.3)

23The extension of e9 with this additional generator, which is the Virasoro raising generator L1, has been

applied to gauged supergravity in two dimensions in [79].
24Below and in the rest of the paper the indices α and M refer to level p = 0 and level p = 1 generators

of the tensor hierarchy algebra, respectively, and they contain generators in addition to those of E11 and

its ℓ1 representation described in section 2.
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where DαM
N are the representation matrices of the Lie algebra t11 on R1, and ΩIJ is the

inverse of the R0 symplectic form on R−1, such that the quadratic Casimir is

C2 = ΩIJ t
ItJ + {t̃α, tα}+ [PM , P

M ] + . . . . (4.4)

The existence of this quadratic Casimir is proved in appendix B. Note that it has weight p =

−2 and corresponds to the “reflection symmetry” (p, q)↔ (−p−2,−q−3) discussed above.25

An important point of the construction of the tensor hierarchy algebra is that it defines,

along the vertical Z-grading, a differential complex of functions depending on coordinates

xM , where the differential is defined through the adjoint action of the basis elements PM

in R1 as

d = (adPM ) ∂M . (4.5)

The requirement that this differential squares to zero,

d2 = (adPM ) (adPN ) ∂M∂N = ΠMN
,Ξ (adPΞ) ∂M∂N = 0 , (4.6)

is equivalent to the condition that all fields in the complex satisfy the weak section constraint

(at the linearised level, the issue of a strong section constraint does not arise):

ΠMN
,Ξ ∂M∂NΦ(x) = 0 . (4.7)

Note that one can equivalently define the standard de Rham complex from the graded

abelian superalgebra freely generated by anticommuting variables θm of degree 1 and com-

muting variables xm of degree 0, such that the differential complex is the module of super-

fields ω(x, θ) and d = θm ∂
∂xm . A differential complex can still be defined for a non-abelian

superalgebra, provided one enforces a section constraint ensuring that d is nilpotent. The

differential complex defined above will serve as a basis for the construction of the field

equations in the next section, such that the degree p = −3 supports the gauge parameters,

p = −2 the potentials, p = −1 the field strengths, and p = 0 the Bianchi identities, as one

can anticipate by looking at table 3. It might seem counter-intuitive that the potentials do

not belong to the degree p = 0 component t11, which is a subalgebra of the tensor hierarchy

algebra T , but instead belong to a module in the co-adjoint representation of t11. However,

this definition is determined by the property that the exterior derivative (4.5) increases the

degree p by one unit, and the fact that gauge parameters are defined in the ℓ1 ⊂ R−3 mod-

ule and the potentials in e11 ⊂ R−2. Note moreover that the functions in R−2 are valued

in the full representation without restriction whereas the physical potentials parametrise a

coset, and are defined modulo K(e11) in the linearised approximation. To avoid confusion

between the fields valued in R−2 discussed in this section and the physical potentials Aα,

we shall denote the former by φα. We define therefore the fields

φ = φα(x)t̃α , (4.8)

25Note that only the gl(11) level ℓ = q− 3
2
p is defined by the action of an element of the superalgebra T ,

and is therefore preserved by the Casimir operators.

– 29 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
0

their field strengths F = dφ at p = −1 as

FI = fMα,I ∂Mφ
α , (4.9)

and their Bianchi identities at level p = 0,

dF =
(
ΩIJfMα,If

N
β,J ∂M∂Nφ

β
)
tα = 0 , (4.10)

up to the section constraint. This field strength is by construction invariant under the

gauge transformations δT

Ξ φ = dΞ, for a p = −3 gauge parameter

Ξ = Ξ(x)MPM , (4.11)

satisfying the section constraint. More explicitly, this gauge transformation takes the form

δT

Ξ φ
α = DαM

N ∂MΞN , (4.12)

and

δT
Ξ FI = fMα,ID

αN
P ∂M∂NΞP = fΞP,IΠ

MN
,Ξ ∂M∂NΞP = 0 . (4.13)

The second equality follows from the Jacobi identity [{PM , PN}, PQ]+2[{P (M , PQ}, PN)] =

0. The superscript T means that the variation is computed using the commutation relations

of the tensor hierarchy algebra T , as opposed to variations without the superscript, which

we shall encounter later, corresponding to variations of coset fields that are compensated

so that they remain in the coset. By construction the gauge transformations are infinitely

reducible, and in the BRST formalism one can interpret the fields at lower degrees p =

−4, −5, . . . as a sequence of ghosts for ghosts for the potentials at degree p = −2. Note

that in the gl(11) decomposition, the gauge invariance at a given horizontal degree q are

finitely reducible but in a E11 covariant language we have an infinitely reducible gauge

invariance.

As we shall see later, only E11 is expected to be a symmetry of the full equations

of motion, and furthermore only K(e11) at the linearised level. Therefore it is important

to understand the e11 representation content of the tensor hierarchy algebra. At vertical

degree p = 0, the generators are

tα = (tα0 , tα1 , tα2 , . . . ) ∈
(
e11, r

(0)

1 , r(0)2 , . . .
)
, (4.14)

where the notation means that the total module is a vector space that decomposes into

a direct sum of vector spaces (but not e11 representations) associated with the irreducible

highest weight modules labeled by r
(0)

i . Here we have the irreducible highest weight repre-

sentations with Dynkin labels

r
(0)

1 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

r
(0)

2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) , (4.15)

according to the labeling conventions depicted in figure 1. In general we shall use the nota-

tion r
(p)
i to denote the representation labeled by i, at vertical degree p. The ellipses in (4.14)
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denote possible irreducible highest weight modules that could arise. Direct inspection of

possible irreducible representations at low levels suggests that there may not be any other

representation beyond the ones displayed in (4.14), but this remains to be fully investigated.

More precisely, the total module R0 has the following structure. It is known to contain

the adjoint representation of e11. Furthermore, factoring out this representation yields a

highest weight representation of e11 in the sense that the highest weight state is annihilated

by the e11 raising operators, but the resulting weight space need not correspond to a single

irreducible representation of e11. The notation in (4.14) indicates that the weight space

contains the representation r
(0)

1 . Factoring out this representation, in turn, gives a new

highest weight representation of e11 which contains r
(0)

2 and so on. This structure of the

module does not mean full reducibility of the e11 representation R0. Indeed we shall show

that (e11, ℓ̄2) is indecomposable while we do not know yet if the remaining components

decompose into irreducible higher highest weight modules. The fact that there exists an

indecomposable module (e11, ℓ̄2) seems to be related to the fact that the highest weight

of ℓ̄2 is a null root. One can show that the only gl(11) irreducible representations in the

level decomposition of R0 that do not appear in e11 itself are associated to the gl(11) level

decomposition of the highest weight representation ℓ̄2 (or its multiples). This implies that

one can have a non-trivial mixing of the two representations that cannot be reabsorbed into

a redefinition of them.26 Further details can be found in appendix B. The only property

that is ensured by the construction of the algebra is that e11 is a subalgebra, such that we

have the commutation relations

[tα0 , tβ0 ] = Cα0β0
γ0 t

γ0 , (4.16)

[tα0 , tβi ] =
∑

j≥1

Dα0βi
γj t

γj + Tα0βi
γ0 t

γ0 , (4.17)

where Dα0βi
γj are representation matrices of e11, which, as a result of the Jacobi identity

involving {tα0 , tβ0 , tγj}, satisfy
∑

k≥1

2D[α0|γi
ηkD

|β0]ηk
δj = Cα0β0

η0D
η0γi

δj , (4.18)

whereas Tα0βi
γ0 satisfy

∑

j≥1

D[α0|αi
βj
T |β0]βj

γ0 = Cδ0[α0
γ0T

β0]αi
δ0 +

1

2
Cα0β0

δ0T
δ0αi

γ0 . (4.19)

The p = 1 generators decompose similarly as follows,

PM =
(
PM0 , PM1 , . . .

)
∈
(
r
(1)

1 , r(1)2 , . . .
)
, (4.20)

and similarly for PM , where

r
(1)

1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

r
(1)

2 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)⊕ (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) . (4.21)

26For e9, the vector space replacing ℓ2 is one-dimensional, and the corresponding generator is the Virasoro

raising operator [79].
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Thus, the PM and PM obey the commutation rules

[tα0 , PMi ] =
∑

j≥0

Dα0Mi
Nj
PNj , [tα0 , PMi

] = −
∑

j≥0

Dα0Nj
Mi
PNj

. (4.22)

One derives then that the generators at p = −2 commute with the e11 generators as

[tα0 , t̃β0 ] = −Cα0γ0
β0 t̃γ0 −

∑

i≥1

Tα0γi
β0 t̃γi , [tα0 , t̃βi

] = −
∑

j≥1

Dα0γj
βi
t̃γj . (4.23)

We will see in the next section that the structure coefficients Tα0β1
γ0 do not vanish, so that

the module R−2 is not completely reducible. However, the structure coefficients computed

in appendix B satisfy

Tα0β2
γ0 = Dα0β1

γ2 = Dα0β2
γ1 = 0 , (4.24)

so that the vector space associated to the highest weight ℓ̄10 in (4.14) does not mix as an

e11 module with (e11, ℓ̄2). It would be very useful if this extended to all higher highest

weight components such that the e11 module R−2 would decompose into the direct sum of

an indecomposable module (e11, ℓ̄2) and a (possibly reducible) module including all other

components, i.e.

Tα0βi
γ0 = Dα0β1

γi = Dα0βi
γ1 = 0 ∀ i ≥ 2 , (4.25)

but this is not necessary for the model based on the tensor hierarchy algebra we are propos-

ing.27 The structure coefficients computed in appendix B also satisfy

Dα0M0
N1 = Dα0M1

N0 = 0 , (4.26)

implying that the vector space associated to r
(1)

2 in (4.21) does not mix as an e11 module

with r
(1)

1 . So once again, it would be very useful if the module R1 decomposed into the

direct sum of the irreducible module ℓ̄1 and a possibly reducible module associated to the

remaining highest weights, i.e.

Dα0M0
Ni

= Dα0Mi
N0 = 0 ∀ i ≥ 1 . (4.27)

27We make the following observations that may be useful for studying the question of decomposability of

the tensor hierarchy algebra. One can assign roots to the generators of T and the standard techniques of

identifying possible gl(11) representations associated with roots gives all the Young tableaux that are listed

for example in [12, Table 2] or [17, Appendix B.1]. These give a complete list of possible Young tableaux

that can occur at vertical degree p = 0 and any fixed horizontal degree q; the only issue then is to determine

what is called the outer multiplicity µ of a Young tableau. For e11 this can be done by computer based on

the denominator formula; for the tensor hierarchy algebra we unfortunately do not have a similar structure

at our disposal, so we have to do it by hand. As was noted in [12] the only places where µ = 0 occurs is

for null roots of e11 (besides spurious real roots). This observation can be proven by noting that null roots

always occur as special elements in the ‘gradient representations’ triggered by the affine subalgebra e9 and

by the fact that one knows the multiplicity of null roots (it is equal to eight). The first null root is the

one that corresponds to the potential we call X9. The inclusion of the corresponding e11 representation ℓ̄2
increases the outer multiplicity from µ = 0 in e11 to µ = 1 in the tensor hierarchy algebra for this and Weyl

related null roots. Continuing now to the next additional representations that we add we encounter ℓ̄10 on

p = 0. This is not a null root (all dominant null roots are of the form X9, X9,9, etc.) and therefore starts

out with µ > 0 in e11; this µ gets even bigger in the tensor hierarchy algebra. By forming suitable linear

combinations one should be able to find a lowest weight vector in this larger space that allows to split off

a lowest weight representation as a direct summand. An instance of this can be seen in (B.50).
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We shall assume this condition even though it is not ruled out that it may not be necessary.

Unlike the (4.25), this condition plays a more important role in the construction of the

linearised field equations, as we shall see in the next section. Then, decomposing the

potential as φα = (φα0 , Xαi), the field strength takes the form

FI = fM0
α0,I ∂M0φ

α0 + fM0
α1,I ∂M0X

α1 +
∑

i≥2

fM0
αi,I ∂M0X

αi . (4.28)

If (4.25) were to hold as well, one could truncate the system consistently by setting Xαi = 0

for i ≥ 2 keeping E11 symmetry.

The e11 module R−1 may also be reducible, in which case we may want to consider only

the field strength associated to a minimal indecomposable module. However, this is neither

a highest weight nor a lowest weight e11 module, and there is not much known about the

classification of such Kac-Moody algebra modules.

Given our assumption (4.27), there exists a standard non-degenerate bilinear invariant

form MM0N0 on the ℓ̄1 representation that we will use below in the construction of the

field equations. We remark that if our assumption (4.27) was not valid, we would require

the existence of a similar non-degenerate invariant bilinear form MMN on all of R1 to

construct our theory. In this case, the restriction of MMN to the space indexed by M0 will

not agree with the standard bilinear form. As a matter of fact, in our truncation scheme,

the difference will not be visible as all the higher level representations mentioned above will

be beyond our gl(11) level truncation, and only the lowest gl(11)-level component of Xα1

will appear to play an important role.

To define the field equations, one needs eventually to quotient by the right K(E11)

action to define the theory. Nonetheless, the differential complex described above will serve

as a main building block in the construction to be discussed in section 5. At this level,

φα is still understood as an element of the algebra without constraints, and all quantities

are in e11 representations. This provides a huge simplification, because the construction

of the field strength F is consistent with the gl(11) level (so that the horizontal degree

q is preserved unlike in the scheme described in section 3.2 where it is not). In the next

subsection we shall exploit this property to present explicit formulas for the transformations

and field strengths, and address the problem of defining field equations in the subsequent

section.

4.2 Explicit formulas for transformations

The full structure of the tensor hierarchy algebra T described above, and defined in ap-

pendix B, is not known but we can probe it degree by degree both horizontally and vertically.

Recall that the horizontal degree q is related to the gl(11) level ℓ by q = ℓ + 3
2p and ℓ is

the eigenvalue of the Cartan generator 1
3K

m
m of e11. In this section, we shall give the

explicit form of the structure coefficients DαM0
N0 , f

M0
α,I and ΠM0N0

Ξ, and the explicit

transformations of φα, FI with respect to e11 in the level truncation we are working with.

We recall from the previous section that the ‘potential’ fields φα are associated with vertical

degree p = −2 in the tensor hierarchy algebra that is dual to p = 0. At this stage we do

not perform a coset construction, i.e., there will be fields associated with all generators at
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q = −3 q = −2 q = −1 q = 0

section constraint p = 2 Ln1...n6,m, Ln1...n7 Ln1...n4 Ln

derivative p = 1 ∂n1...n7,m, ∂n1...n8 ∂n1...n5 ∂n1n2 ∂m

field strength p = −1 Fn1n2
m Fn1...n4 Fn1...n7 Fn1...n9,m, Fn1...n10

potential p = −2 h+n
m A+

n1n2n3
A+

n1...n6
h+n1...n8,m, Xn1...n9

gauge parameter p = −3 ξm λn1n2 λn1...n5 ξn1...n7,m, λn1...n8

Table 4. q- and p-degrees of selected objects in the tensor hierarchy algebra.

p = −2. Furthermore, the derivatives, gauge parameters and field strengths are associated

with vertical degrees p = 1, p = −3 and p = −1, respectively. The assignments of horizontal

degrees q within these vertical ones are summarized in table 4.

In order to exhibit the global E11 transformations

δφα = −Cβ0α
γuβ0φ

γ , (4.29)

it suffices to study the infinitesimal transformations under the level ℓ = q = ±1 generators

En1n2n3 and Fn1n2n3 of e11 as the higher and lower level transformations can be obtained by

iteration/commutation. We denote the parameters uα0 of these transformations by en1n2n3

and fn1n2n3 , respectively. More precisely, we write the general element at p = −2 as28

φαt̃α = . . .+
1

8!
hn1...n8,m
− F̃n1...n8,m +

1

6!
An1...n6

− F̃n1...n6 +
1

3!
An1n2n3

− F̃n1n2n3 + h+n
mK̃n

m

+
1

3!
A+

n1n2n3
Ẽn1n2n3 +

1

6!
A+

n1...n6
Ẽn1...n6 +

1

8!
h+n1...n8,mẼ

n1...n8,m

+
1

8!
Xn1...n9Ẽ

n1...n9 + . . . , (4.30)

where the term in the last line corresponds to the new generator Ẽn1...n9 with coefficient

Xn1...n9 in the tensor hierarchy algebra that is not present in e11 and that is totally anti-

symmetric in its nine indices. The transforming rigid e11 element at level p = 0 we take as

1

3!
fn1n2n3Fn1n2n3 +

1

3!
en1n2n3E

n1n2n3 (4.31)

and the important new commutator in the tensor hierarchy algebra is

[En1n2n3 , Ẽp1...p6 ] = −3Ẽn1n2n3p1...p6 − 3Ẽp1...p6[n1n2,n3] , (4.32)

whose dual version was given in (B.22). From the e11 commutation relations given in

appendix A, and those of the tensor hierarchy algebra given in appendix B, we derive the

following rigid E11 transformations at p = 0 of the ‘potentials’ lying at p = −2:

δhn1···n8,m
− = −56f‹n1n2n3An4···n8,m›

− + · · · , (4.33a)

δAn1···n6
− = −20f [n1n2n3A

n4n5n6]
− +

1

2
en7n8n9h

n1···n8,n9
− , (4.33b)

28For the tensor hierarchy algebra at p = −2 we write the coordinate associated with the dual of gl(11)

as h+
n

m; it has no particular symmetry properties and so it is akin to the quantity ϕn
m appearing in the

parametrisation of the adjoint of e11 in (2.22).
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δAn1n2n3
− =

1

6
ep1p2p3A

n1n2n3p1p2p3
− + 3fp[n1n2h+p

n3] , (4.33c)

δh+n
m =

1

2
enp1p2A

mp1p2
− − 1

2
fmp1p2A+

np1p2

− 1

18
δmn
(
ep1p2p3A

p1p2p3
− − fp1p2p3A+

p1p2p3

)
, (4.33d)

δA+
n1n2n3

= −1

6
fp1p2p3A+

n1n2n3p1p2p3 − 3ep[n1n2
h+n3]

p , (4.33e)

δA+
n1···n6

= 20e[n1n2n3
A+

n4n5n6]
− 1

2
fn7n8n9h+n1···n8,n9

, (4.33f)

δh+n1···n8,m = 56e‹n1n2n3A
+
n4···n8,m›

+ · · · , (4.33g)

δXn1···n9 = −28e[n1n2n3
A+

n4···n9]
+ · · · . (4.33h)

As can be seen in (4.30) and in the table above, fields with the superscript + or subscript

− belong to the part of R−2 corresponding to the adjoint of e11 at ℓ ≥ 0 and ℓ < 0 (that is,

q ≥ −3 and q < −3), respectively. The transformation rules of the latter are obtained from

the former ones by raising and lowering all the indices and by interchanging the parameters

e ↔ −f . The fields in the additional part of R−2 appear at ℓ ≥ 3 (in particular Xn1...n9

at ℓ = 3) and have no counterparts at negative levels. Note that this is the transformation

of fields in the whole of R−2 (not yet the physical potential associated to the non-linear

realisation), so that the gl(11) level ℓ is preserved. The parameters en1n2n3 and fn1n2n3

have levels ℓ = 1 and ℓ = −1, respectively, and the fields have ℓ = (N −M)/3 where N is

the number of lower indices and M is the number of upper indices. The ellipses in some of

the equations indicate contributions from level ℓ = 4 and ℓ = −4 fields which are outside

the range we are considering.

The most important new ingredient in (4.33) for the tensor hierarchy algebra is the last

equation (4.33h) that gives the transformation of the new potential Xn1...n9 that is present

in the tensor hierarchy algebra but not in e11. As we can see it transforms back into e11

under the action of e11, illustrating the fact that R−2 is not the direct sum of the adjoint of

e11 and some other representation of e11. This crucial fact is necessary to obtain the correct

linearised equations of motion in the following section.

The local gauge transformation (4.12), given by the structure coefficients DαM
N shown

in appendix A.2, more explicitly read as follows:

δT

Ξ h
n1...n8,m
− = −8∂[n1···n7,|m| ξn8] +

8

3
∂m[n1···n7 ξn8] − 8

3
∂n1···n8 ξm + · · · , (4.34a)

δT

Ξ A
n1...n6
− = −6∂[n1...n5ξn6] − ∂n1...n6p,qλpq + ∂n1...n6p1p2λp1p2 + · · · , (4.34b)

δT

Ξ A
n1n2n3
− = 3∂[n1n2ξn3] +

1

2
∂n1n2n3p1p2λp1p2 +

1

4!
∂n1n2n3p1···p4,p5λp1···p5 (4.34c)

− 1

5!
∂n1n2n3p1···p5λp1···p5 + · · · ,

δT

Ξ h
+
n
m = ∂nξ

m − ∂mpλnp −
1

4!
∂mp1···p4λnp1···p4 −

1

6!
∂mp1···p6,qξnp1···p6,q (4.34d)

− 1

7!
∂p1···p7,mξp1···p7,n −

8

7!
∂mp1···p7λnp1···p7

+
1

3
δmn

(
1

2
∂p1p2λp1p2 +

2

5!
∂p1···p5λp1···p5
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+
3

7!
∂p1···p7,qξp1···p7,q +

3

7!
∂p1···p8λp1···p8

)
+ · · · ,

δT

Ξ A
+
n1n2n3

= 3∂[n1
λn2n3] +

1

2
∂p1p2λn1n2n3p1p2 +

1

4!
∂p1···p5ξn1n2n3p1···p4,p5

− 1

5!
∂p1···p5λn1n2n3p1···p5 + · · · , (4.34e)

δT

Ξ A
+
n1···n6

= 6∂[n1
λn2···n6] − ∂p1p2ξn1···n6p1,p2 + ∂p1p2λn1···n6p1p2 + · · · , (4.34f)

δT

Ξ h
+
n1···n8,m = 8∂[n1

ξn2···n8],m + 24∂‹n1λn2···n8,m› + · · · , (4.34g)

δT

Ξ Xn1···n9 = 24∂[n1
λn2···n9] + · · · . (4.34h)

In these gauge transformations one has again a preservation of the horizontal degree q. Note

that there is no additional gauge parameter for the potential Xn1...n9 and the transformation

of the latter only involve the parameter λn1...n8 that already enters in the transformation of

the dual graviton hn1...n8,m. The ellipses denote terms involving derivatives of level ℓ < −9
2

or gauge parameters of level ℓ > 9
2 , that are ignored in our computations. The first new

gauge parameters that are in the r
(1)

2 module are ξ10,1, λ11 and only appear at level ℓ = 11
2 .

