
Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues

Ning Zhang1, Manohar Paluri2, Yaniv Taigman2, Rob Fergus2, Lubomir Bourdev2

1UC Berkeley 2Facebook AI Research

{nzhang}@eecs.berkeley.edu {mano, yaniv, robfergus, lubomir}@fb.com

Abstract

We explore the task of recognizing peoples’ identities

in photo albums in an unconstrained setting. To facilitate

this, we introduce the new People In Photo Albums (PIPA)

dataset, consisting of over 60000 instances of ∼2000 in-

dividuals collected from public Flickr photo albums. With

only about half of the person images containing a frontal

face, the recognition task is very challenging due to the

large variations in pose, clothing, camera viewpoint, image

resolution and illumination. We propose the Pose Invariant

PErson Recognition (PIPER) method, which accumulates

the cues of poselet-level person recognizers trained by deep

convolutional networks to discount for the pose variations,

combined with a face recognizer and a global recognizer.

Experiments on three different settings confirm that in our

unconstrained setup PIPER significantly improves on the

performance of DeepFace, which is one of the best face rec-

ognizers as measured on the LFW dataset.

1. Introduction

Recognizing people we know from unusual poses is easy

for us, as illustrated on Figure 1. In the absence of a clear,

high-resolution frontal face, we rely on a variety of sub-

tle cues from other body parts, such as hair style, clothes,

glasses, pose and other context. We can easily picture Char-

lie Chaplin’s mustache, hat and cane or Oprah Winfrey’s

curly volume hair. Yet, examples like these are beyond

the capabilities of even the most advanced face recognizers.

While a lot of progress has been made recently in recogni-

tion from a frontal face, non-frontal views are a lot more

common in photo albums than people might suspect. For

example, in our dataset which exhibits personal photo al-

bum bias, we see that only 52% of the people have high res-

olution frontal faces suitable for recognition. Thus the prob-

lem of recognizing people from any viewpoint and without

the presence of a frontal face or canonical pedestrian pose is

important, and yet it has received much less attention than it

deserves. We believe this is due to two reasons: first, there is

no high quality large-scale dataset for unconstrained recog-

Figure 1: We are able to easily recognize people we know

in unusual poses, and even if their face is not visible. In this

paper we explore the subtle cues necessary for such robust

viewpoint-independent recognition.

nition, and second, it is not clear how to go beyond a frontal

face and leverage these subtle cues. In this paper we address

both of these problems.

We introduce the People In Photo Albums (PIPA) dataset,

a large-scale recognition dataset collected from Flickr pho-

tos with creative commons licenses. It consists of 37,107

photos containing 63,188 instances of 2,356 identities and

examples are shown in Figure 2. We tried carefully to pre-

serve the bias of people in real photo albums by instruct-

ing annotators to mark every instance of the same identity

regardless of pose and resolution. Our dataset is challeng-

ing due to occlusion with other people, viewpoint, pose and

variations in clothes. While clothes are a good cue, they are

not always reliable, especially when the same person ap-

pears in multiple albums, or for albums where many people

wear similar clothes (sports, military events), as shown in

Figure 3. As an indication of the difficulty of our dataset,

the DeepFace system [32], which is one of the state-of-the-

art recognizers on LFW [18], was able to register only 52%

of the instances in our test set and, because of that, its over-

all accuracy on our test set is 46.66%. The dataset is pub-

licly available1.

We propose a Pose Invariant PErson Recognition

(PIPER) method, which uses part-level person recognizers

to account for pose variations. We use poselets [2] as our

part models and train identity classifiers for each poselet.

1http://www.eecs.berkeley.edu/˜nzhang/piper.

html
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(a) While clothing can be discriminative it does not help for military or busi-

ness activities, for example, where people dress similarly.

(b) The same individual may appear in multiple albums wear-

ing different clothes.

Figure 3: Challenges of our dataset. Besides significant variations in pose and viewpoint, clothing is not always a reliable

cue for person recognition in our dataset.

Figure 2: Example photos from our dataset. These are

taken from a single album and show the associated identi-

ties. Each person is annotated with a ground truth bound-

ing box around the head, with each color representing one

identity. If the head is occluded, the expected position is

annotated.

Poselets are classifiers that detect common pose patterns. A

frontal face detector is a special case of a poselet. Other ex-

amples include a hand next to a hip or head-and-shoulders

in a back-facing view, or legs of a person walking sideways.

