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Abstract.  Modern computer systems exhibit a major weakness in that code and 
data are stored in the clear, unencrypted, within random access memory.  As a 
result, numerous vulnerabilities exist at every level of the software stack.  These 
vulnerabilities have been exploited to gather confidential information (e.g. en-
cryption keys) and inject malicious code to overcome access controls and other 
protections.  Full memory encryption (FME) would mitigate the vulnerabilities 
but the CPU-memory bottleneck presents a significant challenge to designing a 
usable system with acceptable overheads.  Recently, security hardware, includ-
ing encryption engines, has been integrated on-chip within commodity proces-
sors such as the Intel i7, AMD bulldozer, and multiple ARM variants.  This  
paper describes on-going work to develop and measure a clean-slate operating 
system – Bear – that leverages on-chip encryption to provide confidentiality of 
code and data.  While Bear operates on multiple platforms, memory encryption 
work is focused on the Freescale i.MX535 (ARM Cortex A8) using its inte-
grated encryption engine.  

Keywords:  Memory encryption, data in use, security-enhanced commodity 
processors, secure microkernel, mobile platform security. 

1 Background and Threat Model 

Current operating system designs have sought to utilize a static base of trust and ex-
tend trust into software through deliberate layering [Arbaugh et al. 1997]. Modern 
computer systems, even those protected by full disk encryption (FDE) [Brink 2009], 
exhibit a major weakness in that code and data are stored in the clear, unencrypted, 
within memory.  These sensitive details are not only available to applications; they are 
known to persist in multiple unexpected locations (kernel and application), for longer 
than traditionally thought, even after an application exits [Chow et al. 2004], [Dunn et 
al. 2012], [Tang et al. 2012]. Unfortunately, this invalidates basic security assump-
tions rendering it possible to gather confidential information, including encryption 
keys, passwords, and other sensitive information that can be used to undermine trust 
[Halderman et al. 2008], [Boileau 2006], [Steil 2005], [Henson and Taylor, 2012]. To 
exacerbate the problem, memory vulnerabilities extend to every level of the software 
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stack and the opportunities for exploitation extend well beyond physical attack to 
include remote attacks over the Internet: techniques have evolved that allow malicious 
code to be injected into device drivers, operating system kernels, and user processes.  

To exploit memory vulnerabilities, numerous attack vectors have been developed. 
In a cold boot attack, for example, memory is frozen using a refrigerant and then re-
moved from the computer. It is then quickly placed into a specially designed system 
that reads out its content, targeting encryption keys and other sensitive information.  
This particular attack has recently been shown to be applicable to smart phone devices 
as well as traditional desktops via the forensic recovery of scrambled telephones 
(FROST) operating system [Muller et al. 2012].  Besides capturing the encryption 
key, FROST was used to capture other code and data to include photos, websites  
visited, e-mails, contact lists, networking credentials and complete ELF binaries. 
Another particularly effective attack, bus-snooping/injecting, allows information to be 
captured or inserted via the bus lines between system components [Boileau 2006].  

The threat model for this work involves an adversary gaining physical access to a 
computer system with sufficient resources and motivation (e.g. criminal and point of 
sale systems or government sponsored attacker and mobile military systems) to pur-
sue the vulnerabilities mentioned above.  For example, the smart phone of a diplomat 
may be confiscated for a period of time while transiting through airport security.  
Methods of physical access may be used to capture memory and/or disk contents for 
offline analysis with the sole purpose of the attack being data exfiltration.  In another 
example, an unmanned aerial system (UAS) might be captured and control programs 
reverse engineered to enable the attack of other similar systems.  

In contrast to research on intrusion detection, our research group is focused on ex-
ploring methods to increase attacker workload, undermining surveillance, forensics 
and persistence while reducing the attack surface.  This paper focuses on one such 
method -- memory encryption – explored within the context of a modern microkernel.  

