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Abstract

In this paper, we present the first attempt to analyse dif-

fering levels of social involvement in free standing convers-

ing groups (or the so-called F-formations) from static im-

ages. In addition, we enrich state-of-the-art F-formation

modelling by learning a frustum of attention that accounts

for the spatial context. That is, F-formation configurations

vary with respect to the arrangement of furniture and the

non-uniform crowdedness in the space during mingling sce-

narios. The majority of prior works have considered the la-

belling of conversing group as an objective task, requiring

only a single annotator. However, we show that by embrac-

ing the subjectivity of social involvement, we not only gen-

erate a richer model of the social interactions in a scene but

also significantly improve F-formation detection. We carry

out extensive experimental validation of our proposed ap-

proach by collecting a novel set of multi-annotator labels

of involvement on the publicly available Idiap Poster Data;

the only multi-annotator labelled database of free standing

conversing groups that is currently available.

1. Introduction

In recent years, the analysis of mingling scenarios has

received growing attention. The potential of studying social

patterns of behaviour in visual scenes has great potential

with the recent advances in social signal processing [21].

Potential applications include enabling robots to approach

a group and offer assistance in a socially intelligent man-

ner [18], or social surveillance [3], image interpretation or

retreival [14].

A major challenge in visual scene interpretation is ad-

dressing the problem of bridging the semantic gap [14],

which defines the disconnect between information that can

be extracted from the pixels in an image and how a human

might interpret its contents. Traditionally, this gap has been

attributed to the mapping of imagery data to objective inter-

pretations such as the labelling of objects or activities in a

scene. However, in recent years, scene analysis has started

to consider more complex and subjective concepts such as

safety [11] or ambiance [12]. Similarly, in the area of social

surveillance [3], researchers have been trying to ascribe so-

cial meaning to social scenes. However, unlike conventional

scene analysis, social surveillance bridges a more complex

semantic gap that associates observable behavioural cues to

social phenomena. We call this the social semantic gap.

Since social phenomena are extremely complex, it is desir-

able to use findings from social psychology to help inform

how visually observed behaviours could be linked to social

phenomena to help bridge the gap in an informed manner.

Given the great advances already in person tracking and

orientation detection, we focus on how these solutions can

be used as behavioural input for bridging the social seman-

tic gap. Specifically, we approach the novel problem of de-

tecting associates of conversing groups (or the so-called F-

formations). F-formations are defined by social psychology

theory as [8]; as a spatial organization of people gathered

for conversation where each member has an equal ability

to sense all other members. The so-called associates of F-

formations are defined by psychologists as people who are

attached to an F-formation but do not have the same status

as full members (see Figure 1 (a)).

To the best of our knowledge, state-of-the-art methods

for F-formation detection [6, 2, 13, 19, 20] have made three

simplifying assumptions. First, each individual is assumed

to have a binary membership to an F-formation and to our

knowledge, no work has considered refining and enriching

this model to label individuals who are partially involved in

it. Second, global parameters for the frustrum of attention

of each person have been used for the entire visual scene.

However, social psychology theory has cited the relaxation

of the geometric model of an F-formation when consider-
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ing the spatial constraints of a room and the furniture in it

[8]. Finally, aside from Hung et al. [6], we believe that no

other works have seriously addressed the inherently subjec-

tive nature of F-formation detection. Our experiments show

that by considering the subjectivity of the task, we are bet-

ter able to model the social scene. That is, by performing

associate detection, we show that we can also significantly

improve performance on the F-formation detection task.

Concretely, we offer the following contributions; First,

we address the novel task of detecting associates of F-

formations and propose a novel feature representation that

copes with learning from sparse training data. We also

show that the state-of-the-art model for full members of F-

formations [19] are not appropriate for the modelling of as-

sociate behaviour. Second, we model the spatial context of

a scene for better F-formation and associate detection by

learning a location-dependent frustum of attention of indi-

viduals in the scene. Moreover, we address the problem of

learning the relative weighting between proximity and ori-

entation given the spatial context of furniture. Third, we

contribute new multi-annotator labels on the publicly avail-

able Idiap Poster Dataset [6] for modeling associates. Fi-

nally, we carry out a deep evaluation and analysis of asso-

ciates to investigate the complexity of this novel task.

