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ABSTRACT

Many astrophysical processes involving magnetic fields and quasi-stationary processes are

well described when assuming the fluid as a perfect conductor. For these systems, the ideal-

magnetohydrodynamics (MHD) description captures the dynamics effectively and a number

of well-tested techniques exist for its numerical solution. Yet, there are several astrophysical

processes involving magnetic fields which are highly dynamical and for which resistive effects

can play an important role. The numerical modelling of such non-ideal MHD flows is signifi-

cantly more challenging as the resistivity is expected to change of several orders of magnitude

across the flow and the equations are then either of hyperbolic–parabolic nature or hyperbolic

with stiff terms. We here present a novel approach for the solution of these relativistic resistive

MHD equations exploiting the properties of implicit–explicit (IMEX) Runge–Kutta methods.

By examining a number of tests, we illustrate the accuracy of our approach under a variety of

conditions and highlight its robustness when compared with alternative methods, such as the

Strang splitting. Most importantly, we show that our approach allows one to treat, within a

unified framework, those regions of the flow which are both fluid-pressure dominated (such as

in the interior of compact objects) and instead magnetic-pressure dominated (such as in their

magnetospheres). In view of this, the approach presented here could find a number of appli-

cations and serve as a first step towards a more realistic modelling of relativistic astrophysical

plasmas.
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1 IN T RO D U C T I O N

A vast number of astronomical observations suggest that magnetic

fields play a crucial role in the dynamics of many phenonema of

relativistic astrophyics, either on stellar scales, such as for pul-

sars, magnetars, compact X-ray binaries, short and long/gamma-

ray bursts (GRBs) and possibly for the collapse of massive stellar

cores, or on much larger scales, as it is the case for radio galaxies,

quasars and active galactic nuclei (AGN). A shared aspect in all

these phenomena is that the plasma is essentially electrically neu-

tral and the frequency of collisions is much larger than the inverse

of the typical time-scale of the system. The magnetohydrodynamics

(MHD) approximation is then an excellent description of the global

properties of these plasmas and has been employed with success

over the several decades to describe the dynamics of such systems

well in their non-linear regimes. Another important common as-

pect in these systems is that their flows are characterized by large

⋆E-mail: carpa@aei.mpg.de

magnetic Reynolds numbers RM = LV /λ = 4πσLV /c2, where

L and V are the typical sizes and velocities, respectively, while λ

is the magnetic diffusivity and σ is the electrical conductivity. For

a typical relativistic compact object, RM ≫ 1 and, under these

conditions, the magnetic field is essentially advected with the flow,

being continuously distorted and possibly amplified, but also essen-

tially not decaying. We note that these conditions are very different

from those traditionally produced in the Earth’s laboratories, where

RM ≪ 1, and the resistive diffusion represents an important feature

of the magnetic field evolution.

A particularly simple and yet useful limit of the MHD approxima-

tion is that of the ‘ideal-MHD’ limit. This is mathematically defined

as the limit in which the electrical resistivity η ≡ 1/σ vanishes or,

equivalently, by an infinite electrical conductivity. It is within this

framework that many multidimensional numerical codes have been

developed over the last decade to study a number of phenomena in

relativistic astrophysics and fully non-linear regimes (Komissarov

1999b; Koide, Shibata & Kudoh 1999; Komissarov 2001; Koldoba

et al. 2002; Del Zanna, Bucciantini & Londrillo 2003; Gammie,

McKinney & Toth 2003; Anninos, Fragile & Salmonson 2005; Duez
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et al. 2005; Shibata & Sekiguchi 2005; Anton et al. 2006; McKinney

2006a; Mignone & Bodo 2006; Neilsen, Hirschmann & Millward

2006; Del Zanna et al. 2007; Giacomazzo & Rezzolla 2007; Noble

et al. 2007; Farris et al. 2008). The ideal-MHD approximation is

not only a convenient way of writing and solving the equations of

relativistic MHD, but it is also an excellent approximation for any

process that takes place over a dynamical time-scale. In the case

of an old and ‘cold’ neutron star, for example, the electrical and

thermal transport properties of the matter are mainly determined

by the transport properties of the electrons, which are the most

important carriers of charge and heat. At temperatures above the

crystallization temperature of the ions, the electrical (and thermal)

conductivities are governed by electron scattering of ions and an

approximate expression for the electrical conductivity is given by

(Lamb 1991) σ ≈ 1024 (109 K/T)2 (ρ/1014 g cm−3)3/4 s−1, where

T and ρ are the stellar temperature and mass density.1 Even for a

magnetic field that varies on a length-scale as small as L ≃ 0.1R

(where R is the stellar radius), the magnetic diffusion time-scale is

τ diff = 4πL2σ/c2 ≈ 3 × 106 yr.