2  Related Work 

In effect, the increasing adoption of full disk encryption (FDE) has pushed the vulne-
rabilities associated with persistent data on disk down into the next level of the mem-
ory hierarchy, which has proven equally vulnerable.  The key concept by which vul-
nerabilities were mitigated on disk was encryption: encrypting the disk provided con-
fidentiality preventing access to sensitive information. By migrating the same solution 
down into RAM, it may be possible to circumvent similar attacks at this  
lower level of the memory hierarchy. This constrains the boundary available to an 
attack to lie at the processor itself, presenting a barrier that, in most cases, cannot be 
defeated without mechanical or electrical destruction of the processor chip.  Attacks 
on the device are possible, for example, by etching away the chip walls with acid to 
reveal internal bus lines, or electromagnetic and differential power analyses [Pope 
2008], [Kocher et al. 1999]. These approaches clearly increase the attacker workload 
by at least an order of magnitude, require expert knowledge, and cannot be exploited 
remotely over a network [Suh et al. 2007]. Moreover, while tamper resistant  
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mechanisms are already available that significantly increase the barrier to entry  
[Chari et al. 1999], protecting circuits from invasive and side-channel attacks is an 
open research area.  

Although the concept of memory encryption has been actively researched for over 
three decades, it has yet to be used at the core of operating system designs to provide 
confidentiality of code and data [Henson and Taylor 2012].  The literature on memory 
encryption is largely concerned with three core approaches based on hardware  
enhancements [Lie et al. 2000], [Rogers et al. 2005], [Su et al. 2009], operating  
system enhancements [Chhabra et al. 2011], [Chen et al. 2008], [Peterson 2010], and 
specialized industrial applications [Dallas 1997], [Arnold and Doorn 2004], [Steil and 
Domke 2008]. Unfortunately, almost all of the hardware and operating system  
enhancements have only been implemented through simulation or emulation, and as a 
result, the claims have yet to be validated and quantified on practical systems.   
The few processors that implement memory encryption are characterized by low 
speeds and small addressable memory (<=16 bits) at use in low throughput (e.g. 
point-of-sale, set top TV access, etc.) applications or specialized gaming systems. 

Recently, security hardware, including encryption engines, has been integrated 
within commodity processors such as the Intel i7, AMD bulldozer, and multiple ARM 
variants; however, systems developers have yet to embrace these specialized, often 
vendor-specific, features [Vasudevan et al. 2011]. Little practical experimentation has 
been conducted and the improvements in security and performance have yet to be 
quantified [Henson and Taylor 2012].  While this new hardware has not been used to 
protect an entire system, there are examples of its use to protect particular applica-
tions.  Several papers have highlighted approaches to mitigate attacks on FDE.  For 
example, Tresor [Muller et al. 2011], aims to protect the FDE key by storing it only 
inside the CPU and performing encryption/decryption within that boundary.  Unfortu-
nately, this technique is inadequate since it is possible to recover the key via a DMA 
injection attack on unprotected memory [Blass and Robertson 2012]. In another  
example, memory vulnerabilities were used to undermine the memory encryption 
protections of the Xbox 360.  In the original Xbox, the key was stored in plaintext and 
transmitted across the southbridge bus.  The key was captured in a bus-snooping  
attack, which led to compromise of the gaming system and to the subsequent growth 
of the Xbox mod-chip industry [Steil 2005].  In the updated Xbox 360, memory  
encryption is used to protect against such attacks; however, it appears that the process 
stack is not encrypted and this has led to another successful compromise [Steil and 
Domke 2008].   

Unfortunately, little work has been performed to explore the trade space of using 
security enhanced commodity processors to implement full memory encryption 
(FME): encrypting all components of a process – stack, heap, code and data. Al-
though more recent processors make memory encryption less costly, it remains un-
clear if FME is viable for everyday use or is limited to constrained tactical applica-
tions.  In past ME work, overhead has been measured at the coarse granularity of an 
entire process without regard to process sub-components.  The relationship between 
the overhead costs and security gains for encrypting particular process components 
needs to be understood (e.g. is there a particular component that can be protected with 
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low overhead yet holds high value code/data).  This work is the first to implement ME 
on a commodity processor, thereby allowing investigation of the low-level implemen-
tation details and the cost/security tradeoffs at sub-process component granularity.      