2. Definitions
F-formations and their Associates The psychologist

Kendon [8] defined a single conversing group as an F-

formation; as a spatial and orientational organization of in-

dividuals where each member has equal access to all other

members of the group. An F-formation usually consists

of three parts, see Figure 1 (a). The o-space is a convex

empty space surrounded by the F-formation members, in

which every participant orientates themselves inwards, and

no external people are allowed. The participants themselves

stand in the p-space, which is a narrow strip surrounding

the o-space, while the area beyond is called the r-space. Its

definition has made it a popular detection task as it relates

well to finding maximal cliques in edge-weighted graphs

[6, 19, 20]. In practice, a geometric model of a conversing

group should be adapted when considering the spatial con-

straints of a room and the furniture in it [8]. For instance,

people talking in front of a laptop may stand closer and look

at the same direction (see Figure 1(c)), which maintains an

F-formation although their o-space could be violated.

Unlike full members of F-formations, Kendon [8] de-

fines associates to be people who are attached to an F-

formation but who are not fully involved in the conver-

sation. Associates can be people who try to join an F-

formation but are not fully accepted by the group, or can

leave an F-formation abruptly without disturbing the con-

versation. We name these out-group and in-group associates

respectively as the former tends to stand in the r-space while

the latter tends to stand in the p-space. Another example

of an associate could be someone who is waiting for a full

member (e.g. their spouse) to leave the F-formation and is

not interested in engaging in the conversation.

While F-formations can easily be modelled by either

maximal cliques [6, 19, 20] or a joint centre-of-focus in the

o-space [2], associate behaviours are not so clearly linked

to a single set of social cues. Therefore, the associate de-

tection problem requires us to bridge a wider gap and the

nature of the problem and how to solve it cannot be so

easily translated into a single set of geometric constraints.

From the perspective of semantic labelling of a scene, we

must also consider that distinguishing full members of F-

formations from associates and also singletons is quite im-

portant conceptually. Singletons have no social influence

on the groups around them. Full F-formation members have

the most potential to influence other members of the groups.

Meanwhile, associates have the least potential to influence

full members but could be influenced by them. Crucially,

in-group associates could be mistaken for full F-formation

members and out-group associates for singletons.

Frustum of Attention The frustum of attention [19] (or

transactional segment, as defined by Kendon [8] can be con-

sidered as a cone-like region extending from the body that

represents the spatial and angular extent at which some-

one is able to see, hear, and potentially touch something

or someone else. It represents a three-dimensional space

around the human body in which most of our senses and

actions are able to be deployed for social interaction. Prior

studies have shown that head pose [15, 16, 19], body pose

[6], gaze [16, 7], and proximity [6] often provide reliable

features for F-formation modeling.

Recent state-of-the-art approaches have tended to use

sampling methods to approximate the frustum of attention

where the parameters are set carefully by grid search on the

entire dataset and the same global model for the frustum of

attention is used [19, 2, 13]. There are two main drawbacks

of this approach. First, the parameters are likely to over-

fit on a certain dataset due to the same data being used for

training and testing. Second, the variation in F-formation

shape caused by the furniture arrangement and non-uniform

densities in the crowding of the scene cannot be captured.

For example, people can tend to crowd more densely around

the area of a bar area even if they are not trying to order

drinks or lean on it.

3. Related Work

Exploiting the frustum of attention is very important for

detecting F-formations, studies have showed that head pose

[15, 16, 19], body pose [5], gaze [16, 7], and proximity [6]

often provide reliable patterns. In [22], F-formations are

detected by estimating people’s position and lower body

orientation using only their head position and orientation

from a single camera. The modularity cut algorithm [9]
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Figure 1. Illustrations of F-formations. (a) The F-formation spaces, gray people stand in the p-space. Red arrows indicate body orientation.

Orange people are associates of the F-formation. (b) and (c) example snapshots: F-formations members, associates, and singletons are

circled in red, yellow, and blue respectively according to one of our annotators.

Figure 2. Flow diagram showing the stages of F-formation and associate detection.

was proposed to identify F-formations from automatically

extracted trajectories by [23]. To our knowledge, in terms

of the treatment of hierarchy in groups, the work of [23]. is

quite close to ours as they proposed to used eigendecompo-

sition to find centrality in a large mingling group of people.

