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Abstract

Background: Over the past 20 years, advances in genomic technology have enabled unparalleled access to the
information contained within the human genome. However, the multiple genetic variants associated with various
diseases typically account for only a small fraction of the disease risk. This may be due to the multifactorial nature
of disease mechanisms, the strong impact of the environment, and the complexity of gene-environment
interactions. Metabolomics is the quantification of small molecules produced by metabolic processes within a
biological sample. Metabolomics datasets contain a wealth of information that reflect the disease state and are
consequent to both genetic variation and environment. Thus, metabolomics is being widely adopted for
epidemiologic research to identify disease risk traits. In this review, we discuss the evolution and challenges of
metabolomics in epidemiologic research, particularly for assessing environmental exposures and providing insights
into gene-environment interactions, and mechanism of biological impact.

Main text: Metabolomics can be used to measure the complex global modulating effect that an exposure event
has on an individual phenotype. Combining information derived from all levels of protein synthesis and subsequent
enzymatic action on metabolite production can reveal the individual exposotype. We discuss some of the
methodological and statistical challenges in dealing with this type of high-dimensional data, such as the impact of
study design, analytical biases, and biological variance. We show examples of disease risk inference from metabolic
traits using metabolome-wide association studies. We also evaluate how these studies may drive precision medicine
approaches, and pharmacogenomics, which have up to now been inefficient. Finally, we discuss how to promote
transparency and open science to improve reproducibility and credibility in metabolomics.

Conclusions: Comparison of exposotypes at the human population level may help understanding how
environmental exposures affect biology at the systems level to determine cause, effect, and susceptibilities.
Juxtaposition and integration of genomics and metabolomics information may offer additional insights. Clinical
utility of this information for single individuals and populations has yet to be routinely demonstrated, but hopefully,
recent advances to improve the robustness of large-scale metabolomics will facilitate clinical translation.
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Background
The main concepts underpinning genetic epidemiology
developed rapidly after the delineation of the structure
of DNA. Neel and Schull provided the first description
of these concepts in 1954 [1, 2]. While the original goal
of genetic epidemiology was to understand the nature of

population and familial genetic inheritance, it soon
became evident that environmental factors and gene-
environment interactions were important to consider
simultaneously [3].
Currently, the study of the whole genome (genomics) has

evolved into a multidisciplinary area of science with highly
diverse applications [4, 5]. Improved efficiency of genome
technology combined with a sharp decrease in cost has en-
abled genomic assessments in large study populations [6, 7]
using genotyping and next-generation-sequencing (NGS)
approaches [8]. Thousands of genome-wide association

* Correspondence: caroline.johnson@yale.edu
1Department of Environmental Health Sciences, Yale School of Public Health,
Yale University, New Haven, CT, USA
5Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rattray et al. Human Genomics  (2018) 12:4 
DOI 10.1186/s40246-018-0134-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s40246-018-0134-x&domain=pdf
http://orcid.org/0000-0002-5298-1299
mailto:caroline.johnson@yale.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


studies (GWAS) have tracked relationships between base-
pair/gene patterns in genomic loci and hundreds of diseases
or exposures [9]. However, the discovered loci from these
large-scale studies still explain only the minority of pre-
sumed heritability for most phenotypes of interest [10].
Moreover, it has been established that genes alone account
for the minority of disease etiology for many important ill-
nesses such as cancer, and environmental and lifestyle influ-
ences play a critical role [11]. However, quantifying the
myriad of environmental and lifestyle risk factors including
diet, smoking, exposure to hazardous chemicals, and patho-
genic microorganisms is challenging [12, 13]. An individual
can be exposed to a complex mix of chemical and bio-
logical contaminants, with multiple sources, for varying
durations across their life course. This concept has been
termed the “exposome,” a framework for the collective ana-
lysis, and measurement of an individual’s exposures over
their lifetime [14]. Moreover, different environmental expo-
sures may be heavily correlated with each other or may act
in concert to produce adverse effects, which makes study-
ing them one at a time challenging for assigning causality
[15]. Therefore, it is essential to find tools that can measure

the cumulative impact of multiple exposures alongside their
interactions with the genetic background of individuals.
Several multidimensional analytical approaches have been
developed, beyond genomics, that try to capture different
aspects of this complexity, and their integration into envir-
onmental health is discussed in this review.