Memory vulnerabilities are common in systems ranging from servers and standard 
desktops to mobile computing devices (e.g. smart phones, tablets, laptops, etc.).  
However, usage patterns toward the mobile end of the spectrum may exacerbate the 
situation since many users of smart phones rarely reboot these systems maintaining 
them in an “always on” fashion [Karlson et al. 2009]. In fact, in a study of the Andro-
id operating system, 6 out of 14 applications permanently maintained their passwords 
in RAM. Additionally, mobile devices are more likely to be lost or stolen providing 
physical access to possible adversaries.  In NYC, for example, 49% of the population 
has experienced mobile phone theft and/or loss [Tang et al. 2012]. Mobile devices, 
such as Android based smart phones, are beginning to be used in forward deployed 
military areas.  These phones are loaded with information such as local maps, objec-
tives, and blue force tracker (friendly unit) locations.  Unfortunately, these phones 
(and other devices such as remotely piloted airframes with similar embedded proces-
sors) could easily fall into enemy hands.  In fact, a recent U.S. Air Force  
document entitled Air Force Cyber Vision 2025 highlights the need for trust-based 
techniques to protect captured mobile devices in adversarial territory against reverse 
engineering efforts [United 2012]. While ME should be considered for both standard 
desktop and mobile devices, the work described here targets the ARM Cortex A8 
which is common to many smart phones and tablets, including Apple’s iPhone 3GS 
and 4, iPad first generation, iPod touch 3rd and 4th generations, and Samsung Galaxy 
Tablet to name a few.   

3 Approach  

The approach described in this paper is to implement memory encryption within a 
clean-slate microkernel design – Bear – leveraging security-enhanced commodity 
processors to ensure that code and data never appear in the clear outside the proces-
sor chip boundary as shown in Figure 1.  The motivation for a “from scratch” kernel 
rests on the desire to conduct experiments in the context of a minimalist, secure mi-
crokernel. The design separates core functions into protected layers typical of modern 
microkernel designs such as MINIX [Tannenbaum and Woodhull 2006].  Monolithic 
operating systems, such as Linux and Windows, contain millions of lines of code and 
have a large runtime footprint providing ample opportunity for exploitation. In addi-
tion, they rarely enforce protections and allow device drivers direct access to kernel-
space. In contrast, the Bear system used in this research involves approximately 3000 
lines of code, with a runtime footprint of less than 50Kbytes on the ARM A8, making 
it an ideal platform to explore the tradeoffs involved in memory encryption in the 
presence of a small attack surface. All potentially compromised device drivers are 
executed in user-space, where they are non-deterministically regenerated to refresh 
trust and undermine persistence. Versions of the system operate on 64-bit Intel X86-
based multi-core blade servers and ARM M3, A8, and A9 processors. On 64-bit  
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systems MULTICs style protections are strictly enforced through paging structures to 
increase attacker workload; these added protection techniques are not used in the 
experiments described here in order to quantify the baseline overheads independently. 

 

Fig. 1. General Approach for Memory Encryption 

Hardware. ARM licenses the design of the basic processor (e.g. the A8) while vari-
ous vendors build them with additional functionality.  The exploration of memory 
encryption described here is focused on Freescale’s i.MX535 applications processor. 
Critical components of the processor for this research include the internal RAM 
(iRAM-128 KB + 16 KB “secure”), symmetric asymmetric hashing and random acce-
lerator (SAHARA), L1/L2 cache (32KB Harvard L1, 256KB L2), and the NEON 
single instruction multiple data (SIMD) coprocessor.  These components are common 
to other ARM processors that include security hardware. Most of the techniques in the 
memory encryption literature targeting hardware involve modifying the fetch-decode-
execute (FDE) engine to include decryption (fetch-decrypt-decode-execute) while 
adding encryption acceleration and internal storage space.  Without specialized FDDE 
hardware, data can not be decrypted and placed directly into caches and execution 
pipelines.  This results in a requirement for significant internal space in which to store 
and operate on sensitive, plaintext information.  

SAHARA implements AES, DES and 3DES encryption, MD5, SHA-1, SHA-224, 
and SHA-256 hashing and hardware based (ring oscillator) random number genera-
tion.  It also provides its own DMA controller with an AHB bus interface to reduce 
the interaction/burden on the primary CPU.  For AES encryption, SAHARA includes 
electronic codebook (ECB), cipher-block chaining (CBC), counter (CTR) and counter 
with CBC-MAC (CCM) modes of operation.  Descriptors are used to notify 
SAHARA of blocks of memory (internal or external) for encryption/decryption.  
Internal (secure) registers are cleared after a descriptor chain has completed  
processing to provide for usage by multiple, mutually distrusting processes.  Comple-
tion of encryption/decryption is signaled via an interrupt. The encryption-decryption 
unit (EDU), is controlled via a descriptor chain, consisting of six 32-bit words.  Each 
bit or group of bits (generally 2-3) are selected to enable the hardware module  
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(e.g., encryption, authentication, random number generation), algorithm (e.g. RSA, 
DES), mode of operation (e.g. electronic codebook, cipher block chaining) and other 
details. A security API was developed to hide proprietary Freescale encryption details 
and is responsible for building the appropriate descriptor chain in the latest prototype. 
For example, the following function call:   

EDU(‘E’, 0x000001A0, 0xF8000000, 0x70000000, 0xF801FFFD); 

causes the encryption unit to encrypt (E=encrypt, D=decrypt) a process block of 416 
bytes -- the current size of a process descriptor and stack -- from iRAM at location 
0xF8000000, placing the result in external RAM (eRAM) at location 0x70000000.  