Unfortunately, the data they used was staged but showed

participants with high centrality to be those who mingled

with more different people.

A Hough voting strategy was proposed in [2], which es-

timates the locations of o-spaces by density estimation. The

size of F-formation was taken into account using a multi-

scale Hough voting strategy in [13]. In [6, 19], detecting

F-formations is considered as a clustering problem, where

each person is defined as a node in the graph, and each edge

is the "closeness" between a pair of people. The goal is to

find a dominant set [10] in the graph and the edges of the

graph are computed based on body orientation and prox-

imity. In [19], the temporal information is added in the

dominant set based approach. A density-based approach

was proposed in [4] where the final purpose of the task was

to dynamically select camera angles for automated event

recording. In [17], temporal patterns of activities were sub-

sequently analyzed. In this paper, we follow the dominant

set framework because it gives reliably good results in gen-

eral [19] and enables a systematic explanation of the learned

model so we can interpret better the social phenomena at

play in the experimental data. In contrast to the growing

numbers of works on F-formation detection, to our knowl-

edge, no one has attempted to detect associates before.

4. Data

We used the publicly available Idiap Poster Data [6] 1,

which consists of 3 hours of aerial video of over 50 people

during a scientific poster session and coffee break. In this

poster session, posters are put around the perimeter of the

scene, two small round tables are located in the middle and

bottom of the image, a drinks table is located in the bottom

right of the image, two entrances are located at the far left

and top right of the scene. A screen shot is shown in the left

1https://www.idiap.ch/dataset/idiap-poster-data
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of Figure 5. In total, 82 images including 1700 instances of

people were annotated by 24 paid annotators, where each

image was annotated by 3 annotators. No consecutively se-

lected images contained the same set of formations. We

used the positions and body orientation provided separately

by Hung et al. [6]. We augmented this data by adding an-

notations of associates of the F-formations.

We analyzed the annotations to see whether there was

full agreement between the annotators about all members of

an F-formation and associates. 211 instances of associates

were annotated. 84 associates were identified with major-

ity agreement (39.8%) and 34 for full agreement (16%).

We computed the F1 score considering one annotation as

ground truth and one other annotation as detection for each

set of data annotated by the same 3 annotators. The mean

and standard deviation of the F1 score are 44% and 13%

respectively, which shows that associates are not as straight

forward to label compared to F-formations (94.74% mean

average F-measure when computing the agreement for F-

formations from the data). We consider all the annotated

associates have different levels of involvement to groups,

that can be perceived by annotators.

To explore the relative angle and orientation relationship

between different types of associates of F-formations, we

computed histograms of both the distance to, and the rel-

ative orientation differences between, an associate and his

closest F-formation member as shown in the top and bot-

tom of Figure 5(b) on p. 8 respectively. The relative ori-

entation of associates to their closest F-formation member

has a peak in probability mass at 0, and π/3 while there is

only a single peak in the lower histogram. This shows that

associates tend to stand similarly closely to their nearest F-

formation member. The double peak seen in the relative

orientation highlights the idea of two types of associates;

those who stand in the p-space of an F-formation but ap-

pear less involved in the conversation (in-group associates)

and those that stand in the r-space, facing towards the F-

formation (out-group associates).

5. Methodology
We detect an associate by modeling its social prior with

its associated conversational group (F-formation) based on

non-verbal cues where a set of scale (group size) and orien-

tation invariant features are used to train the social prior.

The flowchart of the methodology is shown in Figure 2.

Given the position and body orientation on the group plane

of a set of people, a group detector is first applied to find the

conversational groups location (F-formation will be used in

the following sections to indicate conversational groups);

social prior features are extracted next from every individ-

ual; trained classifiers will be used to determine the involve-

ment of a certain people to a F-formation, for instance, F-

formation members, associates, or singletons. The modules

are described in the following subsections separately.