The structure coefficients fMα,I , occurring in the definition of the field strengths FI

given in (4.9), are determined by the Bianchi identities, and equivalently by the property

that the field strength (4.12) is gauge invariant modulo the section constraint

Lm = ∂mn∂n , (4.35a)

Ln1n2n3n4 = 3∂[n1n2∂n3n4] − ∂n1n2n3n4m∂m , (4.35b)

Ln1n2n3n4n5n6,m = 15∂‹n1n2∂n3n4n5n6,m› − ∂p‹n1n2n3n4n5n6,m›∂p , (4.35c)

Ln1n2n3n4n5n6n7 = 3∂[n1n2∂n3n4n5n6n7] − 3

7
∂n1n2n3n4n5n6n7,m∂m + ∂n1n2n3n4n5n6n7m∂m ,

(4.35d)

and transforms to itself with respect to E11. Using these constraints and the known gl(11)

irreducible representations appearing at each horizontal degree q in R−1, one computes in

this way that

Fn1...n8 = 5∂[n1n2A
n3...n8]
− + 16∂[n1...n5A

n6n7n8]
−

− 18

7
∂[n1...n7|,qh+q

|n8] − 6∂q[n1...n7h+q
n8] + . . . (4.36a)

Fm
n1...n8,p = ∂mh

n1...n8,p
− +

56

33

(
8δ[n1

m ∂|p|n2A
n3...n8]
− + 9δ[n1

m ∂n2n3A
n4...n8]p
−

− δpm∂[n1n2A
n3...n8]
− + 20δ[n1

m ∂|p|n2...n5A
n6n7n8]
− + 21δ[n1

m ∂n2...n6A
n7n8]p
−

− δpm∂[n1...n5A
n6n7n8]
− − 22δ[n1

m ∂n2...n7|q,p|h+q
n8] + δ[n1

m ∂n2...n7|p,q|h+q
n8]

− 12

7
δ[n1
m ∂n2...n8],qh+q

p − 3

7
δpm∂

[n1...n7|,qh+q
n8] + 5δ[n1

m ∂n2...n7|pq|h+q
n8]

– 37 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
0

+ 4δ[n1
m ∂n2...n8]qh+q

p + δpm∂
[n1...n7|qh+q

n8]

)

+ 8∂[n1...n7|,ph+m
|n8] + 3∂‹n1...n8,h+m

p› + . . . , (4.36b)

Fn1n2n3n4,m = −6∂‹n1n2An3n4,m›
− + ∂q‹n1n2n3n4,h+q

m›

+
1

6
∂p1p2p3‹n1n2n3n4,m›A+

p1p2p3 + . . . , (4.36c)

Fm
n1···n6 = ∂mA

n1n2n3n4n5n6
− + 6∂[n1···n5h+m

n6] + ∂n1···n6p,qA+
mpq − ∂n1···n6p1p2A+

mp1p2

+ 12δ[n1
m

(
∂n2n3A

n4n5n6]
− − ∂n2n3n4n5|qh+q

n6] +
3

20
∂n2···n6]p1p2,qA+

p1p2q

− 1

12
∂n2···n6]p1p2p3A+

p1p2p3

)
+ . . . , (4.36d)

Fn1,n2 = ∂q(n1h+q
n2) +

1

6!
∂p1p2p3p4p5p6(n1,n2)A+

p1p2p3p4p5p6 + . . . , (4.36e)

Fm
n1n2n3 = −∂mAn1n2n3

− + 3∂[n1n2h+m
n3] +

1

2
∂n1n2n3p1p2A+

mp1p2

+
1

4!
∂n1n2n3p1p2p3p4,qA+

mp1p2p3p4q −
1

5!
∂n1n2n3p1p2p3p4p5A+

mp1p2p3p4p5

+
3

2
δ[n1
m

(
∂n2|qh+q

n3] − 1

6
∂n2n3]p1p2p3A+

p1p2p3 −
3

2 · 5!∂
n2n3]p1...p5,qA+

p1...p5q

+
1

6!
∂n2n3]p1...p6A+

p1...p6

)
+ . . . , (4.36f)

Fn1n2
m = 2∂[n1

h+n2]
m + ∂mpA+

n1n2p +
1

4!
∂mp1···p4A+

n1n2p1···p4

+
1

6!

(
∂mp1···p6,q + ∂p1···p6q,m

)
h+n1n2p1···p6,q

+
1

3
δm[n1

(
∂p1p2A+

n2]p1p2
+

4

5!
∂p1···p5A+

n2]p1···p5

+
6

7!
∂p1···p7,qh+n2]p1···p7,q

+
2

7!
∂p1···p8h+n2]p1···p7,p8

)

− 1

7!
∂p1···p7,mXn1n2p1···p7 +

3

7!
∂mp1···p7Xn1n2p1···p7

+
1

12 · 9!δ
m
[n1
∂p1···p8Xn2]p1···p8 + . . . , (4.36g)

Fn1n2n3n4 = 4∂[n1
A+

n2n3n4]
− 1

2
∂p1p2A+

n1n2n3n4p1p2 −
1

4!
∂p1p2p3p4p5h+n1n2n3n4p1p2p3p4,p5

+
1

5!
∂p1p2p3p4p5Xn1n2n3n4p1p2p3p4p5 + . . . , (4.36h)

Fn1···n7 = 7∂[n1
A+

n2···n7]
+ ∂p1p2h+n1···n7p1,p2 −

1

2
∂p1p2Xn1···n7p1p2 + . . . , (4.36i)

Fn1···n9,m = 9∂[n1
h+n2···n9],m

+ ∂‹m,Xn1···n9› + . . . , (4.36j)

Fn1···n10 = ∂[n1
Xn2···n10] + . . . . (4.36k)

where the ellipses denote terms of order O(4, 4), that is, involving either potentials of
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horizontal degree outside the range −6 ≤ q ≤ 0 or derivatives of horizontal degree q < −3.
As noted earlier, q is preserved in the expressions for the gauge invariant field strengths.

Indeed, reading off the horizontal degrees from table 3, we note that the field strengths

listed above have q = −6,−5,−5,−4,−4,−3,−2,−1, 0, 0, respectively. Note that the list

of field strengths displayed above is exhaustive for −5 ≤ q ≤ 0, however, there are other

field strengths at q = −6 in the reducible representation (6, 2) + (7, 1). We do not display

these three irreducible components because they do not depend on the dual graviton field

h8,1, and they will not be relevant in the following. The components in (7, 1) + (8) are

determined from conditions that will be explained in the next section.

It is worth noting that if we restrict the range of the indices to run from m = 0, 1, . . . , 7

in (4.36), the terms depending on the nine-form potential vanish and the expressions for

the symmetry transformations as well as the field strengths discussed above reduce to

those one would obtain from the embedding tensor representation of e8. The field strength

representation can be defined using gl(11) tensor calculus and demanding that it is gauge

invariant modulo the section constraint and transforms to itself under e11. It appears that

this construction faces an obstruction if one restricts oneself to an ansatz depending on the

fields in e11 only, so that the necessity of introducing a nine-form comes naturally in the

construction. So we want to stress that the nine-form does not come only as a consequence

of the construction of this representation based on the tensor hierarchy algebra, but is in

fact a consequence of the requirement that there exists such an e11 representation in which

∂φ is indeed gauge invariant modulo the section constraint.

Using the definitions (4.36), one computes indeed that the field strengths transform as

δFn1...n8 = 5 f q[n1n2Fq
n3...n8] + . . . ,

δFm
n1...n8,p = −56f‹n1n2n3Fm

n4...n8,p›

+
56

33

(
8δ[n1

m f |qp|n2Fq
n3...n8] + 9δ[n1

m f |q|n2n3Fq
n4...n8]p

−δpmf q[n1n2Fq
n3...n8]

)
+ . . . ,

δFn1n2n3n4,m = 6fp‹n1n2Fp
n3n4,m› − 4f [n1n2n3Fn4],m + · · · ,

δFm
n1···n6 = 20f [n1n2n3Fm

n4n5n6] − 12δ[n1
m fp|n2n3Fp

n4n5n6]

+
1

2
ep1p2qFn1...n6p1p2,q + . . . ,

δFm,n =
1

2
fp1p2(mFp1p2

n) − 1

6
ep1p2p3Fp1p2p3(m,n) ,

δFm
n1n2n3 = −3fp[n1n2Fmp

n3] +
3

4
fp1p2[n1δn2

m Fp1p2
n3] − 1

6
ep1p2p3Fm

n1n2n3p1p2p3

−empqFn1n2n3p,q +
3

8
δ[n1
m ep1p2qFn2n3]p1p2,q ,

δFn1n2
m = ep1p2[n1

Fn2]
mp1p2 − 1

9
ep1p2p3δ

m
[n1
Fn2]

p1p2p3 + epn1n2Fm,p

−1

2
fmp1p2Fn1n2p1p2 −

1

9
fp1p2p3δm[n1

Fn2]p1p2p3
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δFn1n2n3n4 = −6ep[n1n2
Fn3n4]

p − 1

6
fp1p2p3Fn1n2n3n4p1p2p3

δFn1···n7 = −35e[n1n2n3
Fn4···n7] −

1

2
fp1p2qFn1···n7p1p2,q +

1

2
fp1p2qFn1···n7p1p2p3

δFn1···n9,m = −84e‹n1n2n3Fn4···n9,m› + · · ·

δFn1···n10 = 4e[n1n2n3
Fn4···n10] + · · · (4.37)

with respect to e11, with the ellipses denoting terms involving field strengths of level ℓ > 3
2

or ℓ < −7
2 , which we do not define in (4.36).

5 Field equations from the tensor hierarchy algebra

In this section we shall derive linearised equations of motion for the potentials. In addition

to the standard potential A parametrising the symmetric space E11/K(E11), the theory

will involve an additional potential X in the r
(0)

1 module (and possibly other potentials

completing the R−2 module discussed in the preceding section) transforming together in

an indecomposable representation of e11. In this section we will restrict our analysis to the

linearised approximation, in which case only the symmetry K(E11) is manifest. Extending

the indecomposable module discussed in the previous section to a non-linear realisation of

E11 is beyond the scope of this paper, see, however, section 7. The structure coefficients

of the tensor hierarchy algebra described in the previous section will serve as building

blocks for deriving gauge invariant second order differential equations for the fields and an

infinite set of first order duality equations, necessary to avoid infinite degeneracy of the

physical states.

5.1 Twisted selfduality for E11 and field equations

To define the field equations we must consider the coset component of the Maurer-Cartan

form PM0 in the gauge (2.22) as in section 2.1. We define the projection to the coset

component and K(e11) from the projectors

Pα0
± β0 =

1

2

(
δα0
β0
± κα0γ0Mγ0β0

)
, (5.1)

respectively, which are defined from the e11 Cartan-Killing form κα0β0 and the K(e11)

invariant bilinear form on ℓ̄1

MM0N0 =
√
g diag(gmn, gm1n1gm2n2 , gm1n1 · · · gm5n5 , . . . ) , (5.2)

with Mα0β0 related to MM0N0 through the relation29

Mα0β0D
β0 M0

N0 = κα0β0MN0P0M
N0Q0Dβ0 P0

Q0 , (5.3)

29In the case of GL(d)/SO(d), equation (5.3) is the following statement. Fundamental indices M cor-

respond to standard vector indices m = 1, . . . , d and adjoint indices α0 = 1, . . . , d2 correspond to pairs

of fundamental indices m
n as on the generators Km

n. For a symmetric matrix Mmn constructed from

the fundamental representation, the corresponding symmetric matrix Mm1
n1

m2
n2 in the adjoint is then

determined by Mm1
n1

m2
n2δ

n2
n δmm2

= δm1
n2

δm2
n1

MnpM
mq(δn2

q δpm1
) to simply be Mm1m2Mn1n2 . Another way

of understanding this equation is to note that the fundamental and its conjugate anti-fundamental repre-

sentation are related by the Cartan involution.
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and the inverse of MM0N0 is denoted by MM0N0 . One can define the Cartan involution such

that gmn = ηmn, the SO(1, 10) Minkowski metric, but any matrix conjugate to MM0N0 in

E11 defines equivalently a K(E11) subgroup, and we shall chose gmn to be an arbitrary

constant background metric. We want to keep a general constant metric gmn to exhibit in

the following that the density factor in det g will come out correctly. With respect to the

projectors (5.1), the coset component of the e11-valued Maurer-Cartan form (2.10) satisfies

P+PM0 = PM0 and P−PM0 = 0.

In the linearised approximation, the coset component of the Maurer-Cartan form PM0

is simply the derivative of a Lie algebra element in the coset component:

PM0 =
1

2
∂M0 (Aα0t

α0) , (5.4)

where the normalisation is chosen for convenience, and where

P β0
− α0Aβ0 = 0 (5.5)

ensures that Aα0t
α0 lies in the coset component. This is not a gauge condition on Aα0 ;

fixing a K(E11) gauge determines how the components of Aα0 are expressed in terms of the

potentials in a gauge-fixed representative of the E11/K(E11) coset element. Parametrising

the E11 coset representative in the parabolic gauge (2.22) leads to the linearised Maurer-

Cartan form

g −1
E ∂M0gE = ∂M0

(
ϕn

mKn
m +

1

3!
An1n2n3E

n1n2n3 +
1

6!
An1...n6E

n1...n6

+
1

8!
hn1...n8,mE

n1...n8,m + . . .

)
,

⇒ PM0 = ∂M0

(
1

2
ha

bKa
b +

1

2 · 3!Aa1a2a3(E
a1a2a3 + F a1a2a3)

+
1

2 · 6!Aa1...a6(E
a1...a6 + F a1...a6) + . . .

)
. (5.6)

Note that for e11, the Killing form permits the interpretation of PM0 as an element of

degree p = −2. Doing so we can identify the field Aα0t
α0 with the potential Aα0 t̃α0 at

degree p = −2 according to the discussion of section 4.1. In terms of (4.30), one obtains

PM0 by substituting to the components of φα0

A+
n1n2n3

=
1

2
An1n2n3 , A+

n1...n6
=

1

2
An1...n6 , . . .

An1n2n3
− =

1

2
gn1p1gn2p2gn3p3Ap1p2p3 , An1...n6

− =
1

2
gn1p1 . . . gn6p6Ap1...p6 , . . . (5.7)

and similarly for all higher level fields, and

h+m
n =

1

2
hm

n =
1

2
gmpg

nqhq
p . (5.8)

The gauge transformations for the fields are then obtained from (4.34) by summing the

contribution from A+
n1n2n3

, . . . and their conjugate gn1p1gn2p2gn3p3A
p1p2p3
− , . . . , and similarly

for hn
m by summing (4.34) and its transpose, so that

δΞh = δT

Ξ h
+ + δT

Ξ h
+T , δΞA = δT

Ξ A
+ + δT

Ξ A
− , (5.9)
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in agreement with (2.31). In order to be consistent with the K(e11) transformations, the

gauge transformation of the field X must also be modified. To do this we observe that δT

Ξ A
+

and δT

Ξ A
− are obtained from one another by exchanging ∂M and ΞM and by lowering and

raising all indices using the background metric gmn. We will therefore consider that the

gauge transformation of the field Xαi is also modified in the same way, i.e.,

δΞX = δT

Ξ X + δT

Ξ X , (5.10)

understanding that δT

Ξ X is obtained from δT

Ξ X by exchanging the ∂M and the ΞN and

raising and lowering the indices with gmn. For example, one has

δΞXa1···a9 = 24∂[a1λa2···a9] + 24∂[a1···a8ξa9] +O(4, 4) . (5.11)

To define field equations for the E11/K(E11) fields h, A and the additional fields Xαi , we

need therefore to define in some way the equivalent of the projection to the coset component

for the additional fields Xαi , consistently with the gauge transformation (5.10). Note that

if the assumption of the previous section about the reducibility of these modules were true,

one could consistently truncate the coordinate dependence to the one in the r
(1)

0 module

and the additional fields to Xα1 in r
(0)

1 only. In this section we assume indeed that one

can set the coordinates in r
(1)

0 to zero, whereas the second condition is not essential in

the following. This simplifying property would nevertheless be very desirable to define a

minimal extension of the E11 paradigm.

We shall define the physical K(e11)-covariant field strength from the projection to the

coset component of the field strength defined from the tensor hierarchy algebra FI as follows

GI = fM0
α,I ∂M0A

α = fM0
α0,I ∂M0A

α0 +
∑

i≥1

fMαi,I∂MX
αi , (5.12)

where we define for convenience Aα = (Aα0 , Xαi). More schematically, one can obtain all

the components of GI using (4.36) with the above substitutions (5.7), (5.8). Defining the

expressions (4.36) as F [A−, h+, A+, X], one can formally write that

G[h,A,X] = F [A, h,A,X] , (5.13)

where we avoid writing the dependence in the background metric gmn for brevity. The

gauge transformation of Aα can be written as

δΞA
α = (Dα)M0

N0

(
∂M0Ξ

N0 +MN0P0MM0Q0∂P0Ξ
Q0

)
. (5.14)

The field strength GI defined as in (5.12) is not gauge invariant, even for gauge parameters

satisfying the section constraint. One gets instead

δΞGI = fM0
α,I (Dα)N0

P0M
P0Q0MN0R0∂M0∂Q0Ξ

R0 , (5.15)

where we used the gauge invariance of FI modulo the section condition (4.13) to simplify

the expression. One can check that this gauge variation does not vanish. This is not

a contradiction because it is indeed expected that one cannot write gauge invariant first

– 42 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
0

order duality equations, as we already discussed, since the first order duality equations for

the metric field are not gauge invariant in ordinary spacetime. We shall see nonetheless

that one can define second order field equations that are solved by the solutions to a non-

gauge invariant first order constraint, and which turn out to be gauge invariant in a low-level

truncation. Assuming that this second order equation is indeed gauge invariant, we find that

no higher order field equations are needed in this set-up. In principle, gauge invariant first

order duality equations can be written at the expense of introducing additional Stückelberg

fields as in [62].

The great advantage of the above construction is that GI is defined in a representation

of e11, and as such preserves the level up to the projection applied to the coset fields.

Therefore a component of GI of gl(11) level ℓ admits contributions from level ℓd derivatives

acting on coset potentials of level |ℓ − ℓd| only. This ensures in particular that at a given

level ℓ, one can only have ordinary derivatives of potentials at level |ℓ + 3
2 |. One can

therefore consistently consider the restriction of the fields to depend on the eleven space-

time coordinates for a given level truncation, without possibly missing contributions from

arbitrary high level fields, as it may be the case in the conventional E11 paradigm.

To define the first order duality equation we need an invariant bilinear form on the

R−1 module. For a finite-dimensional group G, the existence of a symplectic form in a

2n-dimensional representation implies that G ⊂ Sp(2n,R) and that its maximal compact

subgroup K ⊂ G is a subgroup of U(n) such that there is a K invariant bilinear form in this

representation. These building blocks permit to define consistent twisted self-duality equa-

tions for D/2-form field strengths in dimensions D = 4 mod 4, as one finds in supergravity

theories in space-time dimension four and eight.

Given that the R−1 module admits an e11 invariant symplectic form ΩIJ , one can un-

derstand E11 as a symplectic group acting in this representation. Provided that a symmetric

non-degenerate bilinear form M IJ exists, one can write a first order duality equation for

the field strength GI :

M IJGJ = ΩIJGJ . (5.16)

If R−1 were irreducible under e11, it would follow that M IJ existed and was non-degenerate.

Independently of the assumption that the module R−1 is irreducible, we shall find evidences

for the existence of this bilinear form in the low level truncation. It may also be the case

that M IJ exists but is not unique; the low level expression we construct in the next section

is inspired by the first order formulation of supergravity. The duality equation relates levels

ℓ and −ℓ in the gl(11) decomposition of the R−1 representation since ΩIJ has the reflection

symmetry discussed in section 4.1 and M IJ will be seen below to be diagonal.

The equation (5.16) is reminiscent of the twisted selfduality equations appearing in

supergravity theories [10], where M IJ includes all the factors in the metric fields and more

generally on the background E11/K(E11) coset, whereas ΩIJ only involves the Levi-Civita

tensor. Moreover, M IJ includes the appropriate factor of
√
g of the background metric, and

we shall see that it reproduces the appropriate first order duality equations for the various

fields included in our truncation scheme.
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However, the duality equation (5.16) is not gauge invariant modulo the section con-

straint. It would be suitable to have a second order field equation that would be gauge

invariant, and would be automatically solved by any solution to this first order equation

satisfying the section constraint. The tensor hierarchy algebra implies the degree p = 0

Bianchi identity

d2(φαt̃α) = ΩIJfM0
α,If

N0
β,J∂M0∂N0φ

βtα = 0 (5.17)

modulo the section constraint. The field Aα0 belongs to the coset component, and the

corresponding field equation must therefore also belong to p. So we define the projected

structure coefficients

f̂M0
α0,I ≡ P β0

+ α0f
M0

β0,I , f̂M0
αi,I ≡ fM0

αi,I . (5.18)

Because the relevant structure coefficients of the tensor hierarchy algebra do not involve

the contraction of the indices α, β in this equation, it is also true that

ΩIJ f̂M0
α,I f̂

N0
β,J∂M0∂N0A

β = 0 , (5.19)

modulo the section constraint. One concludes that any solution to the first order duality

equation (5.16) automatically solves the second order differential equation

f̂M0
α,IM

IJ∂M0GJ = 0 , (5.20)

with GI and f̂M0
α,I defined from (5.12) and (5.18). Equation (5.20) is very suggestive of

the second order field equations one encounters in supergravity, and it turns out to be the

equation of motion of a Lagrangian

L(0) = −1

2
GIM IJGJ , (5.21)

uniquely determined by the invariant bilinear form M IJ . In the following section we

shall determine a K(e11)-invariant bilinear form M IJ that preserves the gl(11) level in

our truncation scheme, meaning that the Lagrangian (5.21) decomposes schematically as

L(0) ∼ −∑ℓ |G(ℓ− 3
2 )|2. The property that M IJ preserves the level is essential for the con-

sistency of the level truncation scheme.

However, we shall find that the second order equation (5.20) is not gauge invariant. The

lack of gauge invariance seems to be related to the asymmetry of the formalism between the

field Aα0 that is projected to the coset component and the additional fields Xαi that are

not. We will now describe how this problem can be circumvented at the price of introducing

another algebraic structure.