Application of high-dimensional biology to the
environmental health paradigm
Referred to as high-dimensional biology, or a multi-
omics/systems-level approach, the combined analysis of
data from the genome (genomics), RNA transcription
(transcriptomics), proteins/peptides (proteomics), and
metabolites (metabolomics) enables researchers to over-
lay gene information onto complementary datasets
towards a more systemic understanding of diseases or
other phenotypes of interest [16]. The complexity of
high-dimensional datasets becomes even more convo-
luted when the interaction of environmental exposures
is added to the system.
The environmental health paradigm (Fig. 1) integrates

the knowledge of exposures and environmental health

Fig. 1 a Environmental health paradigm. b Exposure and the central dogma of molecular biology
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sciences to gain a deeper understanding of the conse-
quences of exposure towards expression of a disease
phenotype [17]. Exposures can elicit subtle effects at
different stages of gene-encoding, protein synthesis, and
on circulating metabolites. Multi-omics approaches
using combined data from genomics, proteomics, and
metabolomics techniques can identify downstream
chemical alterations contributing to the development of
an exposotype, the exposure phenotype (Fig. 1), that
describes the accrued biological changes within a system
that has undergone a specific exposure event [18].
Combining information from all levels of protein synthe-
sis and subsequent enzymatic action on metabolite
production is an essential step to start comprehending
the complex global modulating effect that an exposure
event has on an individual phenotype. This may allow
for a greater direct understanding of molecular mecha-
nisms that underpin the route of exposure, and the
effect of molecular transit on different areas of metabol-
ism, cellular reproduction, and ultimately the resulting
exposotype.
Metabolites are the substrates and products of metabol-

ism that drive essential cellular processes such as energy
production, and signal transduction [19]. Of all the mo-
lecular entities (genes, transcripts, proteins, metabolites),
metabolites have the closest relationship to expressed
phenotype as they are the final end-points of upstream
biochemical processing. Quantitative readouts of metabol-
ite abundance reflect both this cellular processing and
xenobiotics (foreign substances such as environmental
chemicals, pollutants, drugs, food additives, dyes) that are
physico-chemically distinct from molecular entities that
originate in the host. Xenobiotics can be processed by
enzymatic machinery, and metabolomics also allows
quantification of these metabolites. Therefore, metabolo-
mics can simultaneously analyze both exogenous chemi-
cals and their metabolites, and changes to the endogenous
metabolome, to allow assessment of broadly defined
exposures and their biological impact [20–23]. One such
example was a recent study of occupational exposure to
trichloroethylene (TCE) [24]. TCE metabolites were
identified in human plasma and associated with changes
to endogenous metabolites that were known to be
involved in immunosuppression, hepatotoxicity, and
nephrotoxicity. This allowed the investigation into how
the toxic effects of TCE exposure were manifested [24].
Another study, from the EXPOsOMICS project (http://
www.exposomicsproject.eu/), examined human biofluids
and exhaled breath for exposure to swimming pool disin-
fection by-products (DBPs) and for concomitant changes
to endogenous metabolites. The study revealed a possible
association between DBPs and perturbations to metabo-
lites in the tryptophan pathway [25]. However, these stud-
ies and others which have measured exposures in relation

to the metabolome highlight the challenge of attempting
to unravel the effect of one circumscribed exposure versus
combinations of different environmental exposures on the
metabolome [26, 27].
One of the major bottlenecks of metabolomics is

metabolite identification. However, the expansion and
development of metabolite databases have eased this
issue. Tens of thousands of metabolites have been iden-
tified and uploaded onto metabolite databases such as
The Human Metabolome Database (HMDB) (http://
www.hmdb.ca/metabolites), which to date houses
114,113 metabolites with associated chemical, clinical,
and biochemical information. HMDB also hosts four
additional databases including the Toxic Exposome
Database (T3DB) (http://www.t3db.ca/) which contains
information on 3763 toxins [28, 29]. METLIN (https://
metlin.scripps.edu), another large database containing
961,829 metabolites, recently expanded due to the
integration of xenobiotics from the United States Envir-
onmental Protection Agency’s “Distributed Structure-
Searchable Toxicity (DSSTox)” database [30, 31]. The
Exposome-Explorer database was recently designed to
contain information on biomarkers of exposure to envir-
onmental risk factors for diseases. This database has
information on 692 dietary and pollutant biomarkers,
and importantly concentration values measured in bios-
pecimens, with correlation values to assess quality of the
biomarkers [32]. These databases, and others that house
both xenobiotics and endogenous metabolites, appear in
Table 1 [33–38]. With the recent expansion of these
databases to include xenobiotics, metabolomics can fa-
cilitate both biomonitoring of exposures, assessment of
biological impact, and identification of exposotypes [39].
However, one potential gap in these databases still exists,
the prediction of phase I and phase II biotransformed
metabolites of xenobiotics which can be used as proxy
biomarkers for the chemical exposure. Metabolomics
has revealed numerous novel metabolites of previously
well-characterized pharmaceutical drugs such as acet-
aminophen [40], dietary supplements [41], and the geno-
toxic heterocyclic amine 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine (PhIP) [42], present in
meats cooked at high temperatures. Metabolomics pro-
vides a window to identifying these new metabolites, as
the biotransformed metabolite will only be present in a
sample from an exposed individual. Secondly, there is
typically more than one biotransformation metabolite
present for each xenobiotic, which will have a similar co-
variance and correlation within the biological sample ex-
amined, thus making it possible to easily map out the
related metabolites. One way to overcome this gap in
the metabolite databases would be to have a tool housed
on these databases that could automatically predict any
potential biotransformations, and display the resultant
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important chemical information for identification. A few
tools currently available for predicting phase I and II
drug metabolism have been recently reviewed, along
with the development of “DrugBug” which can predict
xenobiotic metabolism by human gut microbiota en-
zymes [43]. Integration of such tools would facilitate
exposome analysis.
The broad range of chemical classes that exist among