A small and complementary subset of such salient patterns

is automatically selected as described in [2]. Examples of

poselets are shown in Figure 4. While each poselet is not

as powerful as a custom designed face recognizer, it lever-

ages weak signals from a specific pose pattern that is hard to

capture otherwise. By combining their predictions we accu-

mulate the subtle discriminative information from each part

into a robust pose-independent person recognition system.

We are inspired by the work of Zhang et al. [38], which

uses deep convolutional networks trained on poselet de-

tected patches for attribute classification. However our

problem is significantly harder than attribute classification

since we have many more classes with significantly fewer

training examples per class. We found that combining parts

by concatenating their feature in the manner of [38] is not

effective for our task. It results in feature vectors that are

very large and overfit easily when the number of classes

is large and training examples are few. Instead, we found

training each part to do identity recognition and combining

their predictions achieves better performance. Unlike [3],

we propose a new way to handle the sparsity from poselet

detections which boosts the performance by a large margin.

We demonstrate the effectiveness of PIPER by using

three different experimental settings on our dataset. Our

method can achieve 83.05% accuracy over 581 identities on

the test set. Moreover when a frontal face is available, it im-

proves the accuracy over DeepFace from 89.3% to 93.4%,

which is close to 40% decrease in relative error.

2. Related Work

Face recognition There has been dramatic progress made

in face recognition in the past few decades from Eigen-

Face [34] to the state-of-art face recognition system [32]

by using deep convolutional nets. Most of the existing face

recognition systems require constrained setting of frontal

faces and explicit 3D face alignment or facial keypoint lo-

calizations. Some other works [36, 5] have addressed robust

face recognition systems to deal with varying illumination,

occlusion and disguise. Due to our unconstrained setting,

most conventional face recognition systems have limited

performance on our dataset.



Figure 4: Example of poselet activations. These are the top

4 poselet detections ranked by part weight wi mentioned in

Sec 4.3.

Person identification in photo albums Tagging of per-

sonal photo albums is an active research topic. To ad-

dress the limitation of face recognition systems, various ap-

proaches have been proposed to incorporate context. For

example, the authors in [1, 25] proposed methods to incor-

porate contextual cues including clothing appearance and

meta data from photos for person identification in photo

collections. Sivic et al. [30] proposed a simple pictorial

structure model to retrieve all the occurrences of the same

individual in a sequence of photographs. Lin et al. [24] pre-

sented a generative probabilistic approach to model cross-

domain relationships to jointly tag people, events and lo-

cations. In [13], the authors try to find all images of each

person in the scene from a crowed public event.

There is also some related work to discover the social

connection between people in the photo collections. Wang

et al. [35] proposed a model to represent the relationship

between the position and pose of people and their identi-

ties. In [12], the authors investigated the different factors

that are related to the positions of people in a group im-

age. Another interesting direction is to name characters in

TV series. In [9, 29, 8], the authors proposed approach to

automatically label the characters by using aligned subti-

tle and script text. Tapaswi et al. [33] proposed a Markov

Random Field (MRF) method to combine face recognition

and clothing features and they tried to name all the appear-

ance of characters in TV series including non frontal face

appearance. Later they presented another semi-supervised

learning method [4] for the same task.

Person re-identification in videos The task of person re-

identification is to match pedestrian images from different

cameras and it has important applications in video. Existing

work is mainly focused on metric learning [27, 17, 22] and

mid-level feature learning [16, 39, 40, 10, 20, 26]. Li et al.

[23] propose a deep network using pairs of people to encode

photometric transformation. Yi et al. [37] used a siamese

deep network to learn the similarity metric between pairs of

images.

Deep convolutional networks In the past few years, deep

convolutional networks originally pioneered by LeCun et

al. [21] have been a tremendous success by achieving the

state-of-art performance in image classification [19], object

detection [14], face recognition [32] and other computer vi-

sion tasks. The strength of the deep nets is its ability to learn

discriminative features from raw image input unlike hand-

engineered features. DeCAF [7] showed the deep features

extracted from the network pretrained on large datasets can

be generalized to other recognition problems.