For simplicity, a 128-bit AES symmetric key is downloaded via JTAG into iRAM 
and used for all process encryption. In practice an out-of-channel or standard key 
distribution scheme would be used in a full system implementation [Mel and Baker 
2001].  Several other techniques for key management are described in the memory 
encryption literature.  For example, one scheme generates a new random key at sys-
tem reset; this key is used to encrypt processes, which are initially stored in plaintext 
[Chen et al. 2008]. Other work describes the method by which programs are delivered 
encrypted.  Programs developed externally are encrypted using a public key.  The 
private key, stored inside the processor, is used to decrypt the program in iRAM. The 
program is then re-encrypted with a randomly generated symmetric key to improve 
encryption performance.  Regardless of the key generation and escrow techniques 
used, the keys are never available in eRAM.  In the work described in this paper, there 
is space for storage of many keys whereas several of the approaches to protecting 
FDE schemes rely on internal registers (e.g. SSE, debug, etc.) limiting storage to a 
small number of keys [Muller et al. 2011], [Muller et al. 2012].  

 
Static Encrypted Processes. The initial memory encryption proof-of-concept was 
implemented on the ARM A8 processor, using the Freescale SAHARA encryption 
engine, with the MMU and cache disabled. In this method, only the code is encrypted, 
using 128-bit AES symmetric-key encryption, and stored on disk as part of the ex-
ecutable binary. Other process components (data, stack, heap) are never encrypted as 
they remain within the protected iRAM. A small bootloader stored in internal ROM is 
responsible for initializing the hardware and loading the microkernel over the JTAG 
interface directly into iRAM. Next, a shell is bootstrapped using the on-board USART 
connection to allow programs to be executed. User processes are added to the sche-
duling queue and executed from iRAM. The microkernel then begins execution by 
decrypting the user process code and storing it into iRAM. This technique, referred to 
as static encrypted processes, only performs decryption once at code loading and is 
relevant to embedded systems where processes fit entirely within iRAM [Henson and 
Taylor 2013]. Measurements detailed in Section 4 quantify the overhead of this ap-
proach. Other than the one-time initial decryption cost (dependent upon the size of the 
process code), there is little evidence of overhead using this method.  Since embedded 
processors are continually increasing on-chip memory, this technique represents an 
increasingly practical, low-overhead approach to memory encryption. 
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Dynamic Encrypted Processes. A more general case, dynamic encrypted processes, 
occurs where there is sufficient memory pressure (i.e. processes + data are larger than 
available iRAM) to force processes back to eRAM during execution. Process compo-
nents include code, data (global/static), stack and heap, and iRAM buffers are created 
for each.  The prototype allows swapping of encrypted processes to eRAM.  Process 
segments are stored in eRAM in encrypted form and brought into iRAM, decrypted, 
and executed on-demand. Segments are re-encrypted before being sent back to eRAM 
with the exception of code, which does not change. In the absence of an enabled 
MMU, this movement of code and data required some virtual memory management 
(e.g. updating of stack pointers, addresses, program counters, jump addresses, etc.) 
where all segments of a given type correspond to a single internal buffer.  This man-
agement was taken care of via modifications to the process creation, context switch-
ing and heap allocation routines.  Figure 2 illustrates how the prototype encrypts the 
process control block (PCB) and stack (as one chunk); dynamically allocated memory 
and code are encrypted separately. The process context switch provides a natural 
point at which to perform decryption of these segments. Since the prototype does  
not utilize a paging mechanism, there is no similar point at which to intercede in  
accesses to global/static data, which are solely controlled by the compiler.  Therefore,  
global/static data currently remains in iRAM.  