the thousands of endogenous and environmentally derived
metabolites contained within a biological sample has given
rise to the need for analytical strategies that can separate
and detect as much chemical diversity as possible from
within the biological system under examination. The
assessment of all metabolites present in a sample,
untargeted metabolomics, is typically carried out using
chromatography-based mass spectrometry and/or nuclear
magnetic resonance spectroscopy, alongside bioinformat-
ics that help understand the complex data generated [44].
Metabolomics research has undergone significant refocus
over the past few years due to the improvements made in
bioanalytical protocols and an evident shift towards the
development of new chemoinformatic and bioinformatic
tools [45]. These tools are designed to improve metabolite
identification, particularly for microbial metabolites, and
biological interpretation, which remain a major challenge
for the field. For example, the mass spectrometry data
generated in a metabolomics study have a high degree of
degeneracy where the same metabolite can be represented
as multiple signals [46]. Tools such as CAMERA [47],
RAMClust [48], and “Credentialing” [49] have helped
overcome this problem and improve peak annotation.
Other notable tools include CSI:FingerID [50] which pre-
dicts the fragmentation of metabolites using an in silico

method, thus aiding in metabolite identification, and “inte-
grated-omics” housed on XCMSOnline [51] (http://
xcmsonline.scripps.edu/) which aids in both metabolite
identification and biological interpretation. Excellent
reviews on the technological advancements in this area
can be found elsewhere [52–54]; in addition, an extensive
list of all current metabolomics software and data analysis
resources is available [55, 56]. For population-level studies,
the application of metabolomics for the analysis of thou-
sands of samples has been optimized and demonstrated
[57, 58], but the field could still benefit from decades’
worth of research and lessons learning in genetic epidemi-
ology related to study design, statistical analyses, and
reproducibility in large-scale population consortia.

Methodological challenges and considerations
Relevant and a priori formulated research questions and
rigorous study designs and methods lay the foundation to
perform a potentially successful piece of population-based
research, after which replication is essential to confirm
any associations, and to avoid the dissemination of poten-
tially false research claims [59–61]. Prospective cohort
studies follow a predefined population over time, captur-
ing exposure information prior to occurrence of health
events. This study design accommodates the appropriate
temporal relationship between exposure and outcome,
allows for testing of multiple risk factors and health
outcomes, and permits collection of multiple pre-clinical
biological specimens throughout the follow-up period.
Although this is ideal from a metabolomics perspective,
this study design often requires long follow-up durations
and great expense. Case-control studies can be more effi-
cient, and less expensive ways to test associations, but they

Table 1 Mass spectrometry metabolite databases for identification of environmental exposures

Database name Description URL

Human metabolome database (HMDB) 114,113 xenobiotic and endogenous metabolites with
chemical, biochemical, and clinical information.

http://www.hmdb.ca/ [33]

Toxic exposome database (T3DB) 3767 toxic compounds, targets and gene expression
data, part of the HMDB suite.

http://www.t3db.ca/ [28]

METLIN 961,829 xenobiotic and endogenous metabolites with
chemical information. Contains information from DSSTox.

https://metlin.scripps.edu/ [34]

Exposome-Explorer 692 dietary and pollutant biomarkers, with concentration
values measured from biospecimens with intra class
correlation coefficients.

http://exposome-explorer.iarc.fr/ [32]

Madison-Qingdao Metabolomics
Consortium Database

20,300 xenobiotics and endogenous metabolites, with
chemical information

http://mmcd.nmrfam.wisc.edu/ [35]

Drugbank 10,513 drug entries with drug target information, part of
the HMDB suite

https://www.drugbank.ca/ [36]

PubChem 93,977,784 compounds, xenobiotic and endogenous
metabolites but also peptides, and chemically altered
macromolecules. Data is derived from hundreds of sources.

https://pubchem.ncbi.nlm.nih.gov/ [37]

CompTox Chemistry Dashboard 758,000 xenobiotics with chemical information compiled
from multiple sources; PubChem, and US EPA’s DSSTox,
ACToR, ToxCast, EDSP21, and CPCat.