5.1. Modeling the Fformation as a Dominant set

Building on prior work [6, 19], we exploit the domi-

nant set framework. In an image, people can be repre-

sented as a graph G = (V,E,A), where the nodes V are

people, E is the set of connections between people, and

A = {aij} , i, j ∈ V is an affinity function which de-

fines the "closeness" between each pair of people. Given

a subset S of the set of of nodes in the graph, the average

weighted degree of a node i ∈ S with respect to set S is

kS(i) = 1
|S|

∑

j∈S,j 6=i aij . The relative affinity between

node j /∈ S and i is φS(i, j) = aij − kS(i), and the weight

of each i with respect to a set S = R ∪ {i} is defined as

wS(i) =







1 |S|=1
∑

j∈R

φR(j, i)wR(j) otherwise , (1)

which measures the overall relative affinity between i and

the rest of the nodes in S. The relationship between internal

and external nodes of a dominant set S is defined as

wS(i) > 0, ∀i ∈ S (2)

wS∪{i}(i) < 0, ∀i /∈ S. (3)

Detecting a dominant set is identical to solv-

ing the following standard quadratic programme

maxx x
TAx, s.t. x ∈ ∆, where ∆ =

{

x ∈ R|V | :
∑

i∈V xi = 1, xi ≥ 0, i = 1, · · · , |V |
}

.

The indexes of non-zero xi should correspond to the an

F-formation, in such a way that a F-formation can be

identified. This optimization problem can be solved with

a method from evolutionary game theory, called replicator

dynamics. The first-order replicator can be represented as

xi = xi
(Ax)i
x
TAx

. Once x converges, one set of F-formation

members are detected. A peeling method is used where

the detected group is removed and the replicator dynamics

is repeated to find the next F-formation. This peeling

method is repeated until the minimum distance of pairwise

F-formation members is larger than the maximum distance

of detected pairwise F-formation members for a given

image. Similar to [6] this enables a stopping criterion that

is sensitive to the global context of the scene. For more

details, see [6, 10].

5.2. Social involvement features

As described in Section 1 associates have a complex be-

haviour that is strongly related to the F-formation that they

are associated with. They can exist in either the p-space or

r-space. Moreover, unlike the maximal clique constraint of

full members of F-formations, associates should be mathe-

matically defined with respect to the spatial arrangement of

a candidate set of full members of an F-formation. Search-

ing the space of all possible solutions for an associate and

F-formation is NP. Fortunately, in practice, associates tend
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Figure 3. Frustum of attention modeling with body orientation and proximity. (a) Calculation of relative orientation and proximity, (b)

frustum of attention map with different parameters. The smaller the σ2 is, the narrower of frustum attention of a person is.

to be scatted sparsely enough amongst the F-formations

in a scene so that the maximal clique assumption for a

single F-formation is not severely disrupted by their pres-

ence. Therefore in the first instance, using any existing F-

formation detection method to reduce the space of possible

hypothesis associate and F-formation pairs is reasonable.

Despite this simplification, another challenge still re-

mains. Due to its sparsity, it is unlikely that a sufficient set

of examples exist to account for all possible spatial config-

urations of an associate and F-formation. Therefore, apply-

ing similar features that were used to define full members

will lead to a representation that is too sparse to learn from.

To make sufficiently descriptive features, we hypothesise

therefore that they must be both invariant to the rotation of

the associate relative to the group, and also insensitive to

the size of the group.

To better understand associates and avoid incorrect F-

formation detection in the earlier step (e.g., detecting as-

sociates as full F-formation members), every individual in

the data is considered as an associate candidate, so an as-

sociate candidate could be an F-formation member, an as-

sociate, or a singleton in reality. Three sets of social prior

features f = [fp, fo, fs], centered at the associate candidate,

are extracted to represent the geometric relationship of an

associate candidate and its associated F-formation, where

the features are based on proximity, body orientation, and

group size, respectively. The closest F-formation C to a cer-

tain associate candidate pa is considered as the associated

F-formation of this associate candidate, and pk indicates the

location of the kth F-formation member in C.

Each set of social prior feature f is a 12-bin histogram,

which is defined based on the angle of the vector between

F-formation member pk and an associate candidate ∠(pk−
pa), so that every bin covers an angle of π/6. We define the

mth bin of the three sets of features as

fpm =
1

Zd · |Cm|

∑

k∈Cm

‖pk − pa‖ , (4)

fom =
1

Zo · |Cm|

∑

k∈Cm

(∠pk − ∠pa) , (5)

fsm =
1

Zs

|Cm| , (6)

where the set of F-formation members located in this bin is

Cm. We use fpm to represent the average distance between F-

formation members in Cm and pa, fom to represent the aver-

age relative body orientation between F-formation members

in Cm and pa, and fsm to represent the relative person den-

sity in Cm. The features are normalized by Zd, Zo, and Zs,

where Zd is the maximum proximity between associated

F-formation members and associate candidate, Zo = 2π,

and Zs is the maximum F-formation size. The middle im-

age in Figure 2 shows examples of the scale or orientation

invariant feature representations of an associate and a sin-

gleton, which encode people’s relative location, orientation

and group size.