Clearly, at these temperatures and densities, Ohmic diffusion will

be negligible for any process taking place on a dynamical time-scale

for the star, i.e. � few s, and thus the conductivity can be consid-

ered as essentially infinite. However, catastrophic events, such as

the merger of two neutron stars or of a neutron star with a black

hole, can produce plasmas with regions at much larger tempera-

tures (e.g. T ∼ 1011–13 K) and much lower densities (e.g. ρ ∼
108–10 g cm−3). In such regimes, all the transport properties of the

matter will be considerably modified, and non-ideal effects absent

in perfect-fluid hydrodynamics (such as bulk viscosity) and ideal

MHD (such as Ohmic diffusion on a much shorter time-scale τ diff

∼ 103 s) will need to be taken into account. Similar conditions are

likely not limited to binary mergers but, for instance, be present

also behind processes leading to long GRBs, thus extending the

range of phenomena for which resistive effects could be important.

Also note that these non-ideal effects in hydrodynamics (MHD) are

proportional not only to the viscosity (resistivity) of the plasma,

but also to the second derivatives of the velocity (magnetic) fields.

Hence, even in the presence of a small viscosity (resistivity), their

contribution to the overall conservation of energy and momentum

can be considerable if the velocity (magnetic) fields undergo very

rapid spatial variations in the flow. A classical example of the im-

portance of resistive MHD effects in plasmas with high but finite

conductivities is offered by current sheets. These phenomena are

often observed in the solar activity and are responsible for the re-

connection of magnetic field lines and changes in the magnetic field

topology. While these phenomena are behind the emission of large

amounts of energy, they are strictly forbidden within the ideal-MHD

limit due to magnetic flux conservation and so cannot be studied

employing this limit.

Besides having considerably smaller conductivities, low-density

highly magnetized plasmas are present rather generically around

magnetized objects, constituting what is referred to as the ‘magne-

tosphere’. In such regions, magnetic stresses are much larger than

gas-pressure gradients and cannot be properly balanced; as a result,

the magnetic fields have to adjust themselves so that the magnetic

stresses vanish identically. This scenario is known as the force-

1 Note that this expression for the electrical conductivity is roughly correct

for densities in the range 1010–1014 g cm−3 and temperatures in the range

106–108 K, but also provides a reasonable estimate at larger temperatures

of ∼109–1010 K [cf. Potekhin et al. (1999)].

free regime (because the Lorentz force vanishes in this case) and

while the equations governing it can be seen as the low-inertia limit

of the ideal-MHD equations (Komissarov 2002; McKinney 2006b),

the force-free limit is really distinct from the ideal-MHD one. This

represents a considerable complication since it implies that it is

usually not possible to describe, within the same set of equations,

both the interior of compact objects and their magnetospheres.

Theoretical work to derive a fully relativistic theory of non-ideal

hydrodynamics and non-ideal MHD has been carried out by several

authors in the past (Lichnerowicz 1967; Israel 1976; Stewart 1977;

Anile 1989; Carter 1991) and is particularly simple in the case of the

resistive MHD description. The purpose of this work is indeed that

of proposing the solution of the relativistic resistive MHD equa-

tions as an important step towards a more realistic modelling of

astrophysical plasmas. There are a number of advantages behind

such a choice. First, it allows one to use a single mathematical

framework to describe both regions where the conductivity is large

(as in the interior of compact objects) and small (as in magneto-

spheres), and even the vacuum regions outside the compact objects

where the MHD equations trivially reduce to the Maxwell equa-

tions. Secondly, it makes it possible to account self-consistently for

those resistive effects, such as current sheets, which are energeti-

cally important and could provide a substantial modification of the

whole dynamics. Last but not the least, the numerical solution of

the resistive MHD equations provides the only way to control and

distinguish the physical resistivity from the numerical one. The lat-

ter, which is inevitably present and proportional to the truncation

error, is also completely dependent on the specific details of the

numerical algorithm employed and on the resolution used for the

solution.

As already noted by several authors, the numerical solution of

the ideal-MHD equations is considerably less challenging than that

of the resistive MHD equations. In this latter case, in fact, the equa-

tions become mixed hyperbolic parabolic in Newtonian physics

or hyperbolic with stiff relaxation terms in special relativity. The

presence of stiff terms is the natural consequence of the fact that

the diffusive effects take place on time-scales that are either of

the same order or smaller than the dynamical one. Stated differ-

ently, in such equations the relaxation terms can dominate over the

purely hyperbolic ones, posing severe constraints on the time-step

for the evolution. While considerable work has already been made

to introduce numerical techniques to achieve efficient implemen-

tations in either regime (Komissarov 2004; Reynolds, Samtaney

& Woodward 2006; Komissarov, Barkov & Lyutikov 2007;

Komissarov 2007; Graves et al. 2008), the use of these techniques in

fully three-dimensional simulations is still difficult and expensive.

In order to benefit from the many advantages discussed above

in the use of the resistive MHD equations, we here present a novel

approach for the solution of the relativistic resistive MHD equations

exploiting the properties of implicit–explicit (IMEX) Runge–Kutta

methods. This approach represents a simple but effective solution

to the problem of the vastly different time-scales without sacrificing

either simplicity in the implementation or the numerical efficiency.