https://comptox.epa.gov/dashboard [38]
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lack the temporality criterion for causality, and metabolic
profiles may be influenced by disease status. The use of
nested case-control studies offers an efficient approach
with the appropriate temporality between exposure and
outcome. “Meet-in-the-middle” approaches, which involve
linking intermediate biomarkers to both the exposure and
outcome within cohort and nested case-control studies,
are gaining popularity for their ability to reveal important
linkages along the exposure-outcome pathway [62, 63].
While systems-level approaches hold great promise, they

also pose challenges in the analysis of high-dimensional,
complex data structure. The use of appropriate statistical
tests within genomics, metabolomics, and epidemiology is
dictated by the study design and the number of dimensions
of data under investigation, with the application of univari-
ate or multivariate techniques being applied to low-
dimensional and high-dimensional datasets, respectively.
Incorrect analytical decisions and interpretations that are
made when conducting a study are a direct threat to repro-
ducibility [64]. Table 2 [65–87] provides a list of some of
the most commonly used statistical methods and tests in
the interface of epidemiology, genetics, and metabolomics.
Many analyses in metabolomics involve the use of null

hypothesis significance testing (NHST) and the reporting
of p values. The p value, one of the most misused statistics
in science [88], has not escaped the focus of members of
the fields of epidemiology [89], metabolomics [90], and
general biomedicine [91]. Poor application has contrib-
uted to the irreproducible nature of many studies, so
much that the American Statistical Association felt moved
to release a statement highlighting six underlying
principles to dictate the proper use and interpretation of
the p value [92, 93]. One should examine in each applica-
tion whether NHST is best suited as an inferential tool or
whether alternative approaches, such as the use of
Bayesian methods or false discovery rates (FDR), are
preferable [90, 94–96]. If p values are still used in multidi-
mensional experiments, proper correction for multiplicity
is important. There are numerous methods for accommo-
dating family-wise error rates [90]. There are also some
standard thresholds that can be used in specific settings,
e.g., genome-wide significance p < 5 × 10− 8 for genome-
wide analyses. Some multiplicity corrections are more
conservative than others; for instance, the Bonferroni
correction (dividing the p value threshold required for sig-
nificance by the number of tests performed) may be too
conservative [97]. FDR and variants of FDR may be better
suited [96] and can accommodate correlation structures
between the multiple tested variables [98, 99].
Several methods are available that can help reduce

complexity, detect trends, and generate predictive
models within multidimensional datasets (Table 2) such
as those generated by NGS and mass spectrometry when
target genes or metabolites are not known. Unsupervised

methods such as principal component analysis (PCA)
provide an initial step to help reduce the complexity and
indicate variables of interest by determining discriminant
features linked to the “loadings” of different clusters.
These loadings can be considered as the impact that a
certain variable has on measured variance, so a high-
level loading value displays a strong influence on clus-
tered groups [100]. There also exist several extensions of
the PCA architecture such as multiblock PCA, consen-
sus PCA, or ANOVA-PCA that enable the user to
control for underlying influential factors within datasets
such as the intra-patient variability or other experimen-
tal confounders [65]. These approaches have been used
for metabolomics and genetics analyses and also lend
themselves to other cross-validation methods [66].
Supervised methods apply grouping stratification to the
data based on some already known outcome variable(s).
They aim to develop models that can accurately predict
the correct grouping based on the input and identify
genes, metabolites, or other statistical associations that
underlie the grouping. The most commonly used
methods are variants of regression tools (Table 2).
Regression modeling can identify associations relevant
to the disease [101], can predict association within gene
expression patterns [102], and in metabolomics [103]
can generate sample classification. However, as these
tests are supervised, one of the issues with multivariate
regression is that it tends to over-fit the data. Therefore,
cross-validation (in the same dataset) and external valid-
ation (in additional datasets) are essential.
Perhaps, the biggest challenge yet for exposome

researchers is integration of the multiple types of data
generated from systems-level analyses and assessing the
role of one versus multiple exposures on the phenotype.
Currently, there are platforms that enable biochemical
pathway analysis and integration of systems-level data,
and these platforms can identify pathways and networks
that are related to a known exposure or health outcome
(such as disease). Dissection of pathways may help direct
mechanistic studies into causality. The most useful to
date for untargeted metabolomics data is “mummichog,”
which uses computational algorithms to predict metabolic
pathway effects directly from spectral feature tables with-
out prior identification of metabolites [104]. Mummichog
was recently integrated onto the XCMSOnline platform,
with an added function to upload transcriptomic and
proteomic data, for integrated pathway analysis [51].
Other notable software includes MarVis-Pathway [105],
InCroMAP [106], GAM [107], and MetaCore™ (Thomson
Reuters Corporation, Toronto, Canada) that can integrate
multiple types of systems-level data for pathway interroga-
tion. Combining this type of data with multiple measure-
ments of xenobiotics has not yet been demonstrated, but
tools are under development. Up to now, studies have
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primarily assessed the effect of individual exposures and
have combined multiple systems-level approaches to
assess biological response (i.e., benzene exposure and tox-
icity, susceptibility genes, mRNA and DNA methylation)
[108]. Phenome data has also been integrated into studies
to account for population variability and reduce false posi-
tives [22]. A recent example, from the analysis of preterm
birth in the Rhea mother-child cohort study, selected
those metabolites that had significant association with
birth outcomes in logistic regression models and signifi-
cant correlation coefficients with metabolic syndrome
traits to construct odds ratios (BMI, blood pressure, blood

glucose) [109]. Moreover, new tools are being specifically
designed with the exposome in mind; xMWAS can inte-
grate metabolomics data with that derived from the tran-
scriptome [110], microbiome [111], and cytokine [112]
and can be used for genome, epigenome, proteome, and
other integrated omics analyses. However, modeling the
effect of combined exposures is extremely complex.
Co-exposures can be linked and cause an additive effect
on the biological outcome, but it is not possible to know
beforehand which combinations of exposures may have
the largest biological effect. A recent novel method was
developed that first estimates the correlation between