Associatess detection is challenging because they are

likely to be detected as full F-formation members compare

to singletons who are usually far away from an F-formation.

We use a one-vs-the rest strategy to train an associates de-

tector. In the experiment, we compare a set of classifiers,

such as Parzen, RBF SVM, Random Forests, and AdaBoost,

with 10 fold cross validation. Parzen classifier gave the best

performance on our dataset. In our experiment, we used

211 instances of annotated associates, 235 full-agreement

singletons and 450 full-agreement F-formations as training

data.

5.3. Training the affinity matrix

To detect F-formations in a complex environment, we

need to model the variation of the density of geometric vari-

ations of potential F-formations in the space. To capture

this variation, the affinity matrix A is key. In this paper,
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we only consider the proximity and body orientation. The

"closeness" between people i and j is defined as

aij = e
−

d2
ij

σ2

1

−
θ2
ij

σ2

2 , (7)

where dij is the Euclidean distance between two people,

θij is the sum of difference between each body orientation

and the angle of the vector between two people (see Fig-

ure 3), and σ1 and σ2 are the parameters to be learned. As

the values of σ1 and σ2 decrease, a person is likely to stand

closer and angle more directly towards the others in the F-

formation (see Figure 5 (a)). Likewise, as σ1 and σ2 in-

crease, members of an F-formation will tend to stand further

apart and orientate themselves less directly towards others

(see Figure 5 (a)). The objective function is defined as

ℓ =

N
∑

n=1

1−
C{n} ∩ Ĉ{n}

C{n} ∪ Ĉ{n}
(8)

where n is the index of an F-formation in an image, N is

the total number of annotated F-formations, and C{n} and

Ĉ{n} are the nth detected set of F-formation members and

its corresponding annotation respectively. During training,

we consider a detection C and an annotation Ĉ to match

with each other if
|C ∩ Ĉ|
|C ∪ Ĉ|

≥ 2
3 . Considering that the shape

of the F-formation can be influenced by the furniture ar-

rangement, we learn parameters σ1 and σ2 as a function

of a person’s location p. We only update the parameters

once per person when the detection goes wrong in a passive-

aggressive way [1].

σs(p) = σs(p)− gs(C)∆σs, s ∈ {1, 2}. (9)

Here, ∆σs is the basic step size, which is set to a small

value. An adaptive parameter g helps to adapt to different F-

formation geometric variations. Given F-formation C, the

adaptive parameter g is defined as

g1(C) =y
‖
∑

i,j∈Ĉ{n} d̂ij −
∑

i,j∈C{n} dij‖
∑

i,j∈Ĉ{n} d̂ij
, (10)

g2(C) =y
‖
∑

i,j∈Ĉ{n} θ̂ij −
∑

i,j∈C{n} θij‖
∑

i,j∈Ĉ{n} θ̂ij
, (11)

where y ∈ {−1, 1}, y = 1 indicates a false negative F-

formation member in C, while y = −1 indicates a false

positive member. Here d̂ and σ̂ are the manually annotated

proximity and frustum of attention. In each iteration, we

update each person’s location in the F-formation.

6. Experiment

6.1. Experiment setup

In the experiment, we initialized σ1 = 40, σ2 = 30
for training, whose basic update step sizes were set to

∆σ1 = 0.1 and ∆σ2 = π/720 respectively. The num-

ber of iterations of training for detecting F-formation and

associates were both set to 300. Considering that the train-

ing samples in each precise location were not distributed

densely over the images , we divided the images into blocks

of 45×45 pixels where all people located in the same block

shared the same learned parameters. We trained using each

of the 3 annotations separately, applying 10 fold cross vali-

dation for each. Finally, the position and body orientations

used to train our models came from the annotations of the

Idiap poster data provided by Hung et al. [6].