3. People In Photo Albums Dataset

To our knowledge, there is no existing large scale dataset

for the task of person recognition. The existing datasets for

person re-identification, such as VIPeR [15] and CUHK01

[22], come mostly from videos and they are low resolution

images taken from different cameras from different view-

points. The Gallagher Collection Person Dataset [11] is the

closest to what we need, however the released subset has

only 931 instances of 32 identities which is approximately

1.5% of the size of our dataset. Furthermore, [11] have only

labeled the frontal faces. The Buffy dataset used in [29, 9]

is a video dataset and it only has less than 20 different char-

acters.

Our problem setting is to identify a person in the

“wild” without any assumption of frontal face appearance

or straight pedestrian pose. We don’t assume that the per-

son is detected by a detector; our instruction to annotators

is to mark the head (even if occluded) for any people they

can co-identify, regardless of their pose, and the image res-

olution.

3.1. General statistics

We collected our dataset, People In Photo Albums

(PIPA) Dataset, from public photo albums uploaded to

Flickr 2. All of our photos have Creative Commons Attribu-

tions License. Those albums were uploaded from 111 users.

Photos of the same person have been labeled with the same

identity but no other identifying information is preserved.

Table 1 shows statistics of our dataset.

3.2. Collection Method

Our data collection consists of the following steps:

1. Album Filtering. After downloading thousands of al-

bums from Flickr, we first show the annotators a set

of photos from the album and ask them to filter out al-

bums which are not of people, such as landscape, flow-

ers, or photos where person co-occurrence is very low.

2https://www.flickr.com/

https://www.flickr.com/


Split All Train Val Test Leftover

Photos 37,107 17,000 5,684 7,868 6,555

Albums 1,438 579 342 357 160

Instances 63,188 29,223 9,642 12,886 11,437

Identities 2,356 1,409 366 581 -

Avg/identity 26.82 20.74 26.34 22.18 -

Min/identity 5 10 5 10 -

Max/identity 2928 99 99 99 -

Table 1: Statistics of our dataset.

2. Person Tagging. Then, given each album, we ask the

annotators to select all the individuals that appear at

least twice in that album and draw a bounding box

around their heads with different color indicating dif-

ferent identity. If the head is partially/fully occluded,

we mark the region of where the head should be. The

head bounds may also be partially/fully outside the im-

age. Not every person is tagged. In a crowd scene we

ask the annotators to tag no more than 10 people.

3. Cross-Album Merging. Often the same identities ap-

pear in multiple albums, in which case their identi-

ties should be merged. While it is not feasible to do

so across all albums, we consider the set of albums

uploaded by the same uploader and we try to find

the same identities appearing in multiple albums and

merge them.

4. Instance Frequency Normalization. After merging,

we count the number of instances for each individ-

ual and discard individuals that have less than 10 in-

stances. In addition, a few individuals have a very large

number of instances which could bias our dataset. To

prevent such bias, we restrict the maximum number of

instances per individual to be 99. We randomly sample

99 instances and move the remaining ones into a “left-

over” set. Our leftover set consists of 11,437 instances

of 54 individuals.

5. Dataset Split. We split the annotations randomly into

three sets – training, validation and test. To ensure

complete separation between the sets, all the photos

of the same uploader fall in the same set. That ensures

that the set of photos, identities and instances across

the three sets is disjoint. We do a random permuta-

tion of the uploaders and we pick the first K of them

so that the number of person instances reaches about

50% and we assign those to the training set. We assign

the next 25% to validation and the remaining 25% to

test. While we target 50-25-25 split we cannot assure

that the instances will be partitioned precisely due to

the constraints we impose. See Table 1 for more de-

tails about the splits.

4. Pose Invariant Person Recognition (PIPER)

We introduce a novel view invariant approach to combine

information of different classifiers for the task of person

recognition. It consists of three components:

• The global classifier, a CNN trained on the full body

of the person.

• A set of 107 poselet classifiers, each is a CNN trained

on the specific poselet pattern using [2]. 3

• An SVM trained on the 256 dimensional features from

DeepFace [32].

In total we have 109 part classifiers. The identity prediction

of PIPER is a linear combination of the predicted probabil-

ities of all classifiers:

s(X, y) =
∑

i

wiPi(y|X) (1)

Here Pi(y|X) is the normalized probability of identity label

y given by part i for feature X and wi is the associated

weight of the part. The final identity prediction is y∗(X) =
argmaxy s(X, y).
Here is an overview of the training steps. The next sections

provide a more detailed description.

1. We run poselets [2] over our dataset and match the per-

son predictions coming from poselets to our ground

truths (see Section 4.1).