Table 2 Common statistical methods and tests used in epidemiology, genetics, and metabolomics, with reference link to descriptive
articles on appropriate general use

Class of test Type of test Application/description Refs

Descriptive Mean
Median
Mode

The simplest of tests used to describe basic features within data. Covered in all general statistical
textbooks and used in most if
not all scientific disciplines.
[67–69]

Range, variance, SD Describe spreads of data within a population

Inferential z test, t test, chi-square Predicts/infers an observed mean, frequency, or proportion to a
predetermined value, respectively.

ANOVA Parametric method that tests the hypothesis that the means of
two or more populations are equal. Frequently used to compare
variance among groups relative to variance within groups

Kruskal-Wallis Non-parametric method to rank statistical significant differences
between two or more groups of an independent variable on a
continuous/ordinal variable

Scaling Centering, auto, pareto,
log, MD

Data pretreatment methods aim at reducing biological and
analytical bias

[70, 71]

Principal component PCA Unsupervised dimensional reduction procedure used to explain
the maximum variance within complex datasets.

[72–74]

Multiblock PCA PCA extension designed to find the underlying relationships
between sets of related data

[65, 66, 75]

ANOVA-PCA Uses PC dimensional reduction to determines the effect of the
experimental factors on multiple dependent variables

[65, 76]

PC-DFA Supervised test that summarizes the differentiation between
groups while overlooking within-group variation.

[65, 77, 78]

Regression Linear Summarizes and quantifies the relationship between two
continuous variables

[72, 79]

PLS Used to predict a set of dependent variables from a large set
of independent variables

[73, 77, 80–82]

O-PLS orthogonal signal correction on PLS that maximizes the
explained covariance on the first latent variable

[77, 81, 83]

PLS-R Combination of the predictive power of regression alongside
the ability to deal with high dimensionality and multicollinearity
of variables.

[77, 84]

PLS-DA Supervised approach to prediction on discrete variables [77, 79, 83]

LASSO Parsimonious approach to variable selection and regularization
in order to enhance interpretability and reduce noise

[79, 80, 85–87]

Elastic net Variable reduction approach where strongly correlated predictors
coalesce in or out of the model together

[79, 80, 85, 87, 167]

Definitions: SD standard deviation, MD median, PCA principal component analysis, ANOVA analysis of variance, PC-DFA principal component discriminant function
analysis, PLS partial least squares (also known as projection of latent structures), O-PLS orthogonal PLS, PLS-R PLS regression, LASSO least absolute shrinkage and
selection operator
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pairs of exposures, then groups the highly correlated
exposures by unsupervised machine learning [26], and
identifies co-occurring exposure networks. This technique
reduces the total number of combinations of exposures to
“prevalent co-occurring combinations”; however, integra-
tion with other systems-level data still remains very
complex. The additional challenges associated with inte-
grating exposome data with metabolomics, genomics, and
proteomics have been recently reviewed [27] and were
also highlighted in a recent symposium report [113].

Analytical bias and biological variance in
metabolomics analyses for epidemiologic studies
Metabolomics analyses in epidemiologic studies require
additional consideration of sources of variability beyond
traditional epidemiologic studies. There are a very large
number of chemical features that can be detected by
current highly sensitive mass spectrometers, and differ-
ences in metabolite recovery may arise from biological
samples that are not collected under identical protocols.
Additional batch variation can be introduced when
handling large sample numbers [114], due to contamin-
ant build-up and sample degradation [115].
Analytical bias in genomics and metabolomics can arise

from practical laboratory aspects that, by their nature, favor
the preselection of one type of variable (single nucleotide
polymorphism (SNP) or chemical) over another. This is
particularly evident when performing “untargeted” analyses
in which the researcher is looking to maximize chemical
coverage with a technology that cannot cover the full
chemical space. With currently over 24 million SNPs hav-
ing been documented within the human genome [116], the
technology within SNP microarray chips has yet to catch
up to this depth of coverage. The same issues are also