Following this line of thought, we therefore define the spurious field X̄α1 in the conjugate

representation ℓ̄2. For this purpose we define the indecomposable module R∗
−2, that is

obtained from R−2 through the action of the Cartan involution. It decomposes into vector

spaces as R∗
−2 = ⊕ir

(0)

i = e11⊕ ℓ̄2⊕ ℓ̄10⊕ . . . , but should not be confused with the conjugate

module R0 that is obtained by conjugation and not the Cartan involution. This definition
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ensures by construction that R∗
−2 and R−2 are identical as K(e11)-modules. The highest

gl(11) component of X̄α1 is X̄n1...n9 , it transforms accordingly with respect to e11 as

δX̄n1···n9 = 28f [n1n2n3A
n4...n9]
− + ep1p2p3(. . . ) . (5.22)

where the terms denoted by ellipses will not be needed at the level truncation we consider

below. We define its gauge transformation as the conjugate transformation δT

Ξ X, such that

in particular

δT

Ξ X̄
n1···n9 = 24∂[n1···n8ξn9] +O(4, 4) . (5.23)

This gauge transformation is by construction consistent with the indecomposable e11-

module structure of R∗
−2. So just as the coset projection of Aα0 is defined such that its gauge

transformation is δΞA = δT

Ξ A
+ + δT

Ξ A
−, the gauge transformation of the physical fields

Xαi are defined such that δΞX = δT

Ξ X + δT

Ξ X̄. We will write φ̄α = (κα0β0φ
β0 , X̄αi

) ∈ R∗
−2,

keeping in mind that R∗
−2 is not conjugate to R−2. In particular, one can write the gauge

transformation

δT

Ξ φ̄α =
(
Mαβ(D

β)Q0
P0 M

P0N0MQ0M0

)
∂N0Ξ

M0 , (5.24)

where Mαβ is defined from the condition that the dependence in the background metric

gmn drops out in this equation. Mαβ defines the conversion of φ̄α to the physical field

MαβA
β , but it does not define a K(e11) invariant bilinear form on R−2. In the gl(11) level

decomposition, Mαβ simply lowers all upper indices with the background metric gmn and

raises all lower indices with its inverse.

Just like the field strength FI defined from the tensor hierarchy algebra is by con-

struction e11 covariant and gauge invariant modulo the section constraint, we would like to

define a field strength from the potential φ̄α in a representation of e11 that would be gauge

invariant modulo the section constraint. Although the tensor hierarchy algebra does not

provide such a definition, we shall now argue that one can define such a field strength F̄I1

in the highest weight module ℓ̄3.

For this purpose we observe the decomposition of the tensor product

ℓ̄1 ⊗ ℓ̄2 = (ℓ1 + ℓ2)⊕ ℓ̄3 ⊕ . . . , (5.25)

into irreducible e11 representations. The terms on the right-hand side are highest weight

representations labelled by their highest weight, for instance, the first term has Dynkin

labels (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0). The decomposition into highest weight representations

allows to define a projector ΠI1
M0α1 from ℓ̄1 ⊗ ℓ̄2 to the module ℓ̄3. To define the field

strength F̄I1 in ℓ̄3 we would need a similar projector from ℓ̄1 ⊗R∗
−2 to the module ℓ̄3. The

projection to ℓ̄3 is determined by the property that it is a highest weight representation,

with a rank eight antisymmetric tensor of level −9
2 as its highest level component in the

gl(11) decomposition. Checking the highest weight condition on an ansatz of gl(11) level

−9
2 , i.e., one that is annihilated by the action of the e11 lowering generator Fp1p2p3 , one

determines the field strength component

F̄n1···n8 = ∂p(h
n1...n8,p
− + X̄n1...n8p)− 28∂[n1n2A

n3...n8]
− − 56∂[n1...n5A

n6n7n8]
−

+ 8∂[n1...n7|,ph+p
n8] − 24∂p[n1...n7h+p

n8] +O(4, 1) , (5.26)
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in the level truncation we consider. One computes moreover that it is gauge invariant

modulo the section constraint,

δT

Ξ F̄
n1···n8 = O(∂(− 3

2 )∂(− 11
2 )λ2), (5.27)

up to derivatives that are beyond our truncation scheme. Terms involving ξm drop out

identically. Based on these observations, we assume that one can indeed define the field

strength F̄I1 in ℓ̄3,

F̄I1 ≡ ΠI1
M0α∂M0 φ̄α = ΠI1

M0α0∂M0φα0 +ΠI1
M0α1∂M0X̄α1 +

∑

i≥2

ΠI1
M0αi∂M0X̄αi

. (5.28)

We note that only ΠM0α
I1

and ΠM0α1
I1

are e11 tensors.30 In addition, we assume that F̄I1 is

gauge invariant modulo the section constraint, i.e.,

δT

Ξ F̄I1 = ΠI1
M0αMαβ(D

β)N0
P0MN0R0M

P0Q0∂M0∂Q0Ξ
R0 = 0 . (5.29)

This is true up to the level we have checked.

Assuming this field strength F̄I1 in ℓ̄3 indeed exists and is gauge invariant modulo the

section constraint, one can define the K(e11)-covariant physical field strength

ḠI1 ≡ ΠI1
M0βMβα∂M0A

α = ΠM0
I1α
∂M0A

α = ΠM0
I1α0

∂M0A
α0 +

∑

i≥1

ΠM0
I1αi

∂M0X
αi , (5.30)

where we defined ΠM0
I1α
≡ ΠI1

M0βMβα for convenience. Writing (5.26) as F̄ [A−, h+, A+, X̄],

one can formally write that

Ḡ[h,A,X] = F̄ [A, h,A,X] . (5.31)

As GI defined in (5.12), this field strength ḠI1 is not gauge invariant, but its gauge trans-

formation simplifies upon use of (5.29) to

δΞḠI1 = ΠM0
I1α

(Dα)N0
P0∂M0

(
∂N0Ξ

P0 +MN0R0M
P0Q0∂Q0Ξ

R0
)

= ΠM0
I1α

(Dα)N0
P0∂M0∂N0Ξ

P0 . (5.32)

As a highest weight module, ℓ̄3 admits a non-degenerate K(e11) invariant bilinear form

M I1J1 , and one can define the Lagrangian

L = L(0) − 1

2
ḠI1M I1J1 ḠJ1 = −1

2
GIM IJGJ −

1

2
ḠI1M I1J1 ḠJ1 , (5.33)

that defines the second order equations of motion

Eα = f̂M0
α,IM

IJ∂M0GJ + Π̂M0
I1α
M I1J1∂M0 ḠJ1 , (5.34)

where

Π̂M0
I1α0
≡ P β0

α0Π
M0
I1β0

, Π̂M0
I1αi
≡ ΠM0

I1αi
. (5.35)

30The ΠI1
M0αi would vanish for i ≥ 2, if the structure coefficients (4.23) were upper triangular.
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We shall prove in the next section that these second order equations are gauge invariant

modulo the section constraint within our level truncation scheme. We therefore conjecture

that one can define gauge invariant second order equations to all levels following this con-

struction, or a generalisation thereof involving possibly additional highest weight modules

in a similar way.

These equations (5.34) are automatically solved by the solutions to the first order

equations

M IJGJ = ΩIJGJ , (5.36a)

ḠI1 = 0 . (5.36b)

It may look rather drastic to set ḠI1 to zero. One can interpret ḠI1 = 0 as a K(e11)-

multiplet of gauge-fixing conditions for the field Xα1 . This is then consistent with the first

order duality equations (5.36a) being not gauge invariant. It might be possible to define

gauge invariant first order equation by introducing appropriate Stückelberg gauge fields.

We expect that within such a formulation, the Stückelberg gauge fields would couple these

two equations non-trivially. Note that the identification of the correct physical degrees of

freedom requires the first order duality equation to be satisfied, which does not derive from

the Lagrangian (5.33). This is similar to the situation one encounters in the democratic

formulation of supergravity theories.

We shall now work out these second order equations within our level truncation scheme,

and exhibit that they are indeed gauge invariant modulo the section constraint.

5.2 Explicit field equations in the level truncation

It will be convenient to define the tensors in tangent frame, so we introduce the constant

vielbein em
a associated to the background metric gmn used in the previous section, with

determinant e = det em
a. Since the various field strength components have the same number

of indices, we shall use different letters to define them according to their interpretation, as

in section 3.2. At low levels we have

Ωa1···a9,b =
√
e ea1

n1 · · · ea9n9eb
mGn1···n9,m ,

Ωa1···a10 =
√
e ea1

n1 · · · ea10n10Gn1···n10 ,

Ga1···a7 =
√
e ea1

n1 · · · ea7n7Gn1···n7 ,

Ga1a2a3a4 =
√
e ea1

n1 · · · ea4n4Gn1n2n3n4 ,

Ωa1a2
b =
√
e ea1

n1ea2
n2em

bGn1n2
m ,

Ha
b1b2b3 =

√
e ea

men1
b1en2

b2en3
b3Gmn1n2n3 ,

Θa,b =
√
e em

aen
bGm,n ,

Ha
b1···b6 =

√
e ea

men1
b1 · · · en6

b6Gmn1···n6 ,

Θa1...a4,b =
√
e en1

a1 · · · en4
a4em

bGn1n2n3n4,m ,

Ha
b1...b8,c =

√
e ea

men1
b1 · · · en8

b8ep
c Gmn1···n8,p ,

N a1...a8 =
√
e en1

b1 · · · en8
b8 Ḡn1···n8 , (5.37)
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where the field strengths G are defined in (5.13) with F from (4.36) and Ḡ in (5.30) with

F̄ from (5.28). For example, this gives

Ga1a2a3a4 = 4∂[a1Aa2a3a4] −
1

2
∂b1b2Aa1a2a3a4b1b2 −

1

4!
∂b1...b5ha1a2a3a4b1...b4,b5

+
1

5!
∂b1...b5Xa1a2a3a4b1...b5 + . . . ,

Ga1...a7 = 7∂[a1Aa2...a7] + ∂b1b2ha1...a7b1,b2 −
1

2
∂b1b2Xa1...a7b1b2 + . . . . (5.38)

Comparing with (3.8) and (3.12), we see that the lowest order terms coincide, but there

are important differences for terms beyond order O(2, 2). In our formulation the additional

fields arising from the extension to the tensor hierarchy algebra, in particular the field X9

and its partners in ℓ2, allow one to define an e11 representation for the field strength, so

that the K(e11) representation defining the duality equation is determined. This implies in

particular that the field strengths preserve the horizontal degree (modulo the projection of

the potentials to the coset component). In (3.8) and (3.12), there are more terms that are

introduced by the requirement of K(e11) covariance (without X9), that do not preserve the

horizontal degree.

The gl(11) level of the field strengths in (5.37) are determined by their number N

of covariant indices and their number M of contravariant indices as N−M−11/2
3 , so that

the action of E11 includes the additional factor in the square root of the determinant of

the vielbein. Note that the Lagrangian (5.33) includes therefore the relevant determinant

factor for a Lagrange density. The various lines in (5.37) correspond to different gl(11) level

components (where the level is related to the horizontal degrees q in the vertical degree p =

−1 of the tensor hierarchy algebra as q = ℓ− 3
2). The component N a1...a8 is added according

to its gl(11) level. The notation for the various components is in analogy with what happens

in double field theory and non-geometric fluxes [80]; such that G stands for ordinary p-form

field strengths, Ω for field strengths associated to the gravitation field or its dual, H for field

strengths associated to unfolding dualities that involve potentials with at least one column

of nine antisymmetrised indices, and Θ for field strengths associated to non-dynamical

dualities that involve potentials with at least one column of ten antisymmetrised indices.

In order to evaluate the Lagrangian (5.21), one has to work out the K(e11) invariant

bilinear form M IJ level by level. This can be done using the e11 transformations (4.37)

restricted to K(e11) by setting fn1n2n3 = −gn1p1gn2p2gn3p3ep1p2p3 . The result is

L(0) = −1

2

(
1

9!
Ωa1···a9,bΩ

a1···a9,b − 1

8!
Ωa1···a10Ω

a1···a10 +
1

7!
Ga1···a7Ga1···a7 +

1

4!
Ga1···a4Ga1···a4

+
1

2
Ωa1a2

bΩa1a2
b − Ωab

bΩac
c +

4

6
Ha4

[a1a2a3Ha4]
a1a2a3 +Θa,bΘ

a,b

+
1

4!
Θa1···a4,bΘ

a1···a4,b +
7

6!
Ha7

[a1···a6Ha7]
a1···a6 +

9

8!
H[a1

a2...a9,bHa1
a2...a9],b

− 1

8!
Hb

a1...a8,bHc
a1...a8,c + . . .

)
, (5.39)

where the field strengths are ordered with respect to their gl(11) level, starting from level

ℓ = 3
2 and decreasing down to ℓ = −9

2 . The list of terms is exhaustive up to level ℓ = −7
2 ,
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whereas we have neglected field strengths at level ℓ = −9
2 that do not depend on the

dual graviton field. Although GL(11) representation theory does not distinguish a specific

canonical field strength among the linear combination of the level ℓ = −9
2 field strengths

H1
8,1, Θ8 and Θ7,1

Hc
a1...a8,b + αδ‹b,c Θa1...a8› + βδ[a1c Θa2...a8],b , (5.40)

K(e11) invariance determines the Lagrangian to depend on them through the combination

9

8!
H[a1

a2...a9,bHa1
a2...a9],b − 1

8!
Hb

a1...a8,bHc
a1...a8,c

+
1

8!
Θa1...a8Θ

a1...a8 +
1

7!
Θa1...a7,bΘ

a1...a7,b , (5.41)

in our conventions, which justifies the definition of the field strength H1
8,1 a posteriori. We

refrain from writing out explicitly the additional field strengths Θ8, Θ7,1 and Θ6,2 and their

K(e11) transformations for brevity, because they do not contribute to the field equations

described in this paper.

The K(e11) invariant contribution from the fields ḠI1 in our level truncation scheme

produces a term quadratic in N 8, such that the complete Lagrangian (5.33) becomes

L = L(0) − 1

2

1

8!
Na1...a8N a1...a8 + . . . . (5.42)

The relative coefficient is compatible with gauge invariance as we shall shortly exhibit.

Note that upon restricting the fields to depend on the eleven coordinates xm in L, all

the field strengths Θ drop out, while the contributions from the ‘gradient’ field strengths H
and N become equal to those of the ‘curl’ field strengths G and Ω modulo a total derivative,

save for the term containing Ω2
1, which is the only one that contributes to the linearised

Ricci scalar. After integration by parts the Lagrangian reduces to twice the standard free

Lagrangian in the democratic formulation of supergravity, with the correct normalisation

1

2
L ∼ eR(h)− 1

2

(
1

9!
Ωa1···a9,bΩ

a1···a9,b − 1

8!
Ωa1···a10Ω

a1···a10

+
1

7!
Ga1···a7Ga1···a7 +

1

4!
Ga1···a4Ga1···a4

)
+ . . . (5.43)

We expect this property to extend to all levels, such that each field would get a contri-

bution to its kinetic term from its ‘curl field’ strength and its ‘gradient’ field strength.

Though this Lagrangian produces the correct field equations, it is nonetheless formal. Its

energy momentum tensor involves, for example, infinitely many copies of the same degrees

of freedom through the unfolding mechanism and would therefore require an appropriate

regularisation.

Note that the level ℓ − 3
2 field strengths (both G(ℓ− 3

2 ) and Ḡ(ℓ− 3
2 )) have the

schematic form31

G(ℓ− 3
2 ) =

∑

n≥0

∂(−n− 3
2 )A(|ℓ+n|) , (5.44)

31Note that ∂(−n−

3
2
) is the horizontal degree q = −n derivative, A(ℓ) is the degree q = ℓ − 3 potential,

and G(ℓ) is the degree q = ℓ − 3
2

field strength. The absolute value arises because the coset potentials are

identified for positive and negative ℓ, compare with (5.7).
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so only the field strengths of level 3
2 ≥ ℓ ≥ −15

2 have non-trivial contributions up to order

O(4, 4). Because the Lagrangian is of the form L ∼ −∑ℓ |G(ℓ− 3
2 )|2 −∑n≥0 |Ḡ(−n− 9

2 )|2, the

equation of motion for a level ℓ field is of the schematic form

E (ℓ) =
∑

n≥0

∂(−n− 3
2 )G(ℓ−n− 3

2 ) +
∑

n≥0

∂(−n− 3
2 )G(−ℓ−n− 3

2 ) , (5.45)

where the field strengths can be either G or Ḡ.
To check the gauge invariance of the equations of motion following from this Lagrangian,

it will be convenient to introduce a set of spurious fields Lα in the Lie algebra of K(E11)

and in ℓ2, with the gauge transformation

δLα = DαM0
N0 (∂M0Ξ

N0 −MN0P0MM0Q0∂P0Ξ
Q0) (5.46)

such that the linear combinations A± = 1
2(A± L) defined as

h±a
b =

1

2
(ha

b ± La
b) ,

A±
a1a2a3 =

1

2
(Aa1a2a3 ± La1a2a3) , A±

a1...a6 =
1

2
(Aa1...a6 ± La1...a6) , . . .

X±
a1...a9 =

1

2
(Xa1...a9 ± La1...a9) , . . . (5.47)

transform according to (4.34) for X+ and (5.22) for X−. The field

strength (5.13) is defined by construction using this substitution as

FI [h
+, A+, A−, X+]|L=0, F̄I1 [h

+, A+, A−, X−]|L=0. In this section we shall prove in

the low level truncation that

Eα = f̂M0
α,IM

IJ∂M0GJ [h,A,X] + Π̂M0
I1α
M I1J1∂M0 ḠJ1 [h,A,X] (5.48)

= 2f̂M0
α,IM

IJ∂M0FJ [h
+, A+, A−, X+]

+ 2Π̂M0
I1α
M I1J1∂M0F̄J1 [h

+, A+, A−, X−] +O(4, 3) ,

such that the dependence in the spurious fields L drops out automatically. Because the

right hand side is linear in the manifestly gauge invariant field strength FI [h
+, A+, A−, X+],

and F̄ [h+, A+, A−, X−] it follows from this equation that the second order field equation

is itself gauge invariant in the low level truncation. If the equation (5.48) was valid for all

levels, this would show gauge invariance of the second order equations to all levels.

The fact that (5.48) does not depend on L can be understood in the schematic

form (5.44), (5.45) as the property that the fields φ(ℓ) of opposite level ℓ always arise

with the same tensor structure such that the dependence in L(ℓ) drops out upon using

φ(ℓ) = 1
2(A

(|ℓ|) + sign ℓ L(|ℓ|)). Ignoring tensor structures and coefficients the identity to
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verify is

∑

n≥0

∂(−n− 3
2 )F (ℓ−n− 3

2 ) +
∑

m≥0

∂(−m− 3
2 )F (−ℓ−m− 3

2 )

=
∑

n≥0

∂(−n− 3
2 )

(
∑

m≥0

∂(−m− 3
2 )φ(ℓ+m−n)

)
+
∑

m≥0

∂(−m− 3
2 )

(
∑

n≥0

∂(−n− 3
2 )φ(−ℓ−m+n)

)

=
∑

m≥0

∑

n≥0

∂(−m− 3
2 )∂(−n− 3

2 )(φ(ℓ+m−n) + φ(−ℓ−m+n))

=
∑

m≥0

∑

n≥0

∂(−m− 3
2 )∂(−n− 3

2 )A(|ℓ+m−n|) =
1

2
E (ℓ) . (5.49)

This scheme allows a consistent level truncation. We shall now exhibit that the cancellation

of L is indeed occurring for some relevant examples. One computes from (5.42), for instance,

that the equation of motion for the 3-form potential is

Ea1a2a3 = −∂a4Ga1a2a3a4 + 3∂[a1a2Ωa3]b
b + 3∂b[a1Ωa2a3]

b +
1

2
∂b1b2b3[a1a2Ha3]

b1b2b3 (5.50)

+
1

2
∂a1a2a3b1b2Hb3

b1b2b3 − 1

40

(
∂[a1a2

b1...b5,b6 +
1

3
∂[a1a2

b1...b6

)
Ha3]b1...b6

+
1

4!

(
∂a1a2a3b1...b4,b5 −

1

5
∂a1a2a3b1...b5

)
Hc

b1...b5c +
1

4!
∂a1a2a3b1...b4,cΘ

b1...b4,c

+ 4∂[a1Ha4
a2a3a4] +

1

2
∂b1b2Hb3

a1a2a3b1b2b3 + ∂b1b2Θa1a2a3b1,b2

+
1

4!
∂b1b2b3b4b5Hc

a1a2a3b1···b4c,b5−
1

5!
∂b1b2b3b4b5(Hc

a1a2a3b1···b5,c−Na1a2a3b1...b5)

+ . . . ,

where the ellipses stand for terms of the form ∂(− 7
2 )G(− 9

2 ) and ∂(− 9
2 )G(− 11

2 ). To check the

formula (5.48), we compute the same combination of field strengths using the component

expression for FI [h
+, A+, A−, X+] and F̄I1 [h

+, A+, A−, X−] to exhibit that the dependence

on L drops out,

− ∂a4F (− 1
2 )

a1a2a3a4 + 3∂[a1a2F (− 3
2 )

a3]b
b + 3∂b[a1F (− 3

2 )
a2a3]

b +
1

2
∂b1b2b3[a1a2F (− 5

2 )
a3]

b1b2b3

+
1

2
∂a1a2a3b1b2F (− 5

2 )
b3

b1b2b3 − 1

40

(
∂[a1a2

b1...b5,b6 +
1

3
∂[a1a2

b1...b6

)
F (− 7

2 )
a3] b1...b6

+
1

4!

(
∂a1a2a3b1...b4,b5 −

1

5
∂a1a2a3b1...b5

)
F (− 7

2 )

c
b1...b5c +

1

4!
∂a1a2a3b1...b4,cF (− 7

2 )b1...b4,c

+ 4∂[a1F (− 5
2 )a4

a2a3a4] +
1

2
∂b1b2F (− 7

2 )b3
a1a2a3b1b2b3

+ ∂b1b2F (− 7
2 )

a1a2a3b1,b2 +
1

4!
∂b1b2b3b4b5F (− 9

2 )c
a1a2a3b1···b4c,b5

∗− 1

5!
∂b1b2b3b4b5(F (− 9

2 )c
a1a2a3b1···b5,c − F̄a1a2a3b1...b5) + . . .
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= −4∂a4∂[a1Aa2a3a4]
+

1

2
∂b1∂b2b3Aa1a2a3b1b2b3 + 12∂[a1∂a2a3h

a4
a4]

+ 12∂b[a1∂a2h
b
a3] + 6∂b1b2∂[b1a1Aa2a3]b2

− 1

2
∂b1b2a1a2a3∂b3A

b1b2b3

− 1

2
∂b1b2b3[a1a2∂a3]A

b1b2b3 +
1

4!