2. Using the poselet patches of step 1, we train a CNN for

each poselet to recognize the identities on our train-

ing set. In addition, we train a CNN for the global

classifier using the patches corresponding to the full

body images. In all cases we use the Convolutional

Neural Net architecture by Krizhevsky et al. [19]. We

fine-tune the network pre-trained on ImageNet on the

task of identity recognition. While recent architectures

have improved the state-of-the art [28, 31] and might

further improve our performance, we decided to use

the Krizhevsky architecture because its performance

is well studied on a number of visual tasks [7]. We

then discard the final FC8 layer and treat the activa-

tions from the FC7 layer as a generic feature on which

we train SVMs in the next steps.

3. We partition the validation set into two halves. We

train an SVM for each part using the FC7 layer fea-

ture from Step 2 on the first half of validation and use

it to compute the identity predictions Pi(y|X) on the

second half, and vice versa (see Section 4.2).

3The original set of poselets is 150 but some of them did not train well.



4. We use the identity predictions of all parts on the val-

idation set to estimate the mixing components wi (see

Section 4.3).

5. We split the test set in half and train SVMs on top of

the FC7 features on the first half of the test set and use

them to compute the identity predictions Pi(y|X) on

the second half, and vice versa.

6. We use the identity predictions on the test set for each

part Pi(y|X) as well as the mixing components wi to

compute the combined identity prediction S(X, y) us-

ing equation 1.

In the next sections we will describe the training steps,

and way we compute Pi(y|X) and wi.

4.1. Computing Part Activations

Our groundtruth annotations consist of bounding boxes of

heads. From the head boxes, we estimate the bounding box

locations by setting approximate offset and scaling factor.

We run poselets [2] on the images, which returns bound-

ing boxes of detected people in the images, each of which

comes with a score and locations of associated poselet acti-

vations. Examples of poselet detections are shown in Figure

4. We use a bipartite graph matching algorithm to match the

ground truth bounds to the ones predicted by the poselets.

This algorithm performs globally optimal matching by pre-

ferring detections with higher score and higher overlap to

truths. The output of the algorithm is a set of poselet acti-

vations associated with each ground truth person instance.

We extract the image patches at each poselet and use them

to train part-based classifiers.

4.2. Training the Part Classifiers Pi(y|X)

4.2.1 Global classifier P0(y|X)

Using the FC7 layer of the CNN trained for the full body

area of each instance, we train a multi-class SVM to predict

each identity y. We refer to its prediction as P0(y|X).

4.2.2 Part-level SVM classifier P̂i(y|X)

Given the FC7 layer features X extracted from detected part

i patch and identity labels y, we train a multi-class SVM on

X to predict y and we denote the softmax of the output score

as P̂i(y|X).
Notice that P̂i is sparse in two ways:

• Each poselet activates only on instances that exhibit

the specific pose of that poselet. Some poselets may

activate on 50% while others on as few as 5% of the

data.

• Not all identities have examples for all poselets and

thus each poselet level SVM classifier for part i is only

Figure 5: Example of sparsity filling. On the left we show

the predictions of the global model for every identity and

every instance. The poselet classifier in the middle does

not activate for two instances (the white rows) and is not

trained to recognize two identities (the white columns). On

the right we show how in the normalized probability we

fill-in missing rows from the global model as in the top of

Equation 2. In addition we account for the missing columns

by linearly interpolating each row with the global model

based on the likelihood that the identity is not coming from

one of the missing columns (the triangles)

trained on a subset Fi of all identities. Thus P̂i(y|X)
is inflated when y ∈ Fi and is zero otherwise.

The sparsity pattern is correlated with the pose of the person

and has almost no correlation to the identity that we are try-

ing to estimate. Thus properly accounting for the sparsity is

important in order to get high accuracy identity recognition.

4.2.3 Sparsity filling

We address both of these sparsity issues by using the prob-

ability distribution of our global model P0 which is defined

for all identities and activates on all instances:

Pi(y|X) =

{

P0(y|X), if part i doesn’t activate, or

P (y ∈ Fi)P̂i(y|X) + P (y /∈ Fi)P0(y|X)

(2)

P (y ∈ Fi) =
∑

y′∈Fi

P0(y
′|X) (3)

In Figure 5 we give a visual intuition behind this formula.