present within metabolomics as no single technology can
analyze the thousands of different metabolites within a
sample. Therefore, pre-selecting approaches are commonly
applied, be it using a gene-expression chip predefined for a
subset of SNPs [117–120] or untargeted chromatography
methods for metabolomics with a restricted spectrum of
which metabolites can be captured [121]. These analytical
biases are described in Fig. 2, but include the type of metab-
olite extraction method and column chemistry, which can
enhance the analysis of some chemical functional groups
and classes over others. For example, reversed-phase liquid
chromatography (RPLC) can effectively analyze non-polar
compounds such as lipids, carnitines, and bile acids,
whereas hydrophilic interaction liquid chromatography
(HILIC) is more suitable for the analysis of polar metabo-
lites such as nucleotides, sugars, and amino acids. The two
column chemistries have an analytical overlap of only 34%;
thus, both column chemistries are needed if one wishes to
obtain a relative quantification of the broadest chemical
classes from a sample [122]. All types of study design need
to consider inherent biological intra-individual variability as
a potential source of variation (Fig. 2) as well as a source of
discriminatory features. In addition to understanding and
addressing potential methodological challenges and various
sources of biases, open science practices are necessary to
support the subsequent verification of research and use of
the obtained data and results in subsequent secondary
analyses and meta-analyses.

Moving from genome-wide association studies
(GWAS) to metabolome-wide association studies
(MWAS)
One of the most-used study approaches in big data
genome research, first demonstrated in 2005, is GWAS

Fig. 2 The biological and analytical aspects of bias and variance that can lead to a tendency towards erroneous results in both untargeted and
targeted metabolomics
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[123]. This technique examines genome-wide sets of
genetic variants in samples of individuals to determine if
any variants are associated with a trait and help pinpoint
genes that may contribute to a person’s risk for a certain
disease or other phenotype of interest. GWAS can be
described as an untargeted and sometimes a hypothesis-
generating approach to associate genetic variants with
specific phenotypes. GWAS and consortia-based meta-
analyses have been conducted with increasing sample
size [124], allowing for improved power [125] to detect
genome-wide significant signals for what are typically
very small effect sizes. Due to the analytical uniformity
of sequencing, this is one area where genomic research
has advanced more quickly than metabolomics.
Most of the early untargeted metabolomics experi-

ments have had limited sample sizes (n = 10–100) often
a result of technological, run-time, and statistical limita-
tions. Given the large number of metabolic features that
are typically generated by untargeted metabolomics
(typically 1000s for liquid chromatography mass spec-
trometry), using such small sample sizes has led to over-
fitting of data and spurious results [100]. Moreover, the
highly collinear nature of metabolomics multivariate
data [67] have not generally been properly factored in
performing a priori power and sample size calculations,
and there is no widely accepted method for sample size
determination in metabolomics. In the absence of spe-
cific metabolic target hypothesis, one can use a data
driven sample size determination (DSD) algorithm [126]
where sample size estimation depends on the purpose of
the study: whether it aims to find at least one statistically
significant variation (biomarker discovery) or a max-
imum of statistically significant variations (metabolic
exploration). Alternatively, one may adapt methods that
have been developed for use with microarray gene
expression(s) [127–129]. One common problem is that
there is often high correlation between variables in one
dataset, and in addition, not all variables have the same
power. However, new more promising approaches have
been generated using multivariate simulation to deal
with this type of data structure [130].
Predictive power increases with sample size, and the

current application of metabolomics to larger longitu-
dinal cohort studies (n > 1000) is helping to give access
to broader population data that can be linked to specific
exposure such as alcohol [131, 132]. These types of stud-
ies are needed to improve biomarker discovery and
inference of molecular mechanisms. Key issues continu-
ously arise in the application of metabolomics to human
subjects which can be overcome by putting metabolo-
mics into epidemiological context. Common problems
include causal and mechanistic claims based on differ-
ences between groups that have low numbers of individ-
uals, lack of longitudinal data to avoid the possibility of

reverse causation (a health outcome influencing pharma-
cokinetics and metabolite concentrations), limited infor-
mation on lifestyle, socioeconomic and other influences,
and the lack of multiple statistical tests and biological
replication [133]. As metabolomics is incorporated into
more population-level studies, it may be possible to
more reliably model potential associations of metabolic
profiles with phenotypes. The goal is to stratify meta-
bolic data over exposure event data and ultimately deter-
mine the related disease risk. Confounding associations
may still distort results and lead to erroneous conclu-
sions. Yet it is more readily possible, with larger study
numbers, and longitudinal testing, to control confound-
ing by matching samples in to related sub-groups such
as age, sex, or level-of-exposure.
Metabolome-wide association studies (MWAS) were first