 

Fig. 2. Dynamic Encrypted Processes – Cache Disabled 

The PCB-stack and code segments are of predetermined sizes while the size of the 
heap segments are not known a-priori.  Depending on the size of the allocated seg-
ment, two alternative approaches are available.  If it is small enough to fit within 
iRAM (after taking into consideration the space occupied by the kernel and other 
segments) then the whole segment is decrypted and placed within the internal data 
buffer in a similar fashion to the code and PCB-stack.  However, if the segment is too 
large, then decryption of data on-demand at the size appropriate to the application (or 
smallest size possible) is used.   
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For a strenuous test of worst-case heap performance, a radix-2, in-place fast Fouri-
er transform (FFT) based on the Tukey-Cooley algorithm was used to gauge the over-
head [Press et al. 1992]. The smallest size for decryption in AES is a block of 16 
Bytes.  Since the data in each component of the FFT (real and imaginary part) take up 
one word each (4 Bytes), additional overhead is introduced in order to align the 
smaller data with the algorithm requirements.  Whereas the unprotected version im-
plements a simple swap of two of the real and imaginary components, the protected 
version must determine the appropriate 16 Byte aligned address to decrypt into the 
internal buffers for each component.  Then the proper half of the 16 Bytes must be 
identified after which the swap is performed in iRAM, data re-encrypted and stored 
back to eRAM. 

4 Measurement 

Since the performance degradation of memory encryption results in less likelihood of 
its use, it is an extremely important factor in the comparison of different schemes.  
First, the cost of decryption was quantified in terms of total number of cycles for ge-
neric data blocks, using the Cortex A8 performance monitors.  Next, the total number 
of cycles required for executing the unprotected system running two simple user 
processes was measured.  Finally, the total number of cycles for protecting the various 
process segments of the two user processes was measured independently, allowing for 
the calculation of accumulated overhead (i.e. slowdown).  The system runs at 800 
MHz, which is used to determine the cycles-per-bit cost of decryption commonly 
provided in the literature.  Each measurement of the context switching segments 
(PCB-stack and code) is based on averaging the number of cycles for 1000 context 
switches.  The heap data encryption is tested with a single run of the FFT program 
using a large (128 KB) array. 

 
Static Encrypted Processes. To quantify decryption speed, generic data was used as 
the data itself is of no consequence to decryption overhead. The average number of 
cycles for decrypting chunks of eRAM ranging from 16 Bytes (the smallest size poss-
ible) to 128 KB was measured in order to determine performance of the EDU in AES 
128 mode.  These results are directly applicable to the implemented static encrypted 
processes: Recall that the cost for protecting processes in that technique is the one-
time cost of decryption of code.  The results of the decryption tests are shown in Ta-
ble 1 below. The overhead associated with initializing the EDU (key expansion, etc.) 
is approximately 8096 cycles (as shown in the first row of the table). For the other 
rows, the cycles per bit cost of decryption is calculated by dividing the approximate 
cycles by the number of bits decrypted.  For example, decrypting a chunk at the smal-
lest possible size of 16 Bytes results in a cost of approximately 71.5 cycles per bit 
(9152 cycles/16*8).  As the decryption chunk increases the overhead remains constant 
so that the measure of cycles per bit decreases (better performance).  This trend is 
shown graphically in Figure 3 below.  After 4KB, the improvement in cycles per bit is 
reduced dramatically.  The ARM Cortex A8 architecture supports page sizes of 4 KB, 
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64 KB, 1 MB, and 16 MB.  These measurements suggest that decryption overhead 
may be about the same whether 4 KB or larger page sizes are selected in future im-
plementations. They also suggest that any granularity less than 4KB (e.g. a cache line 
of 64 Bytes) is sub-optimal.    