4.3. Computing the part weights wi

We use the validation set to compute w. We split the val-

idation set into two equal subsets. We train the part-based

SVMs on one subset and use them to compute Pi(y|X)
on all instances of the second subset, and vice versa. Let

P j
i (y|X) denote the probability that the classifier for part

i assigns to instance j being of class y given feature X .

We formulate a binary classification problem which has

one training example per pair of instance j and label y. If

we have K parts its feature vector is K + 1 dimensional:

[P j
0
(y|X);P j

1
(y|X); ... P j

k (y|X)]. Its label is 1 if instance



Method Classification accuracy

Chance Performance 0.17%

DeepFace [32] 46.66%

FC7 of Krizhevsky et al. [19] 56.07%

Global Model 67.60%

PIPER w/out sparsity filling 75.35%

PIPER 83.05%

Table 2: Person recognition results on PIPA test set using

6442 training examples over 581 identities

Method Non-faces subset Faces subset

Global Model 64.3% 70.6%

DeepFace[32] 0.17% 89.3%

PIPER 71.8% 93.4%

Table 3: Performance on the test set when split into the sub-

set where frontal face is visible (52%) and when it is not

(48%).

j’s label is y and -1 otherwise. We solve this by training a

linear SVM. The weights w are the weights of the trained

SVM.

We use the first split of validation to do a grid search for

the C parameter of the SVM and test on the second split.

Once we find the optimal C we retrain on the entire valida-

tion set to obtain the final vector w.

5. Experiments

We report results of our proposed method on our PIPA

dataset and compare it with baselines. Specifically, we

conduct experiments in three different settings: 1) Person

recognition, 2) One-shot person identification, and 3) Un-

supervised identity retrieval.

In all experiments we use the training split of our dataset

to train the deep networks for our global model and each

poselet and we use the validation set to compute the mixing

weights w and tune the hyper-parameters. All of our results

are evaluated on the test split.

5.1. Person Recognition

We first present experimental results on the person

recognition task with our PIPA dataset. It is a standard su-

pervised classification task as we train and test on same set

of identities. Since the set of identities between training and

test sets is disjoint, we split our test set in two equal subsets.

We train an SVM on the first, use it to compute Pi(y|X)
on the second and vice versa. We then use the weights w
trained on the validation set to get our final prediction as

the identity that maximizes the score in equation 1 and we

average the accuracy from both halves of the test set. Qual-

itative examples are shown on Figure 6.

Global Model DeepFace[32] Poselets Accuracy

X – – 67.60%

– X – 46.66%

– – X 72.18%

X X – 79.95%

X – X 78.79%

– X X 78.08%

X X X 83.05%

Table 4: Person recognition performance on the PIPA test

set using 6442 training examples over 581 identities as we

disable some of the components of our method. PIPER gets

more than 3% gain over the very strong baseline of using

the fine-tuned CNN combined with the DeepFace model.

DeepFace’ s score is low because it only fires on 52% of the

test images and we use chance performance for the rest.

5.1.1 Overall Performance

Table 2 shows the accuracy in this setting compared to some

standard baselines. We compared it against DeepFace [32],

which is one of the state-of-the-art face recognizers. Al-

though it is very accurate, it is a frontal face recognizer, so

it doesn’t trigger on 48% of our test set and we use chance

performance for those instances. As a second baseline we

trained an SVM using the FC7 features of the CNN pro-

posed by Krizhevsky et al. and pretrained on ImageNet[6].

We use its activations after showing it the full body image

patch for each instance. The Global Model baseline is the

same CNN, except it was fine-tuned for the task of identity

recognition on our training set. We also tested the perfor-

mance of our model by combining the sparse part predic-

tions, i.e. using P̂i(y|X) instead of Pi(y|X) in equation 1.

The performance gap of more than 7% shows that sparsity

filling is essential to achieve high recognition accuracy.

5.1.2 Ablation Study

Our method consists of three components – the fine-tuned

Krizhevsky CNN (the Global Model), the DeepFace recog-

nizer, and a collection of 107 Poselet-based recognizers. In

this section we explore using all combinations of these three

components4. For each combination we retrain the mixture

weights w and re-tune the hyper parameters. Table 4 shows

the performance of each combination of these components.

As the table shows, the three parts of PIPER are comple-

mentary and combining them is necessary to achieve the

best performance.