described in 2008 as the capture of “environmental and
genomic influences to investigate the connections between
phenotype variation and disease risk factors” [134, 135],
thus helping reveal the complex gene-environment interac-
tions on disease outcome. The method differs from
conventional metabolomics in that high-throughput meta-
bolomics is applied to large-scale epidemiologic studies at
the population level and uses specialized algorithms to
maximize the identification of biomarkers of disease risk
[57]; for example, a recent algorithm was developed to cor-
rect for multiple testing using a permutation-based method
to derive a metabolome-wide significance level controlling
the family-wise error rate [136]. Initial studies showed that
using high-throughput metabolomics, MWAS can be
carried out on large population cohorts to provide individ-
ual metabolic phenotypes (metabotypes), and metabolic
biomarkers correlated to exposures [137], and/or biological
outcomes [138]. The proof-of-principle study used to coin
the term MWAS identified discriminatory biomarkers of
blood pressure and cardiovascular risk in 4630 individuals
[138]. These types of studies may point to otherwise un-
known features of the disease etiology or pathophysiology,
which may be used to lead further mechanistic studies and
potentially new avenues for therapeutic design, although
the complexity of mechanisms makes such translation to
therapeutic discovery very difficult. Comparison of meta-
botypes at the human population level can identify a
signature of metabolites statistically correlated to disease
risk and/or an exposure. Recent studies have shown the
application of MWAS to identify metabolites correlated
with cardiovascular events in a dietary intervention trial
[139]. In another study, trimethylamine N-oxide (TMAO)
was identified as a biomarker predictive of cardiovascular
disease risk [140, 141] and was also shown to be involved
in the production of atherosclerotic plaques. This discovery
has resulted in a clinical test for TMAO, Cleveland Heart-
Lab, and is the first to provide this blood test, and thera-
peutics are currently being designed to inhibit TMAO
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production as well as recommendations for dietary
changes. Another application is to identify the enrichment
of metabolites within specific biochemical pathways [142]
to aid in the identification of genes and proteins/enzymes
that may be related to the mechanism of disease. This
method has gained traction within drug evaluation studies
[143] trying to obtain more comprehensive understanding
of individual responses to drug therapy [144, 145]. This
application may be particularly useful for the design of
immunotherapeutics where metabolites have been shown
to modulate autoimmunity and can be targeted to improve
the efficacy of these drugs [146, 147]. However, it should
be acknowledged that therapeutic discovery or improve-
ment in therapeutic management with known interven-
tions has not yet been accomplished using metabolomics
data; however, recent development in metabolomics tech-
nologies in both the bioanalytical and chemometric
components is markedly improving, and thus, there is opti-
mism for clinical translation as well.

Transparency, reproducibility, and open science
There is growing recognition of the need for improved
transparency, reproducibility, and replication in the
biomedical literature [64, 91, 148, 149]. With respect to
multidimensional, big data analyses, transparency can be
improved with the sharing of data, protocols, and analyt-
ical codes. Furthermore, the number of metabolomics
studies that investigate reproducibility across multiple
research centers are few in number, and ongoing interla-
boratory efforts have struggled to generate metabolite
data that is both accurate and reproducible across differ-
ent labs [150]. Replication has been accepted as a sine
qua non in certain disciplines, such as human genome
epidemiology [149], and the same should apply across all
multidimensional fields using big data. However, the
research community is aware of this issue, and groups
are convening to provide solutions to address this prob-
lem. For example, the European Centre for Ecotoxicol-
ogy and Toxicology of Chemicals have provided a
framework to facilitate the regulatory applicability and
use of big data in chemical risk assessment [151, 152].
It is also important to protect inferences from data

dredging/p-hacking (mining datasets prior to specifying
a causal hypothesis), and unaccounted multiple compari-
sons in complex datasets that can lead to the inflation of
false-positive rates. Therefore, to improve the reproduci-
bility of metabolomics, it is necessary to understand
certain methodological and statistical challenges, to pro-
tect against analytical biases and biological variance, and
to promote transparency and open science. These open
science practices, which include “the process of making
the content and process of producing evidence and
claims transparent and accessible to other researchers”
[64], can increase the credibility of research. For

metabolomics in particular, both raw and metadata are
essential to facilitate reproducibility, secondary analyses,
and the synthesis of evidence by external metabolomics
researchers [153]. Several measures can support the trans-
parency and reproducibility of metabolomics. For maximal
impact, the whole metabolomics research community
should adopt and adhere to standards that promote the
uniform preparation of study results. The metabolomics
standards initiative (MSI), which was conceived in 2005
by the Metabolomics Society, highlights a range of mini-
mum reporting standards covering biological [154], chem-
ical [155], analytical, and data reporting methods [156]
within the metabolomics experimental pipeline. However,
ideally, metabolomics funders, reviewers, editors, and
journals should require researchers to share their proto-
cols, raw data, and analytical code. Broadly speaking, this
does not happen (the Springer Journal Metabolomics
(https://link.springer.com/journal/11306) and MDPI jour-
nal Metabolites (http://www.mdpi.com/journal/metabo-
lites) being notable exceptions in which MSI compliance
is asked for from authors and assessed by reviewers).
Currently, most journals leave the suitability of metabolite
submission data to reviewer and editor discretion.
Support is also beginning to appear from some fund-