(
∂a1a2a3

b1...b4,b5 − 1

5
∂a1a2a3

b1...b5

)
∂b6Ab1...b6

− 1

40

(
∂[a1a2

b1...b5,b6 +
1

3
∂[a1a2

b1...b6

)
∂a3]Ab1...b6

− 1

6
∂a1a2a3

b1...b4,c
(
3∂b1b2Ab3b4c + ∂cb1Ab2b3b4

)

+
1

2
∂a1a2a3b1b2(∂

b1b2hc
c − 4∂cb1hc

b2) +
3

2
∂b1b2b3[a1a2∂

b1b2ha3]
b3

+
1

4!
∂b1∂b2···b6ha1a2a3b1···b5,b6 −

1

5!
∂b1∂b2···b6Xa1a2a3b1···b6 + . . . (5.51)

where we write explicitly the level to avoid confusion between field strengths with the same

number of indices.32 The ellipses stand for terms of order O(4, 4) beyond the considered

level truncation, and the terms of type ∂5(∂2A6+∂
5A3+∂

7;1h1
1) and ∂7;1(∂2h8,1+∂

5A6+

∂7;1A3), whose dependence in the negative level fields A− would come from the field strength

derivatives ∂(− 7
2 )F (− 9

2 ) and ∂(− 9
2 )F (− 11

2 ) that we have not included in the Lagrangian (5.42).

(We recall that the notation ∂7;1 includes both the derivatives ∂7,1 and ∂8.) The first three

terms in the equation (5.51) reproduce the ones of (3.37) that we have obtained within the

E11 paradigm.

One derives similarly from (5.42) the second order equation for the six-form potential

Ea1···a6 = ∂a7Ga1···a7 − 15∂[a1a2Ga3a4a5a6] + 15∂b[a1a2a3a4Ωa5a6]
b − 6∂[a1a2a3a4a5Ωa6]b

b

−
(
5∂b1b2b3[a1...a4,a5 − ∂b1b2b3[a1...a5

)
Ha6]

b1b2b3 −
(
∂a1...a6b1,b2 − ∂a1...a6b1b2

)
Hc

b1b2c

+ 7∂[a1Ha7
a2···a7] + ∂b2b3Hb1

a1···a6b1b2,b3+
1

2
∂b1b2(Hc

a1···a6b1b2,c −Na1...a6b1b2)+ . . .

(5.52)

where the ellipses stand for terms of the form ∂(− 5
2 )G(− 9

2 ) , ∂(− 7
2 )G(− 11

2 ) and ∂(− 9
2 )G(− 13

2 ).

Similarly one checks that this equation can be written in terms of gauge invariant field

strengths as

∂a7F ( 12 )

a1···a7 − 15∂[a1a2F
(− 1

2 )

a3a4a5a6]
+ 15∂b[a1a2a3a4F (− 3

2 )
a5a6]

b − 6∂[a1a2a3a4a5F (− 3
2 )

a6]b
b

−
(
5∂b1b2b3[a1...a4,a5 − ∂b1b2b3[a1...a5

)
F (− 5

2 )

a6]
b1b2b3 −

(
∂a1...a6b1,b2 − ∂a1...a6b1b2

)
F (− 5

2 )

c
b1b2c

+ 7∂[a1F (− 7
2 )a7

a2···a7] + ∂b2b3F (− 9
2 )b1

a1···a6b1b2,b3

+
1

2
∂b1b2(F (− 9

2 )c
a1···a6b1b2,c − F̄a1···a6b1b2) + . . .

32For example,

F ( 1
2
)

a1···a7 =
√
e ea1

n1 · · · ea7

n7Fn1···n7 , F (− 1
2
)

a1a2a3a4 =
√
e ea1

n1 · · · ea4

n4Fn1n2n3n4

F (− 3
2
)

a1a2

b =
√
e ea1

n1ea2

n2em
bFn1n2

m , F (− 5
2
)

a1a2a3a4 =
√
e ea1

men1a2en2a3en3a4Fm
n1n2n3
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= 7∂a7∂[a1Aa2···a7]
− 60∂[a1a2∂a3Aa4a5a6]

+ 60∂b[a1···a4∂a5ha6]
b

− 42∂[a1···a5∂a6ha7]
a7 − ∂[a1

(
3∂a2...a6]

b1b2,b3 + ∂a2...a6]
b1b2b3

)
Ab1b2b3

+
(
∂a1...a6

b1,b2 − ∂a1...a6b1b2
)
∂b3Ab1b2b3 + ∂b1∂b2b3ha1···a6b1b2,b3

− 1

2
∂b1∂b2b3Xa1···a6b1b2b3 + . . . (5.53)

where the ellipses stand for terms in ∂2(∂2A3+∂
5h1

1+∂7;1A3) that get contributions from

∂2F (− 9
2 ) and similarly for ∂5F (− 11

2 ) and ∂7;1F (− 13
2 ). Note that X9 appears explicitly in this

equation, and its gauge variation in ∂1λ8 is necessary for the equation to be gauge invariant.

Let us finally give the Einstein equation Ra
b − 1

2δ
b
aRc

c = 0 through the Ricci tensor

Ra
b = 2∂[bΩac

c] + 2∂[aΩ
bc
c] +

1

2
∂c1c2Ha

bc1c2 − ∂ac1Hc2
bc1c2 +

1

2
∂c1c2Hb

ac1c2

− ∂bc1Hc2
ac1c2 +

1

3
δba∂c1c2Hc3

c1c2c3 + ∂acΘ
b,c + ∂bcΘa,c −

1

4!
∂ac1...c4Hd

bc1...c4d

− 1

4!
∂bc1...c4Hd

ac1...c4d −
1

5!
∂c1...c5Ha

bc1...c5 − 1

5!
∂c1...c5Hb

ac1...c5

+
8

6!
δba∂c1...c5Hd

c1...c5d +
1

4!
∂ac1...c4Θ

c1...c4,b +
1

4!
∂bc1...c4Θc1...c4,a +O(∂(− 9

2 )G(− 9
2 )) ,

(5.54)

which can also be written in terms of gauge invariant field strengths as

2∂[bF (− 3
2 )

ac
c] + 2∂[aF (− 3

2 )bc
c] +

1

2
∂c1c2F (− 5

2 )
a
bc1c2 − ∂ac1F (− 5

2 )
c2

bc1c2

+
1

2
∂c1c2F (− 5

2 )b
ac1c2 − ∂bc1F (− 5

2 )c2
ac1c2 +

1

3
δba∂c1c2F (− 5

2 )
c3

c1c2c3 + ∂acF (− 5
2 )b,c

+ ∂bcF (− 5
2 )

a,c − 1

4!
∂ac1...c4F

(− 7
2 )

d
bc1...c4d − 1

4!
∂bc1...c4F (− 7

2 )d
ac1...c4d

− 1

5!
∂c1...c5F

(− 7
2 )

a
bc1...c5 − 1

5!
∂c1...c5F (− 7

2 )b
ac1...c5 +

8

6!
δba∂c1...c5F

(− 7
2 )

d
c1...c5d

+
1

4!
∂ac1...c4F (− 7

2 )c1...c4,b +
1

4!
∂bc1...c4F (− 7

2 )

c1...c4,a +O(∂(− 9
2 )F (− 9

2 ))

= 4∂[a∂
[bhc]

c] + ∂ac1∂c2A
bc1c2 − 1

2
∂a∂c1c2A

bc1c2 + ∂bc1∂c2Aac1c2 −
1

2
∂b∂c1c2Aac1c2

− 1

3
δba∂

c1∂c2c3Ac1c2c3 + ∂ac1∂
c1c2hc2

b + ∂bc1∂c1c2ha
c2 − 2∂ac∂

bdhd
c − ∂ac∂bchdd

+
1

2
∂c1c2∂

c1c2ha
b +

1

6
δba
(
4∂ce∂

dehd
c + ∂c1c2∂

c1c2hd
d
)
+ . . . , (5.55)

where the ellipses denote terms that involve at least one derivative of type ∂5 or lower level.

The equations of motion of the dual graviton h8,1 and X9 are

Ra1···a8,b = ∂a9
(
Ωa1···a9,b − Ω[a1···a8|b|,a9]

)
+ 8∂‹b,a1Ga2···a8› − 70∂‹b,a1···a4Ga5···a8› (5.56)

+ 9∂[a1Ha9
a2...a9],b − ∂bHc

a1...a8,c + ∂‹b,Na1...a8› + . . .

R[a1···a9] = ∂b
(
Ω[a1···a8|b|,a9] +Ωa1···a9b

)
+ ∂[a1Na2...a9] − 4∂[a1a2Ga3···a9]

+ 14∂[a1···a5Ga6···a9] + . . .
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The ellipses stand for terms in ∂(− 9
2 )G(− 3

2 ), ∂(− 5
2 )G(− 11

2 ), ∂(− 7
2 )G(− 13

2 ), ∂(− 9
2 )G(− 15

2 ) that are

not determined at this order. One checks using the same argument that these equations are

indeed gauge invariant modulo the section constraint. Note that in this case the dependence

on X9 is very important, and the gauge transformation of X9 into both ∂1λ8 and ∂8ξ1 is

required for the gauge invariance of the equations of motion to be satisfied in this level

truncation. We stress that the terms in N 8 are crucial for the dependence in X9 to be

consistent with gauge invariance. This concludes our computation that the second order

equations of motion deriving from the Lagrangian (5.42) are gauge invariant within the

level truncation that we consider.

As explained in the last section, the solutions to the first order duality equations (5.16)

solve automatically the second order equations (5.34) modulo the section constraint. We

shall now discuss in more detail the equations (5.16) within the gl(11) decomposition. One

derives in this case

Ga1···a7 =
1

4!
εa1···a7

b1···b4Gb1b2b3b4 ,

Ga1···a4 = − 1

7!
εa1···a4

b1···b7Gb1···b7 ,

Ωa1···a9,b = −
1

2
εa1···a9

c1c2ηbd

(
Ωc1c2

d +
1

5
δdc1Ωc2c3

c3

)
,

Ωa1a2
b +

1

5
δb[a1Ωa2]c

c =
1

9!
εa1a2

c1···c9ηbdΩc1···c9,d ,

Ωab
b =

1

9!
εa

b1···b10Ωb1···b10 , (5.57)

that transform indeed together with respect to K(e11) as

δ

(
Ga1···a4 +

1

7!
εa1···a4

b1···b7Gb1···b7
)

=
1

6
Λa5a6a7

(
Ga1···a7 −

1

4!
εa1···a7

b1···b4Gb1b2b3b4
)

− 6Λb[a1a2

(
Ωa3a4]

b − 1

9!
εa3a4]

c1···c9ηbd
(
Ωc1···c9,d − Ωc1···c9d

))
(5.58)

and

δ

(
Ωa1a2

b +
1

5
δb[a1Ωa2]c

c − 1

9!
εa1a2

c1···c9ηbdΩc1···c9,d

)

=
1

2
Λbc1c2

(
Ga1a2c1c2 +

1

7!
εa1a2c1c2

b1···b7Gb1···b7
)

+
1

10
δb[a1Λ

c1c2c3

(
Ga2]c1c2c3 +

1

7!
εa2]c1c2c3

b1···b7Gb1···b7
)

(5.59)

+ Λc1c2[a1

(
Ha2]

bc1c2 − 1

10
δba2]Hd

c1c2d
)
− 1

10
Λc1c2c3δ

b
[a1
Ha2]

c1c2c3 + Λa1a2cΘ
b,c + · · · .

The other field strength components H are related by duality to fields that we have not yet

considered in this level truncation, and we shall discuss them separately below.

One can then check explicitly the Bianchi identity (5.19) explained in the last section,

such that these first order equations defined for the coset component, even if not gauge
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invariant by themselves, solve the second order equation at the considered truncation level.

So that upon using the duality equations, (5.50), (5.52) and (5.54) vanish automatically up

to the section constraint:

Ea1a2a3 =
1

8!
εa1a2a3

b1···b8
(
8∂b1Gb2···b8 − ∂b9cΩb1···b9,c + 6∂b9b10Ωb1···b10

)
= 0 ,

Ea1···a6 =
1

5!
εa1···a6

b1···b5

(
5∂b1Gb2···b5 +

1

2
∂b6b7Gb1···b7

+
1

4!
∂b6···b9cΩb1···b9,c −

1

8
∂b6···b10Ωb1···b10

)
=0

Ra
b = − 1

10!
εa

c1···c10

(
10∂c1Ωc2···c10,

b − 9∂bΩc1···c10

)
+

1

10!
εc1···c11δba∂c1Ωc2···c11 = 0 .

(5.60)

Let us finally consider the equations of motion for the dual graviton, defining for convenience

Ra1···a8;b = Ra1···a8,b +Ra1···a8b, that accommodates both h8,1 and X9,
33

Ra1···a8;b = ∂a9
(
Ωa1···a9,b − Ωa1···a9b

)
+ 8∂b[a1Ga2···a8] − 12∂[ba1Ga2···a8] (5.61)

−70∂b[a1···a4Ga5···a8] + 84∂[ba1···a4Ga5···a8] + . . .

= −1

6
εa1···a8

c1c2c3ηbd

(
3∂c1Ωc2c3

d − ∂dc4Gc1c2c3c4 +
1

2
δdc1∂

c4c5Gc2c3c4c5

− 1

4!
∂dc4···c7Gc1···c7 +

2

5!
δdc1∂

c4···c8Gc2···c8 + . . .

)
= 0 ,

which is indeed automatically solved by the solution to the first order duality equation (5.57)

modulo the section constraint.

The gravity first order equation for the graviton and its dual are not gauge invariant,

even when restricting the dependence of the fields to the eleven coordinates xm. In ordinary

space-time, this problem is resolved by considering the second order duality equations for

the linearised Riemann tensor:

∂[b1Ωa1a2
b2] =

1

8!
εa1a2

c1...c9∂[b1∂c1hc2...c9,
b2] , (5.62)

from which one checks that Xa1...a9 decouples. This was also observed in the work on

dualised gravity at the level of the gauge invariant Riemann tensor rather than the spin

connection [60, 61]. Generalising the Riemann tensor (rather than the Ricci tensor) in

exceptional geometry is known to lead to ambiguities [24, 29] and we do not expect the

above equation to be part of a gauge invariant K(e11) multiplet of well-defined second order

duality relations.

By construction (5.62) implies the standard equation of motion for the dual gravi-

ton field

16∂[a1∂
[bha2...a8c],

c] = 0 , (5.63)

33Where we do not write the field strengths of level ℓ = −9/2 that are dual to field strength of level

ℓ = 9/2 that are neglected in our truncation scheme.
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however, the second order gauge invariant equation (5.56) implies instead

∂a9(9∂[a1ha2···a9],b + ∂bXa1···a9) = 0 , ∂b(∂[a1ha2···a9],b + ∂[a1Xa2···a9]b) = 0 . (5.64)

Note that these equations are gauge invariant thanks to the variation of the field Xa1···a9 .

Using the first order constraint, and the property that Ω[a1a2a3] = 0 when the field depen-

dence is restricted to the eleven supergravity coordinates, one obtains the space-time gauge

invariant first order constraint

Ωa1...a8b,
b = ∂b

(
ha1...a8,b +Xa1...a8b

)
+ 8∂[a1ha2...a8]b,

b = 0 , (5.65)

which can be used to get back the standard second order field equation (5.63). Together

with the constraint N 8 = 0 from (5.36b), this equation imposes the constraint that the curl

of the trace of h8,1 vanishes as a (partial) gauge-fixing condition. This is consistent with

the interpretation of (5.36b) as a K(e11)-invariant gauge-fixing condition. Note that this

situation, where the constraint is compatible with K(e11) invariance, is quite different from

the problematic case of the gauge-fixing condition encountered in the original formulation

of the theory, for which we showed that there was no K(e11) multiplet of gauge-fixing

conditions compatible with the vanishing of the nine-form X9.

5.3 Unfolding dualities and non-geometric fluxes

We shall now extrapolate these results to higher level. At level ℓ = 4 there are three

additional e11 fields: A9,3, B10,1,1, C11,1 and two additional fields in the ℓ2 module: X10,2

and X11,1 (4.14) (all understood to be in irreducible representations of gl(11) according

to the displayed symmetrisations). Using the tensor hierarchy algebra one computes the

following field strengths,

Hn1...n10,p1p2p3 = 10∂[n1
(An2...n10],p1p2p3 +Xn2...n10][p1,p2p3])− 12∂[n1

Xn2...n10][p1p2,p3] ,

Θn1...n11,m,n = 11∂[n1
Bn2...n11],m,n + ∂(m(Cn1...n11,n) +Xn1...n11,n)) . (5.66)

Note that the indecomposable character of the e11 representation is such that X11,1 is only

defined modulo an arbitrary shift in C11,1, and we have used this freedom to cancel the

contribution of C11,1 in H10,3. One can anticipate using the conservation of the level that

there is a duality equation of the form

(
Ha

b1b2b3 − 1

3
δ[b1a Hc

b2b3]c

)

=
1

10!
εa

c1···c10ηb1d1ηb2d2ηb3d3
(
2

3
Hc1···c10,d1d2d3 +

1

3
Hc1···c9[d1,d2d3]c10

)
(5.67)

such that A9,3 is the field dual to the gradient of A3. Properties of the tensor hierarchy

algebra suggest that this structure extends to all levels. A potential AR at gl(11) level

n for n ≥ 1 transforming in an irreducible gl(11) representation can contribute to a field

strength component at level ℓ = −3
2 − n in R−1 obtained by acting on AR with the usual

derivative ∂1 at level ℓ = −3
2 . At the same time, for each irreducible gl(11) representation
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carried by AR of e11 at level n ≥ 1 there is a gl(11) highest weight representation (with

outer multiplicity at least one) obtained by tensoring AR with the nine-form representation

at level n + 3. This is true since one can act with the affine subalgebra e9 on any of the

generator and adding a block of nine antisymmetric indices corresponds to adding the affine

null root at level ℓ = 3. Applying this to the standard fields one generates all possible fields

dual to their gradients [7, 20, 23]. This is also consistent with the fact that the symplectic

form defines duality equations between level −3
2 − n and level −3

2 + n+ 3 field strengths.

One can also anticipate a first order duality equation of the form

Θa1...a11,b,c = εa1...a11ηbdηceΘ
d,e . (5.68)

For a solution to eleven-dimensional supergravity depending only on the coordinates xm the

field strength Θ1,1 vanishes, so that the field strength Θ11,1,1 must vanish as well, or more

generally be pure gauge (since the first order duality equations are not gauge invariant).

We expect in this way that solving the duality equation for a solution to eleven-dimensional

supergravity will impose that all the fields with more than nine antisymmetric indices will

all be pure gauge. Such fields should nonetheless contribute non-trivially to non-geometric

backgrounds. Let us illustrate this through the example of a Romans mass in type IIA.34

According to [84], the Romans mass can be generated through a linearised metric

h1
10 = h10

1 = my110 , (5.69)

where y110 is a component of the level 5
2 extended coordinate ymn, such that

Θa,b = m(δa10δ
b
10 − δa1δb1) . (5.70)

In this case one will get a non-trivial B10,1,1 field, corroborating the observation that this

field should define the ten-form in massive type IIA.35 Note that the presence of the ad-

ditional fields X10,2 and X11,1 allows one to write gauge invariant second order equations,

eliminating the problem of having to consider arbitrarily high order equations for arbitrary

high level fields as was proposed in [6].

It is interesting to compare our field strengths with the standard chain of NS fluxes

obtained by recursive T-dualities [80, 88]. Considering the reduction on a circle along the

x10 direction, one can identify the NS fluxes with the field strengths

Hn1n2n3 =Gn1n2n310 , fn1n2
m=Ωn1n2

m , Qm
n1n2 =Hm

n1n210 , Rn1n2n3 =Θn1n2n310,10 .

(5.71)

To conclude this section, we shall analyse briefly the decomposition of the field strength

representation R−1 with respect to the branching gl(4)⊕ e7(7) ⊂ e11. Considering the field

strengths with all indices along sl(7) associated to a generalised torus one identifies

G7, G4, Ω2
1, H1

3, Θ1,1, H1
6, Θ4,1, Θ6,2, Θ7,1, Θ7,4, Θ7,7 ∈ 912 (5.72)

34For previous work on massive type IIA in connection with Kac-Moody symmetries see [81–83].
35Note that Θ11,1,1 cannot have an SO(1, 10) invariant solution. This is consistent with previous obser-

vations that the potential for the Romans mass only appears after breaking the GL(11) symmetry as a

particular component of the B10,1,1 potential [13, 83, 85]. This non-covariance also arises in attempts to

defining an M9-brane ancestor of the D8-brane coupling to the Romans mass [86, 87].
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that reproduces all the components of the embedding tensor representation in four di-

mensions [72, 89–91]. The field strengths with one index µ along R
1,3 and all the others

along sl(7)

Gµ6, Gµ3, Ωµ1
1, Hµ

3, Hµ
6 ∈ Λ1 ⊗ e7(7) (5.73)

reproduce all the components of the conserved e7(7) current. The field strengths with two

indices µν along R
1,3 and all the others along sl(7)

Ωµν7,1, Gµν5, Gµν2, Ωµν
1 ∈ Λ2 ⊗ 56 (5.74)

reproduce all the components of the Maxwell field strengths. One can then straightforwardly

check that the duality equations (5.57) restricted to these field strengths reproduce the

twisted self-duality equation satisfied by the Maxwell fields in N = 8 supergravity [8] in

the linearised approximation. Using moreover the ‘reflection symmetry’ of the algebra, this

implies that the branching of the representation R−1 with respect to gl(4) ⊕ e7(7) ⊂ e11

includes among infinitely many other representations

R−1
∼= (Λ0 ⊗ 912)⊕ (Λ1 ⊗ e7(7))⊕ (Λ2 ⊗ 56)⊕ (Λ3 ⊗ e7(7))⊕ (Λ4 ⊗ 912)⊕ . . . . (5.75)

One can therefore anticipate that the first order duality equation (5.16) reproduces the

twisted self-duality equation introduced in [10], including the two-form potentials and the

non-dynamical 3-form potentials appearing in gauged supergravity [91]. Considering the

potentials up to level 8, one finds indeed the set of three-form potentials [89, 90]

A(1)
µνσ, A

(2)

µνσ3, h
(3)

µνσ5,1, A
(4)

µνσ6,3, B
(4)

µνσ7,1,1, A
(5)

µνσ6,6, B
(5)

µνσ7,4,1, B
(6)

µνσ7,6,2,

B(6)

µνσ7,7,1, B
(7)

µνσ7,7,4, B
(8)

µνσ7,7,7 ∈ Λ3 ⊗ 912 , (5.76)

whose curl should appear in the four-form field strengths in Λ4⊗ 912. Note moroever that

the non-linear field strength defined from the coset component of the Maurer-Cartan form

should naturally inlude couplings allowing for the interpretation of the fluxes in Λ0 ⊗ 912

as non-abelian gauge couplings.

6 Type IIB

The section constraint (1.1) has two well-known solutions. The first is to consider only

the eleven-dimensional coordinates xm (with m = 0, 1, . . . , 10) and relates the equations

above to D = 11 supergravity. The second is the type IIB solution where one retains the

coordinates xµ with µ = 0, 1, . . . , 8 and the coordinate y910 that is interpreted as the T-dual

of the ninth spatial direction of D = 10 type IIA supergravity. It is not hard to check that

any fields depending on these ten coordinates satisfy the section constraint (1.1). In [47]

it was shown that for Ed with d ≤ 8 these are the only two inequivalent solutions of the

section constraint.