Table 1. Overhead for Decryption of Various Sizes (Chunks) of Memory 

Data Size in Bytes Average Cycles Std Dev Cycles per bit 

Overhead 8096 40 N/A 

16  9152 65 71.5 

32 9664 60.9 37.7 

64       (Cache line) 10496 384.5 20.5 

128 11712 55.4 11.4 

256 14208 590.7 6.9 

512 19776 376.3 4.8 

1024 30080 577.2 3.7 

2048 50688 578.2 3.1 

4096  (Page size) 91776 578.7 2.8 

8192 181632 401.8 2.77 

16384 355584 716.8 2.71 

32768 702720 566.2 2.68 

65536 1397184 560.3 2.66 

131072 2785792 658.7 2.66 

 
ARM processors are targeted for operations in constrained space and power envi-

ronments.  It is likely because of this that the performance of the EDU on the Cortex 
A8 is slow relative to figures presented in the memory encryption literature (which 
tends to target X86 processors). In AEGIS [Suh et al. 2007], a single AES unit is es-
timated at 86,655 gates.  Yet, AEGIS is demonstrated with an OR1200 soft core in 
FPGA with a total size of approximately 60,000 gates (meaning the AES unit is 144% 
of the original core size). Recall that encryption hardware has been added to other 
processors such as Intel’s i5 and i7 and AMD bulldozer chipsets.  Intel’s advanced 
encryption standard-new instructions (AES-NI) provide a significant speedup over 
both software and ARM hardware-enhanced encryption. The authors of this paper ran 
an implementation of TrueCrypt’s encryption algorithm benchmark test on a Mac-
Book Pro with an Intel i7 dual-core, 2.66 GHz CPU.  Using a 5 MB buffer in RAM, 
the throughput averages 202 MB/s without AES-NI support, and 1 GB/s with it – 
approximately 119 cycles for 64 Bytes.  This represents an improvement of 88 times 
over the 10,496 cycles measured on the i.MX535 (as shown above).  While x86 based 
processors do not tend to include user accessible iRAM, the combination of improved 
decryption performance and large caches in those systems might enable some form of 
memory encryption protection.  Intel has recently filed a patent for processors incor-
porating memory encryption, perhaps indicating a move toward support in commodity 
processors [Gueron et al. 2013]. 
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Fig. 3. Graph of Cycles/bit Vs. Number of Bytes Decrypted (64 B through 32 KB) 

Dynamic Encrypted Processes. The measurements for protecting the PCB-stack and 
code are shown below in Table 2.  The system schedules two simple processes in a 
round-robin fashion and for these measurements the scheduling quantum was set to 
200 milliseconds, resulting in approximately 300 context switches per minute.  The 
process behavior has nothing to do with the costs of protection since the costs are 
incurred during the context switch, not process execution. As in previous experi-
ments, all measurements are averaged over 1000 context switches. The unprotected 
context switch routine averages approximately 20 microseconds as shown in the first 
row of the table.  The overhead for protecting the segments is fairly large: a factor of 
approximately 2.9 to protect the PCB-stack and 3.4 times for both the PCB-stack and 
code when compared to the unprotected context. However, this cost is only incurred 
on average 300 times per minute.  Thus the total overhead per minute is about 14,700 
microseconds (.0147 seconds) giving ~1.5 seconds of overhead after 100 minutes of 
execution.  This indicates that context and code protection are viable even without the 
benefit of the MMU and cache.  While the size of the context and code were fixed for 
these experiments (416 and 672 Bytes respectively) the results from Table 1 suggest 
that larger component sizes (e.g. 4 KB page size) would more effectively hide the cost 
of the EDU initialization overhead.  

Table 2.  Overhead for PCB-Stack and Code Protection 

Component within 

Context Switch 

Average Cycles Std Dev Execution Time @ 

800 MHz 

Overhead 

Unprotected 16064 70 20 us N/A 

PCB-Stack  47296 682 59 us 2.9 

Code  23800 400 30 us 1.5 

PCB-Stack & Code 54976 856 69 us 3.4 

 
Table 3 shows the overhead of decryption of data in the FFT problem with 128 KB 

arrays holding the real and imaginary data components. Since 128 KB was too large 
to fit into iRAM, on-demand decryption was implemented at the size that most close-
ly approximates data accesses (16 Bytes). The cycles per bit cost of decryption is 
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large at the 16 Byte size (~71.5). In summary, about 17.2 billion cycles were required 
to execute the unprotected FFT.  Providing encryption protection during the bit rever-
sal (first half of the FFT) only requires an additional 3.2 billion cycles (20.4 billion 
cycles total).  Encrypting all data for the entire FFT operation requires approximately 
20 billion additional cycles (37.2 billion cycles total): resulting in a slow down of 
approximately 2.2 times over the unprotected execution.  Memory accesses in the 
FFT problem are pathological, providing a thorough (worst-case) evaluation of our 
memory encryption approach.   

Table 3. Overhead for Data Protection in FFT Function 

FFT Data Structure @ 

128 KB 

Average Cycles Std Dev Execution Time @ 

800 MHz 

Overhead 

Unprotected 17269347514 70 21.6 s N/A 

Bit Reversal Only 20438649003 682 25.5 s 1.2 

Fully Protected 37197691328 400 46.5 s 2.2 

 
In reality, most mobile processor packages include SIMD cores, such as the NEON 

processor to optimize algorithms like the FFT.  Mobile system use tends to be charac-
terized by applications such as chat, e-mail, and those displaying spatial/temporal 
locality (e.g. photo viewing).  It is reasonable to believe that the performance on these 
more typical workloads will be considerably improved even without optimization of 
the on-demand decryption techniques used in this work. 