ing bodies to help improve the reliability and efficiency
of metabolomics. For example, the Data Repository and
Coordination Center, which is part of the United States
National Institutes of Health (NIH) Common Fund’s
Metabolomics Program, has created the Metabolomics
Data Repository. All NIH Common Fund Metabolomics
Program supported research projects which create
metabolomics data as part of the funded research are
required to submit all raw data (e.g., spectrometric,
spectrographic, and chromatographic data) and meta-
data (e.g., details on how samples were obtained and
the analytical methods that were used) to the repository
[157]. In addition, the European Union funded data
repository MetaboLights (http://www.ebi.ac.uk/metabo-
lights/) has already assembled data from 317 metabolo-
mics studies as of December 2017. Common data
submission formats, such as mzML/mzXML for mass
spectrometry, nmrML for NMR data, and ISA-Tab for-
mat for metadata, have helped to unify this process
[158, 159]. But the research community must be careful
to not generate an excess of unconnected data reposi-
tories. Multiple and potentially overlapping repositories
could confuse researchers as to where they should sub-
mit their data and therefor limit the chance of uniform
acceptance and adoption of standards. To this end, the
COSMOS project (COordination of Standards in Meta-
bOlomicS—http://www.cosmos-fp7.eu/) has been de-
signed to address the challenges of e-infrastructure
diversity in metabolomics by developing an interface
that globally links community projects and output.
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The predominant reason behind the lack of data sharing
in metabolomics is the complexity and lack of
standardization in the data generated. For research areas
such as genomics, transcriptomics, and, to a lesser extent,
proteomics, the chemistry of the molecules under detec-
tion is highly symmetrical. Regardless of nucleobase-pair
connectivity, DNA and RNA constructs can be detected
and typed using highly reproducible sequencing chips that
can work in a high-throughput manner. The sheer range
of molecular chemistries available within the human me-
tabolome demand a multitude of separation strategies
when mass spectrometry is used as the detection technol-
ogy. Consequently, different research groups align their
experimental pipelines to one of the many instrument
vendors (often dictated by geography and cost) leading to
a multitude of protocols that cover all aspects of experi-
mentation. Just within the confines of liquid chromatog-
raphy mass spectrometry-based metabolomics, 84% use
open source software and/or commercial software from
instrument vendors, and within the open source software
group, the majority use XCMS, and a smaller percentage
use MZmine and MZmine 2. Therefore, variability in just
the data processing limits integration of the MSI. One way
to enable standardized data processing and biostatistics is
to encourage the use of a universal workflow platform
such as Galaxy (https://galaxyproject.org) [160]. In
addition, the use of a standard reference material that can
normalize and compare the detection levels from different
instruments would be of value. A concerted effort is still
needed by the community to enable broader reproducibil-
ity [161]. The lack of standardization and reporting is
preventing the validation of metabolomics research [162].

Conclusions
Human populations are exposed to a complex mix of che-
micals and toxicants, from multiple sources, for varying
durations. These exposures are affecting the health of the
global population dramatically, for example, over seven
million premature deaths annually linked to air pollution
exposure alone [163]. It is vital that a more comprehensive
understanding of how these environmental exposures
affect biology at the systems level to determine cause,
effect, and susceptibilities. In doing so, a compound
specific “exposotype” can be developed that accounts for
the totality of the multileveled downstream biological
changes that an individual exposure event produces [18].
To better understand these effects, metabolomics can be
used to develop not only metabolic biomarkers of expos-
ure but can also be used to build metabolic models that
identify upstream genetic and enzymatic changes. This
may complement GWAS studies as knowledge of a poten-
tial enzymatic mutation can narrows down the DNA
search space needed to identify relevant SNPs linked to
the exposure [144, 145].

In-depth biological data generated by metabolomics
can be used to enhance exposure studies by supplying
information not only on directly affected metabolic
pathways but also on off-target metabolic effects. The
value of metabolomics to identify gene-environment
interactions lends itself to the study of the exposome
and will be the most complex and important integration
of metabolomics to date. Further characterization of
gene variants associated with those metabolic pathways
could help forecast disease prevalence by either using
pre-diagnostic metabolic signatures (collections of me-
tabolites that change prior to disease onset) and genetic
risk data. Therefore, preventive measures may be tai-
lored specifically for those individuals. The combination
of metabolomics with genomics offers one tool that may
prove helpful towards materializing precision medicine.
Success in precision medicine has been difficult to
achieve [164], but the recent US Food and Drug Admin-
istration approval of pembrolizumab, a “tumor-agnostic”
therapeutic which targets any solid tumor with a specific
genetic feature, shows that the field is starting to head in
that direction [165]. Given recent evidence that non-
genomic influences such as the microbiome can influ-
ence therapeutic response, metabolomics may be used in
this context to identify factors that are related to non-
responders and responders [166].
However, some of the caveats that still exist within

conventional metabolomics and population studies are
still present, such as accurate identification of new metab-
olites, controlling for multiple levels of confounders, and
the integration of different forms of data from different
analytical platforms. Further advancement can be made by
routine application of appropriate statistical tools to meta-
bolomics as well as the adoption and promotion of trans-
parent and reproducible research practices. Reproducible,
transparent advances may then be examined for their
impact in changing outcomes in single patients and at the
population level to judge their utility.
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