In this section, we will analyse the first and second order field equations that result

from our tensor hierarchy algebra analysis from the point of view of the type IIB solution

to the section constraint. Type IIB has been discussed in an E11 context in [44, 85, 92]
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with correspondence between the two level decompositions given in [13]. A discussion of

the non-linear realisation of E10 in a type IIB language was given in [93] and connections

between exceptional field theory and type IIB supergravity can be found for example in [24,

28, 45, 94–96]. Level decompositions of e11 for different subgroups GL(d)×E11−d have been

mentioned for example in [89, 90, 97].

The type IIB solution of the section constraint means that we only retain the following

derivatives:

∂µ (µ = 0, . . . , 8) and ∂910 ≡ ∂9 , (6.1)

where ∂9 denotes the derivative in the ninth spatial direction in type IIB supergravity.

6.1 Level decomposition

We consider the decomposition of e11 under its gl(10)⊕sl(2) subalgebra obtained by deleting

node 9 of its Dynkin diagram shown in figure 1. gl(10) then is further decomposed into

gl(9) that is common to both type IIB gl(10) and M-theory gl(11) and corresponds to a

further removal of node 11 from the diagram, while keeping the sl(2) associated with node

10 manifest. The representations are listed in table 5 and are bi-graded where the level ℓIIB
is associated with node 9 and the Kaluza-Klein level ℓKK is associated with node 11 and

the reduction of type IIB from D = 10 to D = 9.

The connection to the gl(11) decomposition of table 1 is that the level ℓKK corresponds

to the level presented there and from this one can immediately read off the connection

between the fields in the two theories. For example,

Aµ1µ2µ3 = Cµ1µ2µ39 (6.2)

etc. We note that the decomposition of the fields in D = 11 also generates terms that are

not listed above. For example, there is a component

hµ1...µ8,i (6.3)

of the D = 11 dual graviton that would arise at level (ℓIIB, ℓKK) = (5, 3) in the table above

and that we have truncated away.

In this section we are using the following index convention. Greek (curved) indices

µ, ν, . . . lie in the range 0, 1, . . . , 8 and label the common gl(9) of type IIB and M-theory. The

tangent space indices of SO(1, 8) will be denoted by α, β, . . .. We treat the direction 9 that

corresponds to node 11 of the E11 diagram separately. Indices i, j = 1, 2 are fundamental

indices of the global sl(2) of type IIB (and should be thought of as corresponding to the

directions 9 and 10 in the M-theory frame).

We note that the equations that we derived in the previous sections covered at most the

generators in the algebra up to level ℓKK = 3. Inspecting table 5 we see that this does not

cover all possible components of some of the ‘physical fields’ of type IIB theory, that include

all the fields of the type IIB supergravity and their duals, including the dual graviton. For

example, the component hIIB
µ1...µ7,ν of the type IIB dual graviton occurs at level ℓKK = 4.
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Level ℓIIB Level ℓKK sl(9)⊕ sl(2) representation Field

0

0

0

0

1

(1, 0, 0, 0, 0, 0, 0, 1)(0)

(0, 0, 0, 0, 0, 0, 0, 0)(0)

(0, 0, 0, 0, 0, 0, 0, 0)(2)

(0, 0, 0, 0, 0, 0, 0, 1)(0)

hIIB
µ

ν

hIIB
9

9

φi,j

hIIB
µ

9

1
0

1

(0, 0, 0, 0, 0, 0, 0, 1)(1)

(0, 0, 0, 0, 0, 0, 1, 0)(1)

Biµ9

Biµν

2
1

2

(0, 0, 0, 0, 0, 1, 0, 0)(0)

(0, 0, 0, 0, 1, 0, 0, 0)(0)

Cµ1µ2µ39

Cµ1...µ4

3
2

3

(0, 0, 0, 1, 0, 0, 0, 0)(1)

(0, 0, 1, 0, 0, 0, 0, 0)(1)

Biµ1...µ59

Biµ1...µ6

4

2

3

3

3

4

4

(0, 0, 1, 0, 0, 0, 0, 0)(0)

(0, 1, 0, 0, 0, 0, 0, 0)(0)

(0, 1, 0, 0, 0, 0, 0, 0)(2)

(0, 0, 1, 0, 0, 0, 0, 1)(0)

(0, 1, 0, 0, 0, 0, 0, 1)(0)

(1, 0, 0, 0, 0, 0, 0, 0)(2)

hIIB
µ1...µ69,9

hIIB
µ1...µ7,9

φi,jµ1...µ79

hIIB
9µ1...µ6,µ7

hIIB
µ1...µ7,µ8

φi,jµ1...µ8

Table 5. Level decomposition of E11 under its gl(9)⊕ sl(2) subalgebra described in the text. The

i-index is a fundamental index of sl(2) while the µ-index is a fundamental gl(9) index. The index

9 indicates the ninth spatial direction that is used in the duality to M-theory. The level ℓKK is

identical to the gl(11) level ℓ used in table 1.

6.2 First order field equations

We begin by studying the first order equations that were given in (5.16) and (5.57).

From the decomposition tables one can deduce (up to numerical factors) the following

identification of type IIB potentials with potentials of the M-theory gl(11) decomposition:

Cµ1µ2µ39 = Aµ1µ2µ3 , Cµ1µ2µ3µ4 = −Aµ1µ2µ3µ4910 , (6.4a)

Bµ9i = εjihµ
j , Bµ1µ2i = Aµ1µ2i , (6.4b)

Bµ1···µ59i = Aµ1···µ5i , Bµ1···µ6i = −hµ1···µ6910,i , (6.4c)

hIIB
µ

9 = Aµ910 , hIIB
µ

ν = hµ
ν +

1

4
δνµhi

i , (6.4d)

hIIB
9

9 = −3

4
hi

i , φi
j = hi

j − 1

2
δji hk

k , (6.4e)

with ∂910 ≡ ∂9 and

hIIB
µ1···µ69,9 = Aµ1···µ6 , hIIB

µ1···µ6µ7,9 = εijhµ1···µ7i,j , hIIB
µ1···µ69,ν = −hµ1···µ6910,ν (6.4f)

as well as

X IIB
α1···α79 = Xα1···α7910 (6.4g)
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for the additional field arising in the tensor hierarchy algebra. We have fixed the numerical

factors in such a way that the subsequent equations become canonical. The notation above

introduces a superscript IIB for the metric h and its dual and for the trace component X

that is introduced by the tensor hierarchy algebra. For the gauge potentials in type IIB

we have employed the more standard notation Bµνi for the doublet of two-forms (and their

duals) as well as Cµ1...µ4 for the four-form.

The reduction of the field strengths (5.13) can then be computed where we retain only

the ten derivatives ∂µ and ∂9 as dictated by the type IIB solution of the section constraint.

Using the mapping (6.4) one computes the reduction of Gm1...m4 as

Gα1...α4 = 4∂[α1
Cα2α3α4]9 + ∂9Cα1α2α3α4

= 5∂[α1
Cα2α3α49] ,

Gα1α2α3i = 3∂[α1
Bα2α3]i ,

Gα1α2910 = 2∂[α1
hIIB

α2]
9 . (6.5)

We have converted the field strength into tangent space indices. For the seven-form field

strength the tensor hierarchy algebra construction gives

Gα1...α7 = 7∂[α1
hIIB

α2...α7]9,9
− ∂9hIIB

α1...α7,9 − ∂9X IIB
α1···α79

= 8∂[α1
hIIB

α2...α79],9
− ∂9X IIB

α1···α79 ,

Gα1...α6i = 6∂[α1
Bα2...α6]9i + ∂9Bα1...α6i

= 7∂[α1
Bα2...α69]i ,

Gα1...α5910 = −5∂[α1
Cα2...α5] . (6.6)

Let us finally consider the level ℓIIB = 5 field in the type IIB decomposition associated to

a gradient of the B-field:

hα1...α7i,β = Bα1...α79,β9i , Xα1...α8i = X IIB
α1...α89,9i . (6.7)

The duality equation for the dual graviton in (5.57) gives in this decomposition

∂αBβ9i =
1

8!
εα

γ1...γ89
(
8∂γ1Bγ2...γ89,β9i + ∂βX

IIB
γ1...γ89,9i

)
. (6.8)

Note that Ωα1...α8i,β also includes terms in ∂910Aα1...α8i,β910 and ∂910Xα1...α8βi,910 that must

restore SO(1, 9) ⊂ K(E11) covariance, since the field strengths we have defined belong by

construction in the module R−1. We conclude therefore that the type IIB equation should

take the form

∂aBb1b2i =
1

9!
εa

c1...c9
(
9∂c1Bc2...c9,b1b2i + 2∂[b1|X

IIB

c1...c9,|b2]i

)
, (6.9)

where the indices a, b1, b2, . . . and c1, c2. . . run from 0 to 9 of SO(1, 9). This equation is

indeed the expected unfolding duality equation, as we were anticipating in (5.67), such that

B8,2i is the field dual to the gradient of the field B2i, and the field X IIB
9,1i is necessary for
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the divergence of B2i to do not vanish. Similarly as X9 in (5.62), the dependence in X IIB
9,1i

drops out in the second order unfolding duality equation

3∂a∂[b1Bb2b3]i =
3

8!
εac1...c9∂

c1∂[b1B
c2...c9,

b1b2]i . (6.10)

This corroborates the proposal that the (d − 2)-form fields satisfy to first order duality

equations realizing the unfolding mechanism [23]. The field X IIB
a1...a9,bi

arises naturally as

the general allowed total derivative when integrating the second order duality equation to

the first order constraint (6.9) [23].

The constraint ḠI1 = 0 of equation (5.36b) also gives Lorentz invariant gauge-fixing

constraints for the field Xα1

Nα1...α6910 = −∂βhIIB
α1···α69,β − ∂9hIIB

α1···α69,9 − ∂βX IIB
α1···α6β9 = 0 ,

Nα1...α7i = ∂β(Bα1...α79,β9i +X IIB
α1···α79β,9i) = 0 . (6.11)

Let us now carry out the same analysis in the original E11 paradigm, using the defini-

tions (3.8). One finds the same decomposition of the four-form

GE11
α1...α4

= 4∂[α1
Cα2α3α4]9 + ∂9Cα1α2α3α4

= 5∂[α1
Cα2α3α49] ,

GE11

α1α2α3i
= 3∂[α1

Bα2α3]i ,

GE11
α1α2910

= 2∂[α1
hIIB

α2]
9 , (6.12)

as in (6.5). We have added an additional superscript E11 for the E11 quantities in order

to distinguish them from the field strengths defined using the tensor hierarchy algebra.

However, for the type IIB version of the seven-form field strength (3.12) one obtains instead

GE11
α1...α7

= 7∂[α1
hIIB

α2...α7]9,9
,

GE11

α1...α6i
= 6∂[α1

Bα2...α6]9i + ∂9Bα1...α6i + εi
j∂9hα1...α6jβ,

β

= 7∂[α1
Bα2...α69]i + εi

j∂9hα1...α6jβ,
β ,

GE11
α1...α5910

= −5∂[α1
Cα2...α5] . (6.13)

These expressions clearly differ from the ones in (6.6). Looking at the type IIB reduction

of the duality equations (5.57) for the tensor hierarchy algebra (or the identical in this

truncation (3.24)) one sees that only the tensor hierarchy field strengths (6.5) and (6.6)

give the correct duality relations for type IIB gravity. Without the inclusion of X IIB
α1···α79

in (6.6) the duality equation for the dual graviton is not Lorentz invariant, since the field

strength GE11
α1...α7

is a (7, 1, 1) tensor, instead of an (8, 1) tensor of SO(1, 9). One gets also

an extra contribution to the 7-form field strength in (6.13) involving

∂9hα1...α6jβ,
β = ∂9Bα1...a6β9,

β9
i . (6.14)

If one assumes that the dependence in the field Aα1...α8i,β910 with the correspondence

Bα1...α89,β9i = Aα1...α8i,β910 , (6.15)
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restores SO(1, 9) invariance, one concludes that the type IIB seven-form field strength

should be

GIIB
a1...a7 i = 7∂[a1

(
Ba2...a7] i +

1

2
Ba2...a7]c1c2,

c1c2
i

)
, (6.16)

such that an appropriate identification of the fields would require a non-trivial change

of variables. However, this does not explain the lack of Lorentz invariance of the dual

graviton equation, and one may expect to encounter an obstruction in trying to extend

the construction of the K(e11)-multiplet of first order equations as in section 3.2 to the

next level.

6.3 Second order field equations

We now turn to the type IIB frame analysis of the second order field equations (5.34)

as derived from the tensor hierarchy algebra. The various components of the equations

decompose as

Eα1α2α3 = −∂α3
(
4∂[α1

Cα2···α4]9 + ∂9Cα1···α4

)
,

Eα1α2i = 3∂α3∂[α1
Bα2α3]i + ∂9

(
∂9Bα1α2i + 2∂[α1

Bα2]9i

)
,

Eα1···α5i = −∂α6
(
6∂[α1

Bα2···α6]9i + ∂9Bα1···α6i

)
,

Eα1···α49 10 = −5∂α5∂[α1
Cα2···α5] − ∂9

(
4∂[α1

Cα2···α4]9 + ∂9Cα1···α4

)
,

Rα
i = −εij∂β

(
∂9Bαβj + 2∂[αBβ]9j

)
,

Eα9 10 = RIIB
α
9 ,

Ri
j = �φi

j − 2

3
δjiRIIB

9
9 ,

Rα
β = RIIB

α
β +

1

3
δβαRIIB

9
9 . (6.17)

The full 6-form equation Eα1...α6 requires more care because we miss some components of

the dual graviton in type IIB that would contribute starting from level ℓKK = 4 that has

not been derived. By evaluating the derived contributions one obtains

Eα1···α6 = 8∂[9∂
βhIIB

α1···α6β],9
− ∂9∂α7X IIB

α1···α79 . (6.18)

This is not the standard form of the type IIB dual graviton equation36 but it coincides

nonetheless with the 11-dimensional supergravity equations (5.64). It can be reduced,

analogously to the discussion at the end of section 5.2, to the standard equation upon use

of the first order duality equation.

7 Comments on nonlinear dynamics

In this paper we have put forward a proposal to extend the E11 paradigm that solves some

of the problems of the original formulation that we have exposed. However, this proposal is

only defined in the linearised approximation and it is natural to ask if it can be generalised

to describe the complete non-linear dynamics. The first difficulty is to define a non-linear

36This would be 16∂[9∂
[9hIIB

α1···α6β],
β] = 0.
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realisation that would reproduce the same indecomposable representation of K(E11) in the

linearised approximation. Because the field Aα is naturally valued in R−2 rather than

R0, there is no obvious way to define the non-linear realisation from a coset construction

T11/K(E11) where T11 would be a group associated to the Lie algebra t11, which is the

p = 0 part of the tensor hierarchy algebra.

Starting from the E11/K(E11) non-linear realisation, it seems natural to start with the

E11 covariant quantity

JM0
α0tα0 ≡ gEPM0g

−1
E , (7.1)

and to write the nonlinear field strength as

GI = 2fM0
α0,IJM0

α0 +
∑

i≥1

fM0
αi,I∇M0X

αi +O(X2) , (7.2)

where JM0
α0 is the standard K(E11) invariant current defined above, ∇M0 is an appro-

priately defined K(e11) covariant derivative, and the last term stands for some possible

non-linear terms in the additional fields Xαi and their derivative. The connection part of

∇M0 is not fully determined by the theory.

Since the representation r
(0)

1 of Xαi is in the antisymmetric tensor product of two copies

of r(1)1 , one expects that the covariant derivative ∇M0X
α1 should be uniquely determined

by consistency from the covariant derivative relevant to define the gauge transformations

at the non-linear level ∇M0Ξ
N0 as in (2.30). Note, however, that the definition of the latter

is already lacking in the original E11 paradigm. This problem is due to the fact that there

is no unique torsion free connection in exceptional geometry [28, 29, 98–100].

Defining these equations precisely is beyond the scope of this paper, but we would like

to discuss this proposal at low level to see if it has any chance to work in the first place.

Assuming that the field strength (7.2) can indeed be defined such as to provide a non-linear

realisation of E11, one may wonder if the Lagrange density (5.33) gives the correct field

equations at low levels.

At low level one can forget about the fields Xαi and write the field strength GI in terms

of the E11 left-invariant momenta PM as

Ha
b1b2b3 =

√
e ea

men1
b1en2

b2en3
b3

(
− (∂m +Ap1p2m∂

p1p2)An1n2n3

+ 3gp[n1∂n2n3]gmp +
3

2
gp[n1δn2

m ∂n3]qgpq

)

Ωa1a2
b =
√
e ea1

n1ea2
n2em

b

(
2gmp(∂[n1

+Ap1p2[n1
∂p1p2)gn2]p

+ ∂mpAn1n2p +
1

3
δm[n1

∂p1p2An2]p1p2

)
(7.3)

Ga1a2a3a4 =
√
e ea1

n1 · · · ea7n7

(
4(∂[n1

+Ap1p2[n1
∂p1p2)An2n3n4]

− 1

2
∂p1p2An1...n4p1p2 + 5A[n1n2n3

∂p1p2An3p1p2]

)
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Ga1···a7 =
√
e ea1

n1 · · · ea7n7

(
7(∂[n1

+Ap1p2[n1
∂p1p2)An2···n7]

+ 70A[n1n2n3
(∂n4 +Ap1p2|n4

∂p1p2)An5n6n7]

)

to see if (5.42) would then reproduce the correct Einstein-Hilbert action coupled to the

three-form potential, when the fields are assumed to only depend on the eleven coordinates

xm. Here the vielbein and the metric are understood to be the dynamical fields, and we shall

neglect all derivatives but ∂m. After some manipulations, one can write the Einstein-Hilbert

Lagrange density in terms of Ωmn
p as follows

4
√−gR = − 2∂m

(√−ggmnΩnp
p
)

−√−g
(
1

2
gn1p1gn2p2gmqΩn1n2

mΩp1p2
q − gmnΩmp

pΩnq
q

)

− 1

2

√−g gmngq[pgr]s∂pgqm∂rgsn . (7.4)

The first term is a total derivative, and the second is precisely the term that (5.42) repro-

duces with the substitution Ωn1n2
m = 2gmp∂[n1

gn2]p. However, the term in the second line

remains, and cannot be written in terms of Ωn1n2
m only.

We see therefore that the correct action cannot be defined in terms of the field

strength (7.2) only. One may hope that the extra terms can be understood as some

kind of Chern-Simons terms for the field strength (7.2) and its potential, but this is far

from obvious.

Let us now discuss the fate of the twisted self-duality equation (5.16). The first main

difficulty is to be able to describe dual gravity at the non-linear level, so let us try to write

the Einstein equations in a suggestive way. The Riemann tensor can be expressed as

4Rmn = − 1√−g gp1(mgn)p2∂q
(√−ggqr1gp1r2Ωr1r2

p2

)
− 1√−g gq(m∂p

(√−ggpqΩn)r
r

)

− 2gpqgrsΩnp
rΩnq

s +Ωmp
qΩnq

p +Ωmp
pΩnq

q (7.5)

+
1

2
gpq
(
Ω(m|p

r + δr(m|Ωps
s − δrpΩ(m|s

s
)
∂rgn)q

− 1

4
gpqgrs

(
∂(mgn)p∂rgsq − ∂rgp(m∂n)gsq

)
.

Let us try to use these equations to define a non-linear version of the gravity duality

equation. For this purpose we define the dual graviton field strength

Yn1...n9;m = − 1

2
√−g gn1p2 . . . gn9p9gmqε

n1...n9r1r2
(
Ωr1r2

q + 2δqr1Ωr2s
s
)
, (7.6)

The Einstein equation

Rmn −
1

2
gmnR = Tmn , (7.7)
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can then be expressed as

∂[n1
Yn2...n10];m =

1

2
gpq∂mgp[n1

Yn2...n10];q −
11

4
Ω[mn1

qYn2...n10];q

− 1

10
gn1p1 . . . gn10p10ε

p1...p10q

(
4Tqm +

1

2
gtugrs∂[q|gmt∂|r]gsu

)

+
1

40
gn1p1 . . . gn10p10gmp11ε

p1...p11gtugq[pgr]s∂pgqt∂rgsu + gm[n1
(. . . ) (7.8)

and more specifically for eleven-dimensional supergravity

− 1

10
gn1p1 . . . gn10p10ε

p1...p10qTqm =
21

4
Fm[n1...n6

Fn7...n10] − 3Fm[n1n2n3
Fn4...n10] (7.9)

and

∂[n1
Yn2...n10];m −

1

2
gpq∂mgp[n1

Yn2...n10];q − gm[n1
(. . . )

= −11

4
Ω[mn1

qYn2...n10];q + 21Fm[n1...n6
Fn7...n10] − 12Fm[n1n2n3

Fn4...n10] (7.10)

− 1

40
gn1p1 . . . gn10p10ε

p1...p10qgtugrs
(
∂(qgm)t∂rgsu−∂rgt(m∂q)gsu−gmqg

np∂[p|gnt∂|r]gsu

)
.

One can interpret the first line as a covariant exterior derivative of the dual graviton

field strength (with the dots meaning that we take the traceless component), the sec-

ond line is a wedge product of field strengths, whereas the last line cannot be rewrit-

ten in terms of Ωn1n2
m. This last line cannot be reproduced by equation (5.16) with an

ansatz of the form (7.2). Even assuming that this component would vanish, this equa-

tion does not define an integrable Bianchi identity that would permit to define the dual

graviton field, meaning that there is no local solution for Yn1...n9,m as a polynomial in the

fields gmn, g
mn, An1n2n3 , An1...n6 , hn1...n8,m, Xn1...n9 and their derivative consistent with

the grading that satisfies (7.10).

It seems therefore that one must modify (5.16). Following [62], it is natural to consider

a solution to this equation of the form

Yn1...n9;m = 9∂[n1

(
hn2...n9],m +Xn2...n9]m

)
+Bn1...n9,m (7.11)

where B9,1 is a Stückelberg gauge field that allows the restoration of gauge invariance, and

X9 is the antisymmetric component of the dual graviton. In the linearised approximation Y

is a total derivative and one can eliminate the Stückelberg gauge field to get back linarised

dual gravity.