For evaluation, we consider a group as correctly esti-

mated if at least (T · |C|) of their members are detected,

where |C| is the cardinality of the labeled group C, and

T ∈ [0, 1] is an arbitrary threshold; in [2], the scoring

threshold T = 2/3, corresponds to finding at least two

thirds of the members of a group. Here we also consider

T = 1, to mean that a group is correctly detected only

if all members are labeled correctly. From these metrics

we calculate the precision, recall and F1 measures in each

frame, averaging them over all the frames and the three sets

of annotations. Associates are evaluated by calculating pre-

cision, recall and F1 score in the same way, where only the

harder T = 1 criterion for success is used. Here, a baseline

detector global-F is added, which only uses the initialized

training value σ1 = 40, σ2 = 30 for detecting F-formation.

We also compared the performance of our spatially-aware

F-formation detector (Spatial-F) with state-of-the-art DSFF

[6], HFF [2], ACCVKL [19], and ACCVJS [19].

Since we are the first to approach the task of detecting

associates, we create three baseline detectors to compare

with our proposed associate detector (social-A). Each base-

line result was generated using the annotated data and not

detections. First, SA labels all people who are not in an

F-formation (mostly singletons) as associates. Second, RA

labels people as associates of an F-formation if their dis-

tance to it is less than or equal to the average distance be-

tween pairwise members of F-formations according to the

entire labeled data. Third, ADA is set based on the aver-

age disagreement between annotators where for each pair,

we treated one annotation as a detected result to compute

performance against another annotation. We also compared

performances with different feature combinations (p: prox-

imity features, o: orientation features, and s : group size

features). The associates detector global-A extracts features

based on global-F F-formation detection.

Finally, we analysed how associate detection can help

improve F-formation detection. As the F-formation de-

tector has problems mostly with in-group associates, we

used the detected associates to clean up false positives in

a detected F-formation. The performance of Spatial-F and

global-F was evaluated with the T = 1 hard criterion using

F-formations annotated with full agreement.
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Table 1. F-formation detection results with soft (T = 2/3) and

hard (T = 1) criteria for deciding on whether an F-formation is

correctly detected.

Method T=2/3 T=1

Prec. Rec. F1 Prec. Rec. F1

DSFF [6] 0.93 0.92 0.92 0.81 0.81 0.81

HFF [2] 0.93 0.96 0.94 0.81 0.84 0.83

ACCVKL [19] 0.90 0.94 0.92 - - -

ACCVJS [19] 0.92 0.96 0.94 - - -

global-F 0.87 0.92 0.89 0.72 0.76 0.74

spatial-F 0.91 0.98 0.94 0.91 0.98 0.94

6.2. Fformation Detection Results

Two examples of the learned values for σ1 and σ2 with

respect to the spatial context, are shown in Figure 5 (a).

People in the top F-formation standing side-by-side tend to

have a large σ2, while people in the bottom F-formation

standing face-to-face tend to have a small σ2.

From Table 1, for T = 2/3, our detector (spatial-F)

shows competitive performance to the state-of-art. This is

because tuning a global value of σ can already produce a

good approximation of the clean F-formation shape, partic-

ularly as the soft detection threshold already considers par-

tially detected members of an F-formation to be sufficient,

enabling a softening of the need for strongly circular for-

mations. However, when considering the harsher criterion

T = 1, our detector (spatial-F) significantly out-performs

the state-of-the-art, even with a cross-validated comparison.

We can also see that the spatial-F detector performs equally

good with both criteria (T = 2/3or1), which shows the

accuracy of our detector is very high.

6.3. Results of Detecting Associates of Fformations

Table 2 shows that our proposed associate detector

(social-A) significantly outperforms the three baselines

(SA, RA and ADA), which means there are indeed cer-

tain patterns of associate behaviour that differs from the

behaviour of singletons. We can also see from the perfor-

mance ADA that it is also difficult for people to agree on

who associates are. It also shows that social-A(p+o)with

only proximity and orientation features can almost achieve

the performance of the complete set of features. Interest-

ingly, global-A shows features extracted with a less accu-

rate F-formation detector can still obtain a similar perfor-

mance with social-A where a more accurate F-formation de-

tector spatial-F was used. This can be explained as our fea-

ture represents prototype-like F-formation structures, which

can tolerate certain errors on less perfect F-formation detec-

tions.