It is important to understand the performance characteristics of the worst-case (on-
demand decryption) scenario where decryption overhead is added directly to memory 
access time.  It was anticipated that performing memory encryption without the bene-
fit of the MMU and cache (including prefetching etc.) would yield excessively large 
overheads.  While this was the case for the FFT data-structure access, PCB-stack and 
code protection were surprisingly efficient.  Further, the slowdown for the FFT (2.2x) 
is considerably less than that reported in the simulation results of a similar technique 
that took advantage of caching mechanisms but lacked encryption hardware.  In that 
work, slowdowns of 2.53x and 8.5x were measured when utilizing a 4 KB page with a 
256 KB and 64 KB L2 cache respectively [Chen et al. 2008]. 

While the use of MMU/cache will make the system more closely approximate 
those of smart-phones, there are many examples where the techniques already devel-
oped in this work could be applicable.  For example, many devices at the lower end of 
the embedded spectrum, including the large number of smart electric meters recently 
deployed, tend not to include MMU’s [McLaughlin et al. 2010].  

5 Future Work 

A valuable next step is to take advantage of the ARM Cortex A8’s MMU and cache.  
However, effectively modifying the fetch-decode-execute cycle requires a way to 
decrypt pages brought on-chip before they are loaded into the cache.  The A8 archi-
tecture includes a built-in preload engine (PLE) that can be used to move data to and 
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from the L2 cache under software control [ARM]. This engine will be used to load the 
cache with decrypted data and instructions, with iRAM continuing to act as a work-
space and extension to L1/L2 cache.  Additionally, the NEON SIMD coprocessor is 
tightly coupled with the L2 cache, which may provide another method for update.  
Enabling the cache (and other optimization mechanisms such as prefetching) should 
provide significant improvement over the current decrypt-on-demand prototype.  

While there are many current requirements for a from-scratch microkernel (espe-
cially in the military), this work can be expanded to incorporate currently popular 
operating systems.  A Bear microvisor, quite similar to the microkernel, has already 
been developed.  Efforts are currently under way to enable the NetBSD (5.0.1) operat-
ing system to boot on top of the microvisor, protecting it with Bear’s security me-
chanisms.  After experimenting with MMU-enabled memory encryption, the tech-
niques will be added to the microvisor’s capabilities. The microvisor can then be used 
on future ARM hardware (supporting virtualization) to boot mobile operating systems 
(e.g. Android). 

6 Conclusions  

This paper describes a clean-slate operating system design that leverages security-
enhanced commodity processors to ensure that code and data never appear in the 
clear outside the processor chip boundary.  By utilizing the SAHARA security hard-
ware of the Freescale i.MX535 processor, the system provides memory encryption 
with various granularities of a process.  The current work utilizes on-demand decryp-
tion whereby the overhead for decrypting code and data is added directly to the fetch-
decode cost.  In this way, an upper bound on the overhead associated with memory 
encryption is established. The experimental overhead associated with the protection of 
process PCB-stack and code is surprisingly small.  

Few operating system developers have taken advantage of the new security hard-
ware available in many commodity processors.  There are various projects that utilize 
some aspects of this hardware, for example, to protect the key in FDE. Since sensitive 
data is left in memory for relatively long periods of time, it is logical to conclude that 
the protections afforded “data at rest” on disk should also apply to memory.  By forc-
ing an attacker to rely on brute-force attacks against encrypted memory (or other rela-
tively difficult attacks on the chip itself) we seek to increase attacker workload 
enough to dissuade or delay the attack, allowing for mission completion (or protection 
of user information).  The overhead displayed in the work described here suggests this 
protection is feasible today with security-enhanced commodity processors. While the 
concept of memory encryption has existed for over three decades, there are still no 
general-purpose, commercial-off-the-shelf solutions integrated with secure operating 
systems. Unfortunately, while full disk encryption seems to be the state-of-the art, it is 
insufficient for the protection of systems holding sensitive information.  
 
Notice.The U.S. Government is authorized to reproduce and distribute reprints  
for Governmental purposes notwithstanding any copyright notation thereon. The 
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