To incorporate such a Stückelberg gauge field in the E11 construction one can for

example consider an equation of the form

M IJGJ = ΩIJGJ + BI , (7.12)

where BI would be Stückelberg type gauge field in the degree p = −1 representation of e11,

or possibly a proper K(e11) subrepresentation within R−1. Considering for example the

level 3n + 1 field A9n,3 which gauge invariant field strength is R10n,4 = dn+1A9n,3 in the
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unfolding formalism [23], it is to be expected that a similar analysis will lead to the need for

a chain of Stückelberg type gauge fields B10,9n−1,3, C
(0)
102,9n−2,3

, up to C
(n−2)
10n,3 . This proposal

seems therefore to necessarily lead to an infinite hierarchy of higher order Stückelberg gauge

fields needed for the integrability of the previous equation, that may write schematically

p = 0 : C(0)α = f̂M0
α,I∇M0

(
ΩIJGJ + BI

)
,

p = 1 : C(1)M PM = [PM0 , tα]∇M0C(0)α + . . . ,

p = 2 : C(2)MNP
MN = [PM0 , PN ]∇M0C

(1)
N + . . . ,

...
... (7.13)

The first equation at degree p = 0 is the projection to the Bianchi identity and at the non-

linear level we expect there to be an infinite sequence of Stückelberg fields C(p) needed for

all p > −1. The covariant derivative ∇ is the non-linear extension of the differential d that

appeared in section 4 and the Stückelberg field at degree p is projected to a suitable K(e11)

representation in Rp. Thinking of the introduction of these Stückelberg fields iteratively by

the horizontal degree q, the only way this construction could possibly make sense would be if

the higher rank Stückelberg gauge fields were all associated to highest weight representations

of e11 as for p > 0 we only have highest weight representations. Similarly for p = 0,

one would expect that C(0)α0 = 0, C(0)α1 = 0, such that only highest weight representations

would appear.37 Then they would only contribute to the duality equation for high level

gauge fields. Along this line of ideas, one may need to use all components of the tensor

hierarchy algebras, understanding that level p ≥ −1 are associated to Stückelberg type

gauge fields reproducing somehow the tensor hierarchy [72] appearing in supergravity for

finite-dimensional groups Ed with d ≤ 8. For the tensor hierarchy, the representations

at vertical degree p support the dynamical p-forms of supergravity in 11 − d space-time

dimensions [40, 41].

8 Conclusions

Finding a unified description of all maximal supergravity theories in order to obtain a

better handle on the effective description of M-theory at low energy has been a long-

standing goal. There are various approaches based on (infinite-dimensional) symmetry

algebras [1, 7, 9, 10, 73, 77, 101, 102]. In the construction of this article, the starting point

was the proposal by West and collaborators that the Lorentzian Kac-Moody algebra e11

should play a fundamental role [1]. We have reviewed some aspects of the e11 proposal and

have highlighted several open questions that we recapitulate.

First, there is no mathematical definition of the K(E11) representation defining the first

order equation describing the dynamics of the theory in the sense of (3.1). Its construction

can only be carried out order by order in the gl(11) level decomposition starting from the

37Note that under the reasonable assumption that the degree p = 0 subalgebra of the tensor hierarchy

algebra decomposes into an indecomposable representation e11⊕ℓ2 and the remaining module, as is discussed

in section 4.1, the latter module r
(0)

2 would provide an appropriate candidate for the definition of such a

Stückelberg field.
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duality equation in D = 11 supergravity as discussed in section 3.2. In this way one cannot

be sure that there will not be obstructions at higher level, contradicting the existence of a

K(e11) multiplet of non-trivial first order duality equations. Moreover, K(e11) symmetry

alone does not allow to prove that the ordinary derivative ∂m of arbitrary high level fields

will not appear in the low level components of the first order equation. Since higher level

fields cannot be consistently truncated in the theory, this implies that one cannot show in

this way that one reproduces consistently the supergravity field equations when restricting

to eleven-dimensional space-time.

Second, as has been noted in [2] and discussed here in section 3.3, the first order e11

duality equation for gravity that relates the spin connection to a suitable derivative of the

dual graviton is not entirely correct, as it lacks a required nine-form potential which is not

present in the theory. This problem seems to be related to the fact that the Maurer-Cartan

form V rather than its coset component P was used to define the dynamics, such that the

first order duality gravity equation does not transform homogeneously under Lorentz trans-

formations. Interpreting the gravity duality equation modulo a local Lorentz transformation

does not allow to identify unambiguously the required nine-form potential. However, in this

article we extended the computation of the first order duality equation to higher level with

the result that the terms transforming inhomogeneously under Lorentz transformations are

incompatible with K(e11). Thus, the first order duality equation should be written in terms

of the coset component P only. This implies in particular that the relevant object enter-

ing the duality equation is not the spin connection, but the object defined in (2.40). The

corresponding first order duality equation is then Lorentz invariant in the linearised ap-

proximation, and the nine-form potential is indeed missing. For a second order dualisation

of linearised gravity, an (8, 1) hook field is sufficient as shown in [61] and also discussed

around (5.62). However, it is not clear whether this second order duality equation can be

part of a K(e11) multiplet of duality equations with non-trivial propagation.

Third, there is the issue of generalised gauge invariance of these equations. In [6],

it was observed that higher level fields have gauge invariant field equations of increasing

order in the number of derivatives at the linearised level. However, K(e11) symmetry

preserves the number of derivatives, so one cannot define an irreducible K(e11) multiplet

of differential equations of different orders. There is hence no gauge and K(E11) invariant

system of differential equations if one truncates at some derivative order. To exhibit the

K(e11) symmetry of such a system, one would need to introduce an infinite hierarchy of

Stückelberg type fields to be able to write down K(e11) invariant first order equations that

would imply this infinite chain of higher order equations for higher level fields. In this paper

we considered the more conservative approach that one should be able to define gauge

invariant second order equations as integrability conditions for the (not gauge-invariant)

first order duality equations whose integrability conditions are the field equations, without

introducing additional Stückelberg type fields. We showed that this requirement implied

that the fields must satisfy the section constraint [24–26, 38]. The section constraint has

so far played only a marginal role in the work on E11, but one conclusion we draw from

our analysis is that it will likely be crucial for finding gauge invariant dynamics in any

E11-related set-up.
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In this paper we proposed a natural extension of the E11 paradigm based on the infinite

tensor hierarchy algebra T that includes e11 as a subalgebra. We have exhibited that this

allows us to resolve, at least partially, the three open problems summarized above. For some

of the points we could provide all level arguments while other aspects rely on assumptions

that we could only investigate at low levels in a level decomposition.

We proved that the tensor hierarchy algebra exists. It is a Z-graded superalgebra whose

degree p = 0 subalgebra is a non semi-simple extension of e11. We showed that one can

define a degree p = 1 differential on fields valued in this algebra that depend on the ℓ1
module coordinates and satisfy the section constraint. This defines a differential complex

for the fields of the theory that gives a group theoretical foundation for the construction of

the gauge transformations, field strengths and Bianchi identities. We proved moreover that

the tensor hierarchy algebra admits a non-degenerate quadratic Casimir of degree p = −2,
which defines a non-degenerate symplectic form on the degree p = −1 module in which

the generalized field strength is defined. The potentials are valued in the degree p = −2
module, which is conjugate to the p = 0 module.

The symplectic form allows us to define a first order duality equation (5.16), by requiring

that the coset component of the Maurer-Cartan form P projected to the E11 module defined

by the degree p = −1 component of the tensor hierarchy algebra vanishes on a K(E11)

invariant subspace. This first order equation is a natural generalisation of the twisted self-

duality equation ⋆G = SG introduced in [10], where the Levi-Civita symbol is replaced

by the E11 invariant symplectic form Ω, while the metric and scalar factors are recast

into the field-dependent E11 matrix M . Although the field strength G only includes the

p-form field strengths in the original twisted self-duality equation, both M and G involve

all the fields of the theory, including the metric gmn. It is worth noting that while there

is no automorphism of the tensor hierarchy algebra extending the Cartan involution on

e11, an analogue operation defines a Cartan image of the p = −2 module of the tensor

hierarchy algebra, which plays an important role in the construction of additional first order

constraints necessary to reproduce the correct degrees of freedom of eleven-dimensional

supergravity. Because these field strengths are both in representations of e11, the gl(11)

level is preserved by the equations. Thus one is ensured that the low level equations cannot

have contributions from ordinary space-time derivatives of higher level fields. This allows

us to interpret safely the equations of motion when truncated to fields defined on the

eleven-dimensional space-time, and to compare them consistently with eleven-dimensional

supergravity field equations.

In addition to the fields parametrising E11/K(E11), the degree p = −2 module includes

infinitely many additional fields. This introduces in particular an additional nine-form

potential X9, that cannot be set to zero consistently, along with its infinite set of higher

level partners defining the ℓ2 module. We showed that X9 provides the missing component

of the dual graviton field, and that the first order equation discussed above reproduces the

correct duality equation for the dual graviton in the linearised approximation. We analysed

moreover the same equations in the type IIB frame, and exhibited that the corresponding

equations have also a well defined interpretation in type IIB supergravity, when restricting

the support of the fields to the corresponding ten-dimensional space-time. In particular,
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we get a first order duality equation exhibiting the unfolding mechanism advocated in [23].

On the contrary, the first order duality equations defined in the original E11 paradigm do

not seem to lead to consistent equations in the type IIB frame.

We define moreover a Lagrangian for the second order field equations, which are by

construction solved by the solutions of the first order duality equations using Bianchi iden-

tities. Comparing equations (5.50), (5.52) and (5.54) with the second order equations of [5]

in the linearised approximation, one finds that they agree at lowest gl(11) levels but differ

at higher levels. We note that the consistency between the first order duality equations and

the second order differential equations requires the fields to satisfy the section constraint.

In this paper we have exhibited these equations explicitly for the supergravity fields, and

checked that they are gauge invariant modulo the section constraint in the level truncation

scheme we consider (including all the supergravity fields and the dual graviton). Note that

the impossibility of defining gauge invariant second order field equations for higher level

fields explained in [5] is overcome in our construction by the presence of additional fields

in the ℓ̄2 module.

The property that the field strengths are constructed from a representation of e11 is

also extremely useful in computing its components at higher level efficiently. Moreover,

this makes it possible to prove some statements at all levels. We have been able in this

way to exhibit some of the desirable properties for the general theory. The symplectic

form and the GL(11) representations appearing in the degree p = −1 module corroborate

the interpretation of the fields associated to null roots (potentials including nine-forms in

their tensor structures) in [23] to realise the unfolding mechanism. We also corroborate

the validity of the proposal that potentials including ten-forms in their tensor structure

source non-geometrical fluxes, and in particular that the B10,1,1 flux can be interpreted as

the Romans mass [13, 83, 85].

Despite this progress, we have made certain assumptions in our tensor hierarchy algebra

proposal that require further investigation to be proved rigorously. The tensor hierarchy al-

gebra as presented here introduces E11 modules that are strictly bigger than the irreducible

E11 modules appearing in the original construction. In this paper we have assumed that

the degree p = 1 module of the tensor hierarchy algebra is reducible to the ℓ̄1 irreducible

module plus the remaining module. Although we provided indications at low levels that

this might be true, we have not been able to prove it. This assumption is very important in

order for our proposal to remain a reasonably mild extension of the original E11 paradigm,

and there would be many new open questions if it was not true. This was discussed in

more detail in section 4.1. Also we have not proved the existence or uniqueness of a K(E11)

non-degenerate symmetric bilinear form M IJ on the degree p = −1 module. This non-

degenerate bilinear form is essential for the definition of the field equations. Its existence

would be guaranteed if the degree p = −1 module was either irreducible or decomposable

into an irreducible submodule (defining then the relevant field strength representation) and

a remaining module. We have nonetheless been able to define this bilinear form in the level

truncation scheme we considered in this paper.

It would also be very desirable to understand the gauge invariance of the second order

field equations at all levels. The fact that we have been able to prove gauge invariance

up to the level including the dual graviton is very encouraging, but it does by no means
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guarantee that gauge invariance will not fail at a higher level. Would it fail, it would be

likely that one would need to introduce an additional Stückelberg type field in a highest

weight E11 module to restore gauge invariance.

Even though the tensor hierarchy algebra underlies the construction of our dynamical

quantities, the actual symmetry of the linearised equations of motion is K(e11) as in the

original construction. The generalisation of our equations to the non-linear level is expected

to exhibit the full E11 symmetry. However, there are many open questions regarding the

non-linear generalisation of the equations of motion. The first challenge is to define the

non-linear realisation such as to incorporate the additional component ℓ̄2, consistently with

the indecomposability of the e11 module e11 ⊕ ℓ̄2. We also exposed in section 7 that the

naive non-linear generalisation of our proposal does not lead to consistent first order duality

equations for the gravitational field. It is in fact to be expected that gauge invariance of

the first order duality equation must be realised in order to define the non-linear extension.

Analysis of the tensor hierarchy algebra suggests that the introduction of an infinite

sequence of Stückelberg type fields depicted in (7.13) might be necessary to define the non-

linear theory. Since one may need to consider fields in all the components of the tensor

hierarchy algebra it would be very interesting if it could play a more predominant role at

the non-linear level, beyond the definition of the underlying differential complex.

For extending our formulation to the non-linear level, one needs to define a K(e11)

covariant derivative ∇, not only for the non-linear gauge transformations, but also for the

field strengths of the various fields of the theory, including X9 and the Stückelberg type

fields discussed above. This connection is not uniquely determined from the non-linear

realisation, and its definition is an open problem that remains to be investigated [3]. One

expects nonetheless that its definition on the gauge parameters, required to define the

non-linear gauge transformations, will determine consistently the covariant derivative of

the other fields of the theory. Clarifying these issues could shed some light on the elusive

non-linear dualisation of gravity beyond the proposal in [62].

In this paper we have discussed the restrictions of the fields to eleven-dimensional

supergravity and to ten-dimensional type IIB supergravity. It would be very interesting to

analyse other (partial) solutions to the section constraint to understand exceptional field

theories in this formalism [24–26]. An interesting future avenue would be to explore the

realisation of gauged supergravity theories in our formalism, building for example on [41–

43, 90, 103, 104], or massive type IIA supergravity, building on [81, 83, 105]. We note that

in [106] the massive Romans theory was analysed and, based on an analysis of the gauge

algebra, an extension of the e11 algebra was proposed. The new generator appearing in this

investigation is different from the new generators found in the tensor hierarchy algebra in

our work as it sits at a different level in the level decomposition compared to the tensor

hierarchy algebra.38
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A Conventions for E11 and its representations

In this appendix, we give our conventions for the Kac-Moody algebra e11 with the Dynkin

diagram displayed in figure 1, and two of its representations. The first one is the representa-

tion ℓ1 for which the lowest weight is the negative of the fundamental weight corresponding

to node 1 in this labelling, i.e., with Dynkin labels (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and that corre-

sponds to the representation in which the derivatives transform. The second e11 represen-

tation is the ℓ10 representation that appears in the section constraint. It has Dynkin labels

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0). We reiterate that we label the lowest weight representations by

minus the Dynkin labels of the lowest weight vectors.

A.1 E11

The Kac-Moody algebra e11 is the Lie algebra generated by Chevalley generators eI , fI , hI
(with I = 1, . . . , 11 labelling the nodes in the Dynkin diagram) modulo the Chevalley

relations

[hI , eJ ] = AIJeJ , [hI , fJ ] = −AIJfJ , [eI , fJ ] = δIJhJ , (A.1)

and the Serre relations

(ad eI)
1−AIJ (eJ) = (ad fI)

1−AIJ (fJ) = 0 , (A.2)

where AIJ is the Cartan matrix given by the Dynkin diagram in figure 1. If two different

nodes I and J are connected with a line, then AIJ = AJI = −1, otherwise AIJ = AJI = 0.

On the diagonal we have AII = 2 (no summation).

In e11 covariant expressions we use the indices α, β, . . . for the adjoint representation,

and M,N, . . . for ℓ1, with corresponding basis elements tα and PM . However, in the appli-

cation to eleven-dimensional supergravity it is more convenient to describe the structure of

e11 and of ℓ1 in terms of gl(11) level decompositions, where the gl(11) subalgebra is obtained

by removing node 11 from the Dynkin diagram. Any representation of e11 then decomposes

into a direct sum of gl(11) representations which can be assigned integer levels ℓ. For the

adjoint, the gl(11) representation at level −ℓ is the conjugate of the representation at level

ℓ, reflecting the structure of positive and negative roots.

The decompositions of e11 and ℓ1 into gl(11) representations for low levels are given

in table 1 [1, 11, 12] and table 2 [16, 17], respectively, together with our notation for the

corresponding potential fields, coordinates and parameters. In the adjoint representation,
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we denote the generators at the first three positive levels by En1n2n3 , En1···n6 , En1···n8,m,

and those at the first three negative levels by Fn1n2n3 , Fn1···n6 , Fn1···n8,m. Our convention

is such that

En1n2n3 − ηn1p1ηn2p2ηn3p3Fp1p2p3 (A.3)

belongs to the ‘compact’ subalgebra K(e11). The metric appearing here is the invariant

metric of so(1, 10) and therefore the subalgebra is a Wick-rotated form of the standard

maximal compact subalgebra obtained by the Cartan involution. The involution is some-

times called temporal involution and discussed in for example [14]. The generators at level

−ℓ are then defined with the opposite sign compared to the those at level ℓ ≥ 2

En1···n6 ≡ [En1n2n3 , En4n5n6 ], Fn1···n6 ≡ −[Fn1n2n3 , Fn4n5n6 ], (A.4)

En1···n8,m ≡ 8

3
[E[n1n2n3 , En4···n8]m] =

4

3
[E[n1···n6 , En7n8]m] ,

Fn1···n8,m ≡ −
8

3
[F[n1n2n3

, Fn4···n8]m] = −4

3
[F[n1···n6

, Fn7n8]m] . (A.5)

The last equations can be inverted to

[En1n2n3 , Ep1···p6 ] = 6En1n2n3[p1···p5,p6] = −3Ep1···p5[n1n2,n3] ,

[Fn1n2n3 , Fp1···p6 ] = −6Fn1n2n3[p1···p5,p6] = 3Fp1···p5[n1n2,n3] . (A.6)

For the gl(11) representations we employ the following notation. Every tensor

displayed is either an irreducible representation (if it has only upper or only lower indices)

or the full tensor product of two irreducible representations (if it has both upper and

lower indices). In the irreducible case it thus corresponds to a fixed Young tableau where

each box corresponds to an index m,n, . . . = 0, 1, . . . , 10. Indices in the same column are

antisymmetric, usually written with the same letter, and different columns are separated

by a comma. For example, the generator appearing at level ℓ = 3 in e11 satisfies the

symmetry and irreducibility constraints

E[n1···n8],m = En1···n8,m , E[n1···n8,m] = 0 . (A.7)

Antisymmetrisations occur always with strength one, and the first equation above just

reflects the convention that indices in one column are automatically antisymmetric by

the Young symmetries. The second equation is the Young irreducibility constraint.

Occasionally, we use ‹ › to denote projection on an irreducible representation of this type,

for which the Young tableau is a hook with two columns, only one box in one column, and

an arbitrary number of boxes in the other. With this notation, both conditions (A.7) can

thus be expressed together as

En1···n8,m = E‹n1···n8,m› . (A.8)

We define the projector on the (k, 1) hook symmetry structure in general as

T‹n1···nk,m› ≡ T [n1···nk]m − T [n1···nkm] . (A.9)

for a general tensor Tn1...nkm with k + 1 indices without any particular symmetrisation.39

39When a tensor already includes a comma, as in the case above, one understands that the comma

is at the same place before and after the projection so that e.g., En1n2‹n3···n8,m› = En1n2[n3···n8],m −
En1n2[n3···n8,m].
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Any tensor density with both upper and lower indices transforms in the full reducible

tensor product of the two irreducible representations, i.e. it contains traces. For example,

at ℓ = 0 in the adjoint of e11 we let Km
n denote the generators in the adjoint of gl(11)

which is reducible and decomposes into a direct sum of two irreducible representations: the

traceless part sl(11) and the trace K ≡ Km
m.

Sometimes we use a shorthand notation for the gl(11) tensor densities where the sub-

and superscripts denote numbers of (lower and upper, respectively) antisymmetric indices

in the blocks corresponding to columns in the Young tableau separated by commas. For

example, the generators of e11 above at levels ℓ = 3 and ℓ = 0 are then denoted by E8,1

and K1
1, respectively.

In the adjoint representation, the generators are true tensors of gl(11) and transform

as, for example

[Km
n, E

p1p2p3 ] = 3δ[p1n Ep2p3]m , [Km
n, Fp1p2p3 ] = −3δn[p1Fp2p3]m . (A.10)

Therefore, the action of K counts the number of upper minus the number of lower indices,

which is three times the level ℓ. By contrast, in the lowest weight representation ℓ1 the

generators are not true tensors of gl(11) but rather tensor densities of non-trivial weight.

Here, the eigenvalue of K is the number of upper minus the number of lower indices plus 11
2 .