4Since our method relies on sparsity filling from a global model

P0(y|X), to remove the effect of the global model we simply set P0(y|X)
to be uniform distribution.
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(a) Body falls outside image (b) Unusual pose

(c) Same clothing similar pose (d) Confusion with other person

Figure 6: Examples that the combination of the Global model and DeepFace misclassify and are recovered by using all of

PIPER. (a) In a closeup shot the full body falls outside the image and the extracted full-body patch, shown on the right, is

severely misaligned. A profile-face poselet should handle this case without misalignment. (b) In unusual pose the full body

patch may fall on the background or (d) on another person which will further confuse the classifier. In (c) people have the

same clothes and similar pose which will confuse the global model.

5.1.3 Performance on face and non-face instances

Since the presence of a high resolution frontal face pro-

vides a strong cue for identity recognition and allows us

to use the face recognizer, it is important to consider the

performance when a frontal face is present and when it is

not. Table 3 shows the performance on the face and non-

face part of our test set. We considered the instances for

which DeepFace generated a signature as the face subset.

As the figure shows, when the face is not present we can sig-

nificantly outperform a fine-tuned CNN on the full image.

More importantly, the contextual cues and combinations of

many classifiers allow us to significantly boost the recogni-

tion performance even when a frontal face is present.

5.2. OneShot Learning

Figure 7 shows the performance of our system when the

training set is tiny. We randomly pick one, two or three in-

stances of each identity in our test set, train on those and

report results on the rest of the test set. Our system per-

forms very well even with one training example per iden-

tity, achieving 28.1% accuracy for 581 identities. This re-

sult illustrates the powerful generalization capability of our

method. The generalization capabilities of deep features are

well studied, but we believe the mixture of multiple part-

based classifiers also helps here, since our system improves

faster than the global fine-tuned Krizhevsky’s CNN method.

5.3. Unsupervised identity retrieval

We evaluate our method on the task of retrieval: Given

an instance, we measure the likelihood that one of the K

nearest neighbors will have the same identity.

To do this we used the SVMs trained on split 0 of the

validation set to predict the 366 identities in the validation

set. We applied them to the instances in the test set to obtain
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Figure 7: Recognition accuracy as a function of number of

training examples per identity, with σ = 1 error bar. As

we increase the number of training examples our system’s

accuracy grows faster than the full-body baseline. Chance

performance is 0.0017.

Figure 8: Performance of our method on identity retrieval.

a 366-dimensional feature vector for each part and we com-

bine the part predictions using equation 1 with w trained on

the validation set to obtain a single 366-dimensional feature

for each instance in the test set. We then, for each instance

of the test set, compute the K nearest neighbors using Eu-

clidean distance and we consider retrieval as successful if at

least one of them is of the same identity. This has the effect

of using the identities in the validation set as exemplars and

projecting new instances based on their similarities to those

identities. As Figure 8 shows our method is quite effective

on this task – despite the low dimensional feature and with-

out any metric learning, the nearest neighbor of 64% of the

examples is of the same identity as the query. If we use the

predictions of the Krizhevsky’s CNN trained on ImageNet

and fine-tuned on our training set, which is known to be a

very powerful baseline, the nearest neighbor is of the same

class in only 50% of the examples. This suggests that our

model is capable of building a powerful and compact iden-

tity vector independent of pose and viewpoint. Examples of

our method are shown in Figure 9.

6. Conclusion

We described PIPER, our method for viewpoint and pose

independent person recognition. We showed that PIPER

significantly outperforms our very strong baseline – com-

Query Top 1 Top 2 Top 3 Top 4 Top 5

Figure 9: Example of PIPER results on unsupervised iden-

tity retrieval. For each row we show the query image fol-

lowed by the top 5 ranked retrieval images. Those are

cropped bounding box images on test split and are stretched

to make visualization aligned.

bining a state-of-the-art CNN on the full body fine-tuned on

our dataset with a state-of-the-art frontal face recognizer.

PIPER can learn effectively even with a single training ex-

ample and performs surprisingly well at the task of image

retrieval. While we have used PIPER for person recogni-

tion, the algorithm readily applies to generic instance co-

identification, such as finding instances of the same car or

the same dog. We introduced the People In Photo Albums

dataset, the first of its kind large scale data set for person

coidentification in photo albums. We hope our dataset will

steer the vision community towards the very important and

largely unsolved problem of person recognition in the wild.

Copyright. The copyright references of all the images
shown in the paper are in http://www.eecs.berkeley.
edu/˜nzhang/piper_image_license.pdf.
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