To understand more about associates, some examples of

them are shown in Figure 4. The red dots indicate the mem-

bers’ positions in an F-formation, the small red lines in-

dicate everyone’s orientation, the yellow dots indicate the

Table 2. Associate detection results. SA: labels all singletons as

associates, RA: labels people close to F-formation as associates,

UA: performance based on annotator disagreement, global-A: use

global-F detector to extract features, and social-A: our proposed

detector (details in Sec. 6.1).

Method Prec. Rec. F1

SA 0.06 1.00 0.11

RA 0.11 0.84 0.19

ADA 0.44 0.44 0.44

global-A(p+o+s) 0.89 0.59 0.71

social-A(p) 0.87 0.58 0.69

social-A(o) 0.91 0.55 0.69

social-A(s) 0.78 0.53 0.63

social-A(p+o) 0.89 0.57 0.70

social-A(p+s) 0.85 0.56 0.67

social-A(o+s) 0.91 0.56 0.69

social-A(p+o+s) 0.89 0.59 0.71

Table 3. F-formation detection with associate detection feedback,

results are evaluated only on F-formations annotated with full-

agreement. FB-global-F and FB-spatial-F are detectors with as-

sociate detection feedback (details in Sec. 6.1).

Method Prec. Rec. F1

global-F 0.75 0.94 0.83

FB-global-F 0.82 0.94 0.88

spatial-F 0.76 1.00 0.86

FB-spatial-F 0.84 1.00 0.91

correctly detected associates, the blue dots are correctly de-

tected singletons, and the green dots show associates that

were missed by the detector. From left to right, the first two

images show that our detector can successfully detect asso-

ciates who are in the r-space (See Figure 1(a)) trying to join

an F-formation but who are not accepted by its members.

The third and fourth images show that our detector can de-

tect associates who are still in the F-formation p-space but

not fully involved in the group. This conforms our analysis

of the orientation and proximity of associates in Section 4

Figure 5(b).

We simulated tracking drifts on the manual labels of

position and body orientation to compare the robustness

of our method spatial-F with global-F on noisy test data.

Figure 4 (b) shows that our detector spatial-F in general

performs better than the detector with global parameters

global-F, however, our detector can tolerate less noise by

looking at the decay rate because our learned parameters

are sensitive to the location changing. As a person width

is approximately 20 pixels in the image, the performance

of our method starts to drop faster when the deviation of

Gaussian noise is around half person width. It means our

method should perform well using a reasonably robust vi-

sual tracker.

From Table 3, we can see that using the feedback of the

detected associates, false positive F-formation members are
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Figure 4. (a): example associate detection results: Red dots - members of an F-formation; red lines - body orientation; yellow dots -

correctly detected associates; blue dots - correctly detected singletons; and green dots - missed associate detections. (b): F1 score of

F-formation detectors spatial-F and global-F and associates detectors social-A and global-A with noisy test data.

Figure 5. (a): learned frustum of attention in two cases. (b): histograms of both relative orientation differences between an associate and

also distance to closest nearest F-formation member.

removed, so that the precisions are improved significantly.

7. Conclusion

In this paper, we addressed the novel task of detecting

associates of F-formations. We introduced a novel multi-

annotator annotations for associates of F-formations, and

two methods for detecting them. Using our model, we were

also able to discover patterns in proximity and orientation in

the behaviours of associates that enable significant improve-

ment over baseline methods with a detection rate of 71% F-

measure. We proposed a spatial-context-aware F-formation

detector, which models people’s frustum of attention in a

principled way while considering the influence of the social

and spatial context. The method is in general more adap-

tive to different datasets so for example, different frustum

of attention parameters can be learned from scenarios with

a non-uniform density of crowding. Our proposed method

showed competitive performance, even when training the

model parameters on less data.

By cleaning the detected in-group associates from the

detected F-formations, we were also able to significantly

improve F-formation detection performance in all cases

where there was full agreement amongst annotators on the

full-members of each F-formation. Surprisingly, althougth

learning a spatial-context specific frustrum of attention led

to better F-formation detection, when using the output of

this models to detect associates, the performance for asso-

ciate detection was not better than when F-formations were

detected with a spatial-context free frustrum parameters.

In summary, to our knowledge, this constitutes the first

attempt on the challenging problem of automatically esti-

mating conversational involvement levels in visual scenes

of mingling.
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