The commutation relations of gl(11) are

[Km
n,K

p
q] = δpnK

m
q − δmq Kp

n , (A.11)

and those of type [E,F ] up to level ℓ = ±3 in e11 are

[En1n2n3 , Fp1p2p3 ] = 18 δ
[n1n2

[p1p2
K

n3]
p3]
− 2 δn1n2n3

p1p2p3 K , (A.12)

[En1···n6 , Fp1···p6 ] = 480 (9 δ
[n1···n5

[p1···p5
Kn6]

p6] − δn1···n6
p1···p6 K) , (A.13)

[En1···n8,m, Fq1···q8,p] = 35840

(
− δn1···n8

q1···q8 K
m

p + δ
m[n1···n7
q1···q8 Kn8]

p + δn1···n8

p[q1···q7
Km

q8]

− δm[n1···n7

p[q1···q7
Kn8]

q8] +
2

3
δn1···n8
q1···q8 δ

m
p K −

2

3
δm[q1δ

[n1···n7

q2···q8]
δn8]
p K

)
,

(A.14)

[Fn1n2n3 , E
p1···p6 ] = 120 δ[p1p2p3n1n2n3

Ep4p5p6] ,

[En1n2n3 , Fp1···p6 ] = −120 δn1n2n3

[p1p2p3
Fp4p5p6] , (A.15)

[Fn1n2n3 , E
p1···p8,q] = −112 (δq[p1p2n1n2n3

Ep3···p8] − δ[p1p2p3n1n2n3
Ep4···p8]q) ,

[En1n2n3 , Fp1···p8,q] = 112 (δn1n2n3

q[p1p2
Fp3···p8] − δn1n2n3

[p1p2p3
Fp4···p8]q) , (A.16)

[Fn1···n6 , E
q1···q8,p] = −13440 (δ[q1···q6n1···n6 E

q7q8]p − δp[q1···q5n1···n6 Eq6q7q8]) ,

[En1···n6 , Fq1···q8,p] = 13440 (δn1···n6

[q1···q6
Fq7q8]p − δn1···n6

p[q1···q5
Fq6q7q8]) . (A.17)

The Chevalley generators can be expressed in terms of the basis elements above in the

following way (i = 1, . . . , 10):

ei = Ki
i+1 , fi = Ki+1

i , hi = Ki
i −Ki+1

i+1 , (A.18)

e11 = E9 10 11, f11 = F9 10 11 , h11 = K9
9 +K10

10 +K11
11 −

1

3
K . (A.19)
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The Kac-Moody algebra e11 admits a symmetric invariant bilinear form (‘Killing

form’) [107] that we denote by (tα, tβ) = καβ . It is given by

(hI , hJ) = AIJ , (eI , fJ) = δIJ , (A.20)

for the Chevalley generators, which gives

(Km
n,K

p
q) = δpnδ

m
q −

1

2
δmn δ

p
q , (A.21)

(En1n2n3 , Fp1p2p3) = 3! δn1n2n3
p1p2p3 , (A.22)

(En1···n6 , Fp1···p6) = 6! δn1···n6
p1···p6 , (A.23)

(En1···n8|m, Fq1···q8|p) =
8

9
· 8! (−δm[q1δ

[n1···n7

q2···q8]
δn8]
p + δn1···n8

q1···q8 δ
m
p ) . (A.24)

A.2 The ℓ1 representation

Our notation for the low-lying generators of the lowest weight ℓ1 representation was given

in table 2. They are

Pm, Z
n1n2 , Zn1...n5 , Pn1...n7,m, Pn1...n8 , . . . . (A.25)

In the semidirect sum of e11 and ℓ1, the basis elements of e11 act in the following way at

low levels:

[Fn1···n8,m, Pp] = 0 ,

[Fn1···n6 , Pm] = 0 ,

[Fn1n2n3 , Pm] = 0 ,

[Km
n, Pp] = −δmp Pn +

1

2
δmn Pp ,

[En1n2n3 , Pm] = −3 δ[n1
m Zn2n3] ,

[En1···n6 , Pm] = −6 δ[n1
m Zn2···n6] ,

[En1···n8,m, Pp] =
8

3
δmp P

n1···n8 − 8

3
δ[n1
p Pn2···n8]m − 8δ[n1

p Pn2···n8],m , (A.26)

[Fn1···n8,m, Z
pq] = 0 ,

[Fn1···n6 , Z
pq] = 0 ,

[Fn1n2n3 , Z
pq] = −6 δpq[n1n2

Pn3] ,

[Km
n, Z

pq] = −2 δ[pn Zq]m +
1

2
δmn Z

pq ,

[En1n2n3 , Zpq] = −Zn1n2n3pq ,

[En1···n6 , Zpq] = −2Pn1···n6pq − 6P pq[n1···n5,n6]

= −2Pn1···n6pq + 2Pn1···n6[p,q] , (A.27)

[Fn1···n8,m, Z
p1···p5 ] = 0 ,

[Fn1···n6 , Z
p1···p5 ] = 720 δp1···p5[n1···n5

Pn6] ,
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[Fn1n2n3 , Z
p1···p5 ] = −60 δ[p1p2p3n1n2n3

Zp4p5] ,

[Km
n, Z

p1···p5 ] = 5 δ[p1n Zp2p3p4p5]m +
1

2
δmn Z

p1···p5 ,

[En1n2n3 , Zp1···p5 ] = Pn1n2n3p1···p5 − 5Pn1n2n3[p1p2p3p4,p5]

= Pn1n2n3p1···p5 − 3P p1···p5[n1n2,n3] , (A.28)

[Fn1···n8,m, P
p1···p8 ] =

8!

3
(δp1···p8n1···n8

Pm − δp1···p8m[n1···n7
Pn8]) ,

[Fn1···n6 , P
p1···p8 ] = −7! δ[p1···p6n1···n6Z

p7p8],

[Fn1n2n3 , P
p1···p8 ] = 42 δ[p1p2p3n1n2n3

Zp4···p8] ,

[Km
n, P

p1···p8 ] = 8 δ[p1n P |m|p2···p8] +
1

2
δmn P

p1···p8 , (A.29)

[Fn1···n8,m, P
q1···q7,p] = 7 · 7! (δp[n1

δ
[q1
|m|δ

q2···q7]
n2···n7Pn8] + δpmδ

q1···q7
[n1···n7

Pn8]) ,

[Fn1···n6 , P
q1···q7,p] = 3780 (δ

[q1···q6
n1···n6Z

q7]p + δ
p[q1···q5
n1···n6 Z

q6q7]) ,

[Fn1n2n3 , P
q1···q7,p] = −315

4
(δ[q1q2q3n1n2n3

Zq4···q7]p + δp[q1q2n1n2n3
Zq3···q7]) ,

[Km
n, P

q1···q7,p] = 7δ[q1n P q2···q7]m,p + δpnP
q1···q7,m +

1

2
δmn P

q1···q7,p . (A.30)

A.3 The section constraint representation ℓ10

In table 6, we list the low-lying generators of the lowest weight representation ℓ10 of e11 in

a gl(11) decomposition. The representation ℓ10 arises in the symmetric tensor product of

two ℓ1 representations. Writing things dually one can think of the various components in

the following way

Lm = ∂mn∂n , (A.31a)

Ln1n2n3n4 = 3∂[n1n2∂n3n4] − ∂n1n2n3n4m∂m , (A.31b)

Ln1n2n3n4n5n6,m =
30

7

(
∂[n1n2∂n3n4n5n6]m − ∂m[n1∂n2n3n4n5n6]

)

− 6

7

(
∂pn1n2n3n4n5n6,m∂p − ∂pm[n1n2n3n4n5,n6]∂p

)
, (A.31c)

Ln1n2n3n4n5n6n7 = 3∂[n1n2∂n3n4n5n6n7] − 3

7
∂n1n2n3n4n5n6n7,m∂m + ∂n1n2n3n4n5n6n7m∂m .

(A.31d)

These constraints can be generated using the action of e11 on the lowest weight vector Lm.

We stress that ℓ10 is only the beginning of the full section constraint. According

to (1.1) there will be more e11 lowest weight representations that constitute the full section

constraint. Continuing the symmetric tensor product to the next term for e11 gives

(ℓ1 ⊗ ℓ1)sym = (2ℓ1)⊕ [ℓ10 ⊕ (ℓ2 + ℓ10)⊕ . . .] . (A.32)

The lowest weight representation ℓ2+ℓ10 starts contributing from gl(11) level ℓ = 7; at that

level it contains only the sl(11) representation (0, 1, 0, 0, 0, 0, 0, 0, 0, 1) that is also contained
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Level ℓ q = ℓ− 3 sl(11) representation Generator structure

4 1 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) Lm

5 2 (0, 0, 0, 0, 0, 0, 1, 0, 0, 0) Ln1...n4

6 3
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 0, 0, 0, 0, 1)

Ln1...n7

Ln1...n6,m

7 4

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 0, 0, 0, 0, 1)

(0, 0, 1, 0, 0, 0, 0, 0, 1, 0)

(0, 0, 1, 0, 0, 0, 0, 0, 0, 2)

(0, 0, 0, 1, 0, 0, 0, 1, 0, 0)

Ln1...n10

Ln1...n9,m

L̃n1...n9,m

Ln1...n8,m1m2

Ln1...n8,m,p

Ln1...n7,m1m2m3

Table 6. Level decomposition of the ℓ10 representation of E11 under gl(11). This is a lowest weight

representation and therefore the top entry is annihilated by all lowering generators. The name of

the corresponding tensor structure reflects its role in the section constraint (1.1). At level ℓ = 7

we have for the first time a degeneracy in the tensor type, indicated by two letters L and L̃. The

degree here is related to ℓ by q = ℓ− 3.

in the ℓ10 representation as is visible from table 6 such that this gl(11) tensor structure

appears in total three times in the section constraint. The third section constraint of type

(9, 1) that belongs to ℓ2 + ℓ10 does not have any contribution up to the derivative order we

are considering here.

B Construction of the tensor hierarchy algebra

In this appendix, we present a proof of the existence of the tensor hierarchy algebra based

on the formalism of local Lie (super)algebras as developed by Kac [107]. We shall give two

different characterisations of the tensor hierarchy algebra; one direct algebraic construction

using (anti-) commutation relations and one dual characterisation using the BRST formal-

ism. We will also demonstrate the existence of an involution that is used in the first order

duality relations.

B.1 Local Lie algebra constructions

As in both formulations we will make use of Kac’s construction based on local Lie (su-

per)algebras, we briefly recall the basic statements from [107].

A local Lie superalgebra is a direct sum T−1⊕T0⊕T1 of three vector spaces together

with a bilinear bracket

T−1 ×T1 → T0, T0 ×T1 → T1, T0 ×T−1 → T−1, (x, y) 7→ [x, y] (B.1)
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such that [x, y] = −(−1)|x||y|[y, x] for any two homogeneous elements x, y ∈ T−1⊕T0⊕T1,

and the Jacobi identity

[x, [y, z]] = [[x, y], z]− (−1)|x||y|[y[x, z]] (B.2)

is satisfied whenever the brackets in this identity are defined.

As shown in [107, Prop. 1.2.2], any local Lie superalgebra can be extended to a unique

minimal Z-graded Lie superalgebra T = ⊕k∈ZTk, constructed in two steps. First, modulo

the relations given by (B.1), the local Lie superalgebra T−1⊕T0⊕T1 generates a maximal

Lie superalgebra T̃ =
⊕

k∈Z T̃k, where T̃k = Tk for k = 0,±1, and the subalgebras

T̃± =
⊕

k<0
˜T±k are freely generated by T1 and T−1, respectively. Among the graded

ideals D of T̃ (which means that D is a direct sum of subspaces D ∩ T̃k for all integers k)

intersecting the local part T−1 ⊕ T0 ⊕ T1 trivially, there is a maximal one. In the second

step we factor out this maximal ideal D from T̃ and set T = T̃ /D.40 This minimal Lie

superalgebra T will be the tensor hierarchy algebra in our case. (There also exist other,

non-minimal, Lie superalgebras that can be constructed from a local Lie superalgebra but

they will play no role in our analysis.) Using Proposition 1.5 in [108], one can show that

any ideal D of T̃ is in fact graded in our case, and thus the tensor hierarchy algebra T

that we define is simple.

B.2 Direct algebraic characterisation

The first characterisation of the tensor hierarchy algebra is a direct application of the Kac

construction.

B.2.1 Definition of the local Lie superalgebra

In our case, the local Lie superalgebra T−1 ⊕ T0 ⊕ T1 is defined as the tensor product of

two Z-graded vector spaces Λ and U .

The vector space Λ is the exterior (Grassmann) algebra of a d-dimensional vector space,

and is thus (as an algebra) generated by d elements θm with an associative product such

that θmθn = −θnθm. As a Z-graded algebra, Λ can be decomposed into a direct sum

Λ = Λ0 ⊕ Λ1 ⊕ · · · ⊕ Λd (B.3)

of subspaces such that ΛiΛj = Λi+j , where, for any k = 0, 1, . . ., the set of all monomials

θn1···nk
≡ θn1θn2 · · · θnk

(1 ≤ n1 < n2 < . . . < nk ≤ d) (B.4)

is a basis of the subspace Λk. We write this as Λk = 〈θn1···nk
〉. As a Z2-graded algebra, Λ

decomposes into a direct sum Λ = Λ(0)⊕Λ(1) where Λk ⊆ Λ(0) if k is even and Λk ⊆ Λ(1) if

k is odd. For any m = 1, 2, . . . , d we define the interior product ιm on Λ as the linear map

ιm : Λk → Λk−1 given by

ιmθn1···nk
= kδm[n1

θn2···nk]. (B.5)

40In the context of standard Kac-Moody algebras, the local Lie algebra corresponds to the simple Cheval-

ley generators and relations, and the maximal ideal corresponds to the Serre relations.
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The Z-graded vector space U = U(0) ⊕ U(1) is spanned by gl(d) tensors En1n2n3 , Em,

Em,n, Pm, F (where, following our conventions, En1n2n3 = E[n1n2n3] and Em,n = En,m)

such that

U(0) = 〈En1n2n3〉 ⊕ 〈Em〉, U(1) = 〈Em,n〉 ⊕ 〈Pm〉 ⊕ 〈F 〉. (B.6)

We then decompose the tensor product Λ⊗ U into a direct sum T−1 ⊕T0 ⊕T1 such that

T−1 = Λ⊗ 〈F 〉, T0 = Λ⊗ 〈Pm〉, T1 = Λ⊗
(
〈En1n2n3〉 ⊕ 〈Em,n〉 ⊕ 〈Em〉

)
. (B.7)

The Z2-degree of an element au ∈ Λ⊗ U , where a ∈ Λ and u ∈ U , is given by the product

of the Z2-degrees of a and u. We write this as |au| = |a||u|.
The bracket on T−1 ⊕T0 ⊕T1 is defined by the following commutation relations,

[aEn1n2n3 , bF ] =
3

16
(ι[n1ιn2a)bPn3] +

3

2
(−1)|a|(ι[n1a)(ιn2b)Pn3] + 3a(ι[n1ιn2b)Pn3],

(B.8a)

[aEm,n, bF ] = a(ι(mb)Pn) +
1

4
(−1)|a|(ι(ma)bPn), (B.8b)

[aEm, bF ] = abPm, (B.8c)

[aPm, bF ] = a(ιmb)F +
1

3
(−1)|a|(ιma)bF, (B.8d)

[aPm, bPn] = a(ιmb)Pn + (−1)|a|(ιna)bPm, (B.8e)

[aPm, bEn1n2n3 ] = a(ιmb)En1n2n3 + 3(−1)|a|(ι[n1a)bEn2n3]m − 1

3
(−1)|a|(ιma)bEn1n2n3

− 3(−1)|b|(ι[n1ιn2a)bEn3],m +
3

16
(−1)|a|(ι[n1ιn2ιn3]a)bEm

− 3

16
(−1)|a|(ιmι[n1ιn2a)bEn3] +

9

16
(ι[n1ιn2a)(ι|m|b)En3], (B.8f)

[aPm, bEn,p] = a(ιmb)En,p + 2(−1)|a|(ι(na)bEp),m − 1

3
(−1)|a|(ιma)bEn,p,

[aPm, bEn] = a(ιmb)En + (−1)|a|(ιna)bEm − 1

3
(−1)|a|(ιma)bEn. (B.8g)

One can verify that all Jacobi identities are satisfied and thus T−1 ⊕ T0 ⊕ T1 provides a

starting point for the local Lie superalgebra construction.

The reason for starting with this particular local Lie superalgebra comes from super-

gravity and its relation to e11. This connection will become more apparent below when we

list some of the further generators of T in gl(11) form. The tensor hierarchy algebra T

associated to ed for 4 ≤ d ≤ 8 was defined in [40]. The construction in this appendix is a

different gl(d) covariant definition and has the advantage of also being applicable also to the

case d ≥ 9. For d = 11 we obtain the tensor hierarchy algebra T considered in this paper.

B.2.2 The tensor hierarchy algebra

The tensor hierarchy algebra T is now defined as the minimal Lie superalgebra with the

local part above, and can be constructed from this local part following the steps in sec-

tion B.1. It then comes with a Z-grading T = ⊕k∈ZTk, where we for any x ∈ Tk set
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q(x) = k. This Z-grading is not consistent: x does not necessarily have the same Z2-degree

as the integer q(x). However, T can be equipped with a different Z-grading that is consis-

tent. We denote the Z-degree of a homogeneous element x with respect to this consistent

Z-grading by p(x). For the local part Λ⊗ U it is given by p(au) = p(a) + p(u) where p(a)

refers to the Z-grading of Λ above, p(a) = k if a ∈ Λk, and p(u) is given by the assignments

p(F ) = 3, p(Pm) = 1, p(En1n2n3) = 0, p(Em,n) = −1, p(Em) = −2. (B.9)

As in section 4.1, we refer to p and q as vertical and horizontal degrees, respectively.

As will be shown below, the subalgebra at (p, q) = (0, 0) is gl(d), and the gl(d) level is

given by

ℓ = q +
3

9− dp. (B.10)

We can now probe the tensor hierarchy algebra degree by degree both vertically and

horizontally. It then follows that the subspace T−2 is the tensor product of Λ and a

one-dimensional vector space spanned by an element G. We choose a normalization of it

such that

[aF, bF ] = (−1)|a|(ab)G. (B.11)

The commutation relations of the form [T1,T−2] = T−1 are then given by

[aEn1n2n3 , bG] =
1

8
(−1)|a|(ιn1ιn2ιn3a)bF +

3

4
(ι[n1ιn2a)(ιn3]b)F

+
3

2
(−1)|a|(ι[n1a)(ιn2ιn3]b)F + a(ιn1ιn2ιn3b)F,

[aEm,n, bG] = 0,

[aEm, bG] =
2

3
(−1)|a|(ιma)bF +

4

3
a(ιmb)F, (B.12)

and those of the form [T0,T−2] = T−2 by

[aPm, bG] = −(−1)|a|a(ιmb)G−
2

3
(ιma)bG. (B.13)

Continuing to q = −3 we find that T−3 is the tensor product of Λ and a d-dimensional

vector space spanned by an element Hm, such that

[aF, bG] =
2

3
(ιma)bHm −

1

3
(−1)|a|a(ιmb)Hm. (B.14)

The commutation relations of the form [T1,T−3] = T−2 are then given by

[aEn1n2n3 , bHm] = −27

16
δ[n1
m (ιn2ιn3]a)bG

− 9

2
δ[n1
m (ιn2a)(ιn3]b)G− 3(−1)|a|δ[n1

m a(ιn2ιn3]b)G, (B.15a)

[aEp,q, bHm] = −(−1)|a|δ(pm(ιq)a)bG− 3

4
δ(pma(ι

q)b)G, (B.15b)

[aEn, bHm] = −(−1)|a|δnmabG, (B.15c)
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and those of the form [T0,T−3] = T−3 by

[aPm, bHn] = −(−1)|a|a(ιmb)Hn − (ιma)bHn + δmn (ιpa)bHp. (B.16)

At the first positive horizontal degrees beyond q = 1, the structure of the tensor hierarchy

algebra is more complicated. We will not describe it in detail here, but refer to table 7

where some of the generators at q = 2, 3 are given, together with those described here for

−3 ≤ q ≤ 1. See also table 3, where other symbols are used for the gl(11) tensor densities,

and some of them have been dualised using the sl(11) invariant epsilon tensor (making

table 3 valid only for d = 11, whereas table 7 is valid for any d).

We identify two important subalgebras of T . First, by restricting to horizontal degree

q = 0 but allowing for arbitrary vertical degrees we find the extension of gl(11) to the

Cartan superalgebra W (d), which is the derivation superalgebra of Λ [107]. Second, the

subalgebra generated by En1n2n3 and θn1n2n3F at p = 0 is ed. To see this we set

Km
n ≡ −θnPm − 1

9− dδ
m
n θpP

p , Fn1n2n3 ≡ θn1n2n3F . (B.17)

The commutation relations of En1n2n3 , Fn1n2n3 and Km
n are exactly those of ed in gl(d)

decomposition and the Lie algebra they generate is by construction ed. It is contained in

the subalgebra td of T consisting of all elements with p = 0. However, for d ≥ 9 this

subalgebra contains also additional generators, in particular H9 at (p, q) = (0,−3), which

can be seen in table 7. This H9 plays an important role in the low level considerations in

the body of the paper as it is related to the new field X9 that carries the dual of the trace

of the spin connection.

To see how the additional generators appear, we continue along p = 0 and set

Gn1···n6 ≡ θn1···n6G , Hn1···n8;m ≡ θn1···n8Hm (B.18)

at q = −2 and q = −3 respectively. The generator Gn1···n6 corresponds to Fn1···n6 in

appendix A41, as can be seen by comparing (B.11), for a, b ∈ Λ3, with (A.4). The generator

Hn1···n8;m transforms under gl(11) in the full tensor product of the two representations

corresponding to the blocks of indices on the two sides of the semicolon, and can in the

usual way be decomposed into irreducible parts as

Hn1···n8m = H[n1···n8;m], Hn1···n8,m = Hn1···n8;m −Hn1···n8m. (B.19)

In the case where a ∈ Λ3 and b ∈ Λ6 in (B.14), the fully antisymmetric part drops out of the

right hand side, and the equation (B.14) reduces to the second row of (A.15) (with Hn1···n8,m

replacing Fn1···n8,m according to the different notations used here and in appendix A).

However, when we consider the full tensor hierarchy algebra T we can take for example

a ∈ Λ2 and b ∈ Λ7, writing

Fn1n2 ≡ θn1n2F, Gn1···n7 ≡ θn1···n7G, (B.20)

41The ed generator Fn1···n6 in appendix A should not be confused with the generator θn1···n6F appearing

in the extension of ed to T that we consider here at (p, q) = (−3,−2). This is the reason why we use

different letters for different q < 0 in the present appendix.
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and then (B.14) gives

[Fn1n2 , Gp1···p7 ] = −Hn1n2p1···p7 + 2Hp1···p7[n1,n2]

= −Hn1n2p1···p7 − 7Hn1n2[p1···p6,p7] , (B.21)

where now also the fully antisymmetric part H9 is present on the right hand side.

From the irreducible pieces in (p, q) = (0,−3) given in (B.19) and the commutator

in (B.15a) we can deduce the following commutator in the p = 0 subalgebra td:

[En1n2n3 , Hp1...p9 ] = 168 δn1n2n3

[p1p2p3
Gp4...p9]

. (B.22)

This commutator (when dualised to p = −2 as will be argued below) is the reason for (4.33h)

that is used crucially for the gauge invariance discussion of the tensor hierarchy algebra

structures. The relation above demonstrates that within the tensor hierarchy algebra the

coefficient Tα0β1
γ0 in (4.23) does not vanish.

Since ed is contained in the subalgebra td ⊂ T at p = 0, the subspace of T at any

vertical degree p is a representation Rp of ed. As we will see below, Rp is the conjugate of

R9−d−p for any p. In the case d = 11, this means that the adjoint of e11 can be obtained

from R−2 by factoring out additional generators, in particular the trace part of P3
1, which

is dual to the additional generator H9 in R0. To make this more clear, set

Ẽn1n2n3 =
1

8!
εn1n2n3p1···p8Gp1···p8 ,

Ẽn1···n6 =
1

5!
εn1···n6p1···p5Fp1···p5 ,

Ẽn1···n8;m =
1

3!
εn1···n8p1p2p3Pp1p2p3

m , (B.23)

in accordance with the notation in table 3. In the same way as in (B.19), the generator

Ẽn1···n8;m can be decomposed into the irreducible parts Ẽn1···n8m and Ẽn1···n8,m. We now

get, for example, the relations

[En1n2n3 , Ẽp1p2p3 ] = Ẽn1n2n3p1p2p3 ,

[Fn1n2n3 , Ẽ
p1···p6 ] = 120 δ[p1p2p3n1n2n3

Ẽp3p4p6] , (B.24)

which can be compared to (A.4) and (A.15). However, when we act with E3 on Ẽ6 we

see that this is not the adjoint representation of e11, since, compared to (A.6), we get an

additional term containing the fully antisymmetric generator Ẽ9,

[En1n2n3 , Ẽp1···p6 ] = −3Ẽp1···p6[n1n2;n3] = −3Ẽp1···p6[n1n2,n3] − 3Ẽp1···p6n1n2n3 . (B.25)

When we act on Ẽ8,1 and Ẽ9 with F3 we find

[Fn1n2n3 , Ẽ
p1···p8,q] = −112 (δq[p1p2n1n2n3

Ẽp3···p8] − δ[p1p2p3n1n2n3
Ẽp4···p8]q) (B.26)

in accordance with (A.16), and

[Fn1n2n3 , Ẽ
p1···p9 ] = 0 , (B.27)

which means that Ẽ9 can be set to zero consistently as a generator in the e11 representation

R−2 (but not as a generator in the full Lie superalgebra T ).
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p · · · q = −3 q = −2 q = −1 q = 0 q = 1 q = 2 q = 3 · · ·
...
. . .

...
...

...

3 · · · H6 H5,1 G3 F

2 · · · H7 H6,1 G4 F1

1 · · · H8 H7,1 G5 F2 P 1

0 · · · H9 H8,1 G6 F3 P1
1 E3 E6 E8,1 · · ·

−1 · · · H10 H9,1 G7 F4 P2
1 E1

3 E1,1 E1
6 E4,1 E1

8,1 · · · · · ·

−2 · · · H11 H10,1 G8 F5 P3
1 E2

3 E1
1,1 E1 E2

6 E1
4,1 · · · E2

8,1 · · · · · ·

−3 · · · H12 H11,1 G9 F6 P4
1 E3

3 E2
1,1 E1

1 E3
6 E2

4,1 · · · E3
8,1 · · · · · ·

... . .
. ...

...
...

...
...

...
...

...
...

...
. . .

...
. . .

. . .

Table 7. Part of the tensor hierarchy algebra T for a general d, decomposed under gl(d).

B.2.3 Existence of an invariant bilinear form

We will now prove the existence of a non-degenerate supersymmetric and invariant bilinear

form Ω(x, y) on T . Here supersymmetry (following the mathematics terminology) means

Z2-graded symmetry, that is Ω(x, y) = (−1)|x||y|Ω(y, x). Invariance means

Ω([x, y], z) = Ω(x, [y, z]) (B.28)

for all elements x, y, z regardless of their Z2-degrees. Our proof follows to a large extent

the proof of Proposition 7 in [109]. The bilinear form that we will define has the properties

Ω(Ti,Tj) = 0 unless i + j = −3 and Ω(Ri, Rj) = 0 unless i + j = 9 − d. Thus it gives a

symplectic form on R−1 in the case d = 11.

We say that a bilinear form Ω defined on some subspace of T is invariant with respect

to some subspace U of T if (B.28) holds for all x, y, z such that both sides of (B.28) are

defined and y ∈ U .

For s ≥ 3, suppose that Ω(s−1) is a bilinear form on the subspace T−s−1⊕· · ·⊕Ts−2 of

T which is supersymmetric and invariant with respect to all Tk with k 6= 0, or equivalently,

with respect to T±1. Let Ω(s) be an extension of Ω(s−1) to T−2−s ⊕ · · · ⊕ Ts−1 defined in

the following way. First, set Ω(Ti,Tj) = 0 if one of the integers i and j is equal to (s− 1)

or (−2− s) and i+ j 6= −3. Then, for w ∈ Ts−1 and z ∈ T−s−2, write w and z as sums of

terms [u, v] and [x, y], respectively, where

u, v ∈ T1 ⊕ · · · ⊕ Ts−2, x, y ∈ T−s−1 ⊕ · · · ⊕ T−1. (B.29)

We can without loss of generality assume that there is only one term in each of these sums,

and write w = [u, v] and z = [x, y]. We then define Ω(s)(w, z) = (−1)wzΩ(s)(z, w) by

Ω(s)(w, z) = Ω(s)([u, v], [x, y]) ≡ Ω(s−1)([[u, v], x], y). (B.30)
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Using the supersymmetry and invariance of Ω(s−1) with respect to T±1, and the Jacobi

identity, we then get

Ω(s−1)([[u, v], x], y) = Ω(s−1)([u, [v, x]], y)− (−1)uvΩ(s−1)([v, [u, x]], y)

= −(−1)u(v+x)Ω(s−1)([v, x], [u, y]) + (−1)vxΩ(s−1)([u, x], [v, y])

= (−1)u(v+x+y)Ω(s−1)([[v, x], y], u) + (−1)vxΩ(s−1)(u, [x, [v, y]])

= Ω(s−1)(u, [[v, x], y]) + (−1)vxΩ(s−1)(u, [x, [v, y]])

= Ω(s−1)(u, [v, [x, y]]). (B.31)

Thus Ω(s) is well defined and invariant with respect to all Tk with k 6= 0, or equivalently,

with respect to T±1.

We define a linear (volume) form on Λ by

V (θn1···np) = εn1···nd (B.32)

if p = d, and V (θn1···np) = 0 otherwise. Then the bilinear form Ω(0) on T−2⊕T−1 defined by

Ω(0)(aF, bG) = (−1)(|a|+1)|b|Ω(0)(bG, aF ) = V (ab),

Ω(0)(aF, aF ) = Ω(0)(aG, aG) = 0 (B.33)

is invariant with respect to T−1 ⊕ T0 ⊕ T1. We then define Ω(1) by (B.30) with u ∈ T−1,

v ∈ T1, x ∈ T−1 and y ∈ T−2. Explicitly we get

Ω(1)(aPm, bHn) = V (ab)δmn . (B.34)

By the invariance of Ω(0) with respect to T−1⊕T0⊕T1 and a calculation similar to (B.31)

it then follows that Ω(1) is well defined and invariant with respect to T±1. Finally we define

Ω(2) on T−4 ⊕ · · · ⊕T1 again by (B.30) for u ∈ T0, v ∈ T1 and x, y ∈ T−4 ⊕ · · · ⊕T−1. By

the same calculation (B.31) it follows that Ω(2) is well defined and invariant with respect to

T±1. We can then recursively extend the bilinear forms Ω(s) and define a bilinear form Ω

on the whole of T which is supersymmetric and invariant with respect to Tk for k 6= 0. It

then follows that Ω is invariant also with respect to T0. The non-degeneracy of the bilinear

form Ω follows from its invariance and the fact that T is a simple Lie superalgebra.

B.3 BRST form of the tensor hierarchy algebra

The BRST formalism we shall now use give an equivalent definition of the tensor hierarchy

algebra T corresponds to defining a nilpotent differential δ transforming the parameters

of the algebra (rather than working with the generators). An important point is that the

parameters are ‘ghosts’, meaning that their Z2 Grassmann degree is shifted: Grassmann

even generators of the algebra are associated with Grassmann odd parameters whereas

Grassmann odd generators are associated with Grassmann even parameters. In this way,

the nilpotency δ2 = 0 of the differential

δcA =
1

2
CA

BCc
BcC ←→ (cATA)

2 = δcATA , (B.35)
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is equivalent to super-Jacobi identity on CA
BC . Here, cA denotes a generic parameter asso-

ciated with a generator TA and CA
BC are the structure constants of the algebra. This way

of writing the transformations, i.e., commutators, makes some of the calculations simpler.

The parameters we are using in this section are related to the superform generators of

the last section through

cATA = · · ·+ (υm, Hm) + (ω,G) + (S, F ) + (Vm, P
m)

+
1

3!
(ψn1n2n3 , E

n1n2n3) +
1

2
(Tm,n, E

m,n) + (λm, E
m) + . . . , (B.36)

where (·, ·) is understood as the standard pairing for generalised forms using the top form

in the exterior algebra.

B.3.1 Local Lie superalgebra and tensor hierarchy algebra

We now rephrase the definition of the tensor hierarchy algebra in the BRST formalism

starting from the local algebra. As T0 we will take the W (d) superalgebra of super diffeo-

morphisms defined by Kac in [107]. It can be parametrised by a Grassmann odd vector-

valued extended form in d dimensions, which we will defined as Grassmann even according

to the BRST formalism. This means that we have a parameter Vm that lies in the tensor

product of the vector representation of GL(d) with the exterior algebra Λ in d dimensions.

The W (d) algebra can be written as

δVm = Vnι
nVm , (B.37)

where ιm is the contraction operator whereas the forms are multiplied through the wedge

product. It is easy to check that this transformation is nilpotent. However, this is not

the complete transformation in the local algebra as one has to include contributions from

T±1. These will be displayed below. The decomposition of Vm in form degree is dual to

the column q = 0 of table 7.

The remaining elements of T±1 can be written in terms of a Grassmann-even scalar-

valued form S (for q = −1) and a Grassmann-odd rank-three generator ψn1n2n3 , a

Grassmann-odd rank-one generator λm and Grassmann-even symmetric two-form gener-

ator Tm,n for q = +1. These are all forms valued in the exterior algebra Λ in d dimensions

and correspond to the generators also listed in (B.7).

In BRST form the transformations in the local Lie superalgebra (cf. (B.8)) take the form

δS = Vnι
nS +

w

3
ιnVnS , (B.38a)

δVm = Vnι
nVm + ψmp1p2ι

p1ιp2S +

(
1

2
ιpψmnp + Tm,n

)
ιnS

+
1

16
(ιp1ιp2ψmp1p2 + 4ιnTm,n + λm)S , (B.38b)

δψn1n2n3 = Vpι
pψn1n2n3 + 3ιpV[n1

ψn2n3]p −
w

3
ιpVpψn1n2n3 , (B.38c)
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δλm = Vpι
pλm + ιpVmλp −

w

3
ιpVpλm + 3ιp1ιp2Vqι

qψmp1p2

+ ιp1ιp2ιp3Vmψp1p2p3 − ιp1ιp2ιqVqψmp1p2 , (B.38d)

δTm,n = Vpι
pTm,n + 2ιpV(mTn),p −

w

3
ιpVpTm,n + ιp1ιp2V(mψn)p1p2 . (B.38e)

One can check that the transformation δ becomes nilpotent with these rules and there is no

redefinition that would allow to remove some of the generators. Therefore the above is an

equivalent presentation of the local Lie superalgebra that can be used as a starting point

for Kac’ construction. The algebra defined in this way is dual to T and we shall now list

some of its other generators.

It follows for example that the level q = −2 component is parametrised by a Grassmann

odd generalised form ω, the level q = −3 by a Grassmann odd co-vector generalised form

υn, and the level q = −4 by a Grassmann even 3-form, an even 1-form, and a Grassmann

odd symmetric tensor.

One can compute the extension of the BRST transformations (=commutation relations)

to these levels. One gets the following identities

δS = Vnι
nS +

1

3
ιnVnS −

1

6
ψn1n2n3ι

n1ιn2ιn3ω +
1

4
ιn3ψn1n2n3ι

n1ιn2ω

−1

8
ιn2ιn3ψn1n2n3ι

n1ω +
1

48
ιn1ιn2ιn3ψn1n2n3ω −

1

24
λnι

nω +
1

48
ιnλnω + . . .

δω = Vpι
pω +

2

3
ιpVpω + S2 − 1

3
ψn1n2n3ι

n1ιn2υn3 +

(
1

2
ιpψmnp +

1

3
Tm,n

)
ιmυn

− 1

16

(
3ιp1ιp2ψmp1p2 − 4ιnTm,n +

1

3
λm

)
υm + . . .

δυm = Vpι
pυm − ιmVpυp + ιpVpυ

m + Sιmω − 2ιmSω + . . . . (B.39)

We have focussed on these q-levels as they are dual to the local algebra by an involution

that exchanges level q with level −3−q. This is the invariant already encountered above in

the direct formulation.

B.3.2 Involution and symplectic invariant

We shall now show that there is an involution relating the W (d) representation on level

q of the algebra to the conjugate W (d) representation of the level −3−q component, and

which is obtained by the use the Hodge-star operator on the generalised form. Here, level

q follows from Kac’ construction and is displayed in table 7.

Denoting a general field of the tensor hierarchy algebra T by

c = (. . . ; υn;ω;ψn1n2n3 , Tm,n, λm;Vm;S; . . .) (B.40)

we define an antisymmetric bilinear form on T in components as the top-form component of

Ω(c1, c2) = (3S1ω2 + V1nυ2
n + · · · − 3S2ω1 − V2nυ1n + . . . )top . (B.41)
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One can check using the above transformations that this is invariant to the level given. We

shall now show, starting from the local algebra, that an extension of the invariant Ω(x1, x2)

to all levels exists.

We need to check that this bilinear form satisfies

Ω([x, y], z) = Ω(x, [y, z]) (B.42)

for the three cases in which: all x, y and z are level q = −1, when x is level −2, y level 0

and z level −1, and when x and z are level −2 and y level 1 and x, y degree zero and z

degree −3. The first case trivially follows from the associativity of the wedge product

((S1S2)S3)top = (S1(S2S3))top . (B.43)

The second follows using integration by part, i.e. the property that the top form of a total

contraction vanishes

((
Vnι

nω +
2

3
ιnVnω

)
S

)

top

=

(
ω

(
Vnι

nS +
1

3
ιnVnS

))

top

. (B.44)

The last one is obtained in the same way with few more steps as

((
− 1

6
ψn1n2n3ι

n1ιn2ιn3ω1 +
1

4
ιn3ψn1n2n3ι

n1ιn2ω1

− 1

8
ιn2ιn3ψn1n2n3ι

n1ω1 +
1

48
ιn1ιn2ιn3ψn1n2n3ω1

)
ω2

)

top

= −
(
ω1

(
− 1

6
ψn1n2n3ι

n1ιn2ιn3ω2 +
1

4
ιn3ψn1n2n3ι

n1ιn2ω2

− 1

8
ιn2ιn3ψn1n2n3ι

n1ω2 +
1

48
ιn1ιn2ιn3ψn1n2n3ω2

))

top

and

((
− 1

24
λnι

nω1 +
1

48
ιnλnω1

)
ω2

)

top

= −
(
ω1

(
− 1

24
λnι

nω2 +
1

48
ιnλnω2

))

top

, (B.45)

where the minus one comes from the fact that we have reverse the Grassmann degree of

the generator to define the Cartan differential.

The last case follows by the manifest invariance with respect to the zero level symmetry

((V1mι
mV2n + ιmV1nV2m)υn)top = − (V1m(V2nι

nυm + ιnV2nυ
m − ιmV2nυn))top .

(B.46)

These identities show that there is an antisymmetric invariant bilinear form on T that

pairs level q with level −3 − q. The projection on the top component in form-degree also

relates level p to level −2− p.
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B.4 Remarks on the relation between E11 and the tensor hierarchy algebra

The tensor hierarchy algebra contains Ed as a subalgebra and we will now fix d = 11 for

concreteness. We know that level p = 0 (see table 7) contains E11 but also additional

new generators beyond the Kac-Moody structure. As we had already seen we crucially

obtain one new generator Xn1...n9 associated with q = −3. This is the beginning of an E11

multiplet associated with the highest weight representation ℓ2 of E11. We shall now probe

whether there are additional E11 multiplets contained in p = 0 and what their reducibility

structure is.

First we decompose the forms as

S = M + θnL
n +

1

2
θn1n2Λ

n1n2 +
1

6
θn1n2n3e

n1n2n3

+
1

4!
θn1···n4F

n1···n4 +
1

5!
θn1···n5B

n1···n5 + . . .

ψn1n2n3 = fn1n2n3 + θm

(
Fm

n1n2n3 − 3δm[n1
F p

n2n3]p

)
+

1

2
θn1n2B

n1n2
n1n2n3 + . . .

Tm,n = Fm,n + θpB
p
m,n + . . .

λm = Bm + . . . (B.47)

Here, we have used the fields already encountered to parametrise the algebra, although

we shall see that they parametrise in fact an element of the co-algebra. In this notation

the B-fields parametrise the Bianchi identity, and one finds for instance three independent

Bianchi identities

Bn1n2
p1p2p3 = 2∂[n1

Fn2]
p1p2p3 − 3∂[p1p2Fn1n2

p3]+3δ
[p1
[n1
∂p2|qFn2]q

p3] − 1

2
∂p1p2p3q1q2Fn1n2q1q2

−1

2
δ
[p1
[n1
∂p2p3]q1q2q3Fn2]q1q2q3 +

1

4!
δ[p1p2n1n2

∂p3]q1...q4Fq1...q4 + . . .

Bm
n1,n2 = ∂mF

n1,n2 − ∂p(n1Fmp
n2) +

1

72
δ(n1
m ∂n2)p1...p4Fp1...p4 + . . .

Bm =
1

2
∂n1n2Fn1n2

m +
1

36
∂mn1...n4Fn1...n4 + . . . (B.48)

where one sees that Bm is indeed not a linear combination of the trace of the two others.

The Bianchi identities are dual to the entries listed as (p, q) = (−2, 1) in table 7. This entry

is dual to (p, q) = (0,−4) under the involution of the preceding section. The fact that there

are three vectors in the representation implies that something for the E11 representations

needed to extend E11 in the tensor hierarchy algebra. We already know that one needs ℓ2
(which triggers the important field Xn1...n9 discussed at length in this paper). However,

the adjoint of E11 and ℓ2 together contain only two vectors for q = −4 and therefore we

deduce that T also contains the highest weight representation ℓ10 that starts at q = −4.
We expect that there is an infinite number of E11 highest weight representation needed to

extend E11 to the level p = 0 of the tensor hierarchy algebra T .

We note however a difference between the representation ℓ2 extending the adjoint rep-

resentation and the others. Indeed, taking the variation with the zero form component

– 88 –



J
H
E
P
0
5
(
2
0
1
7
)
0
2
0

of ψn1n2n3 only, which is associated to the action of the raising generator En1n2n3 , one

derives that

En1n2n3ιpVp = −ιn1ιn2ιn3S , (B.49)

whereas

En1n2n3

(
λm +

4

5
ιpTm,p −

3

5
ιp1ιp2ψmp1p2

)
= 0 . (B.50)

It follows that the trace d−9 form component of ιpVp defines a primitive vector with respect

to Ed that varies to the adjoint representation, whereas λm + 4
5 ι

pTm,p− 3
5 ι

p1ιp2ψmp1p2 does

not vary to the corresponding representation. For E11, this component includes the lowest

weight vector of ℓ10 in T−2 and the lowest weight vectors of ℓ1 + ℓ10 ⊕ ℓ11 in T−3. This

implies that the corresponding representations do not decompose as a direct sum in the

first case, but do for the second. That this extends to all other higher representations was

used as an assumption in section 4.

We use the convention that the forms are written as

Vm = ξm + θnVm
n +

1

2
θn1n2Vm

n1n2 +
1

6
θn1n3Vm

n1n2n3 + . . . (B.51)

and we define the irreducible gl(11) components with a hat, as

Vm
n1n2n3 = V̂m

n1n2n3 +
1

3
δ[n1
m V̂ n2n3] , Vq

n1n2q = V̂ n1n2 ,

ψp1p2p3
n1n2 = ψ̂p1p2p3

n1n2 − 3

4
δ
[n1

[p1
ψ̂p2p3]

n2] +
1

15
δn1n2

[p1p2
ψ̂p3] ,

ψp1p2q
nq = ψ̂p1p2

n − 1

5
δn[p1ψ̂p2] , ψpq1q2

q1q2 = ψ̂p ,

Tm,p
n = T̂m,p +

1

6
δn(mT̂p) , Tm,p

p = T̂m . (B.52)

Using these definitions one computes that

δV̂ n1n2 = −ψ̂p1p2p3f
p1p2p3 +

9

4
ψ̂p1p2

[n1fn2]p1p2

+
1

16

(
1

3
ψ̂p + λp − 4

(
1

5
ψ̂p + 3T̂p

))
fn1n2p

δV̂m
n1n2n3 = −3ψ̂mp1p2

[n1n2fn3]p1p2 +
1

3
δ[n1
m ψ̂p1p2p3

n2n3]fp1p2p3

+
1

16

(
1

3
ψ̂m + λm

)
fn1n2n3 − 3T̂m,q

[n1fn2n3]q

− 1

48

(
1

3
ψ̂p + λp

)
δ[n1
m fn2n3]p (B.53)

and consistently with the property that ψ̂m + 3λm corresponds to the element of e11 asso-

ciated to the field C11,1 that

δ(ψ̂m + 3λm) = −2V̂mn1n2n3en1n2n3 . (B.54)

Then the field ψ̂m + 15T̂m corresponds to the field X11,1 in ℓ2 plus an arbitrary multiple

of C11,1 that is not uniquely fixed by the representation (beacuse of its indecomposable
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character). The field 3ψ̂m + 4T̂m + 5λm corresponds instead to the field Y11,1 defining the

highest weight component of the ℓ10 module. The E11 transformations (B.50) and (B.53)

imply that there is no mixing between e11 ⊕ ℓ2 and ℓ10.

Using a similar decomposition in irreducible components

ψp1p2p3
n1n2n3 = ψ̂p1p2p3

n1n2n3 +
9

7
δ
[n1

[p1
ψ̂p2p3]

n2n3] +
1

4
δ
[n1n2

[p1p2
ψ̂p3]n3] +

1

165
δn1n2n3
p1p2p3 ψ̂ ,

Tm,p
n1n2 = T̂m,p

n1n2 − 4

11
δ
[n1

(m T̂p)
n2] , λm

n = λ̂m
n +

1

11
δnmλ̂ , (B.55)

one computes that

δVm
n1n2n3n4 = −4ψ̂mp1p2

[n1n2n3fn4]p1p2 +
3

7
(5ψ̂mp

[n1n2fn3n4]p − δ[n1
m ψ̂p1p2

n2n3fn4]p1p2)

+6T̂m,p
[n1n2fn3n4]p − 1

11
(T̂m

[n1fn2n3n4] − 12δ[n1
m T̂p

n2fn3n4]p)

+
1

12

(
ψ̂m[n1

+
1

11
δ[n1
m ψ̂ + λm

[n1

)
fn2n3n4] . (B.56)

In this case one finds that the corresponding components of ιp1ιp2ψmp1p2 − 3λm and ιpTm,p

belong to ℓ1, whereas the corresponding components of 5λm + 4ιpTm,p − 3ιp1ιp2ψmp1p2

define the highest weight vectors of ℓ1 + ℓ10 and ℓ11. The commutation relation following

from (B.50) and (B.56) are such that there is no mixing between ℓ1 and ℓ1 + ℓ10 ⊕ ℓ11.
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