By examining a number of tests, we illustrate the accuracy of our

approach under a variety of conditions and demonstrate its robust-

ness. In addition, we also compare it with the alternative method

proposed by Komissarov (2007) for the solution of the same set

of relativistic resistive MHD equations. This latter approach em-

ploys Strang-splitting techniques and the analytical integration of

a reduced form of Ampere’s law. While it works well in a number

of cases, it has revealed to be unstable when applied to discon-

tinuous flows with large conductivities; such difficulties were not
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encountered when solving the same problem within the IMEX im-

plementation.

Because our approach effectively treats within a unified frame-

work both those regions of the flow which are fluid-pressure domi-

nated and those which are instead magnetic-pressure dominated, it

could find a number of applications and serve as a first step towards

a more realistic modelling of relativistic astrophysical plasmas.

Our work is organized as follows. In Section 2, we present the

system of equations describing a resistive magnetized fluid, while in

Section 3 we discuss the problems related to the numerical evolution

of this system of equations and the numerical approaches developed

to solve them. In particular, we introduce the basic features of the

IMEX Runge–Kutta schemes and recall their stability properties.

In Section 4, we instead explain in detail the implementation of the

IMEX scheme to the resistive MHD equations. Finally, in Section 5

we present the numerical tests carried out in either one or two

dimensions and that span several prescriptions for the conductivity.

Section 5 is also dedicated to the comparison with the Strang-

splitting technique. The conclusions and the perspectives for future

improvements are presented in Section 6, while Appendix A reviews

our space discretization of the equations.

Hereafter, we will adopt Gaussian units such that c = 1 and em-

ploy the summation convention on repeated indices. Roman indices

a, b, c, . . . are used to denote space–time components (i.e. from 0

to 3), while i, j, k, . . . are used to denote spatial ones; lastly, bold

italics letters represent vectors, while bold letters represent tensors.

2 THE R ESISTIVE MHD DESCRIPTION

An effective description of a fluid in the presence of electromag-

netic fields can be made by considering three different sets of equa-

tions governing, respectively, the electromagnetic fields, the fluid

variables and the coupling between the two. In particular, the elec-

tromagnetic part can be described via the Maxwell equations, while

the conservation of energy and momentum can be used to express

the evolution of the fluid variables. Finally, Ohm’s law, whose exact

form depends on the microscopic properties of the fluid, expresses

the coupling between the electromagnetic fields and the fluid vari-

ables. In what follows we review these three sets of equations sepa-

rately, discuss how they then lead to the resistive MHD description

and how the latter reduces to the well-known limits of ideal-MHD

and the Maxwell equations in vacuum. Our presentation will be fo-

cused on the special relativistic regime, but the extension to general

relativity is rather straightforward and will be presented elsewhere.

2.1 The Maxwell equations

The special relativistic Maxwell equations can be written as (Landau

& Lifshitz 1962)

∂bF
ab = I a , (1)

∂
∗
bF

ab = 0 , (2)

where Fab and ∗Fab are the Maxwell and the Faraday tensor, respec-

tively, and Ia is the electric current four-vector. A highly ionized

plasma has essentially zero electric and magnetic susceptibilities

and the Faraday tensor is then simply the dual of the Maxwell ten-

sor. This tensor provides information about the electric and magnetic

fields measured by an observer moving along any time-like vector

na, namely

F ab = naEb − nbEa + ǫabcBc . (3)

We are considering na to be the time-like translational killing vector

field in a flat (Minkowski) space–time, so na = (−1, 0, 0, 0) and the

Levi–Civita symbol ǫabc is non-zero only for spatial indices. Note

that the electromagnetic fields have no components parallel to na

(i.e. Eana = 0 = Ba na).

By using the decomposition of the Maxwell tensor (3), the equa-

tions (1) and (2) can be split into directions which are parallel and

orthogonal to na to yield the familiar Maxwell equations:

∇ · E = q, (4)

∇ · B = 0 , (5)

∂t E − ∇ × B = −J , (6)

∂t B + ∇ × E = 0 , (7)

where we have also decomposed the current vector Ia = qna + Ja,

with q being the charge density, qna the convective current and Ja

the conduction current satisfying Jana = 0.

The current conservation equation ∂a Ia = 0 follows from the

antisymmetry of the Maxwell tensor and provides the evolution of

the charge density q:

∂tq + ∇ · J = 0 , (8)

which can also be obtained directly by taking the divergence of (6)

when the constraints (4) and (5) are satisfied.

2.2 The hydrodynamic equations

The evolution of the matter follows from the conservation of the

stress-energy tensor:

∂bT
ab = 0 , (9)

and the conservation of baryon number:

∂a(ρua) = 0 , (10)

where ρ is the rest-mass density (as measured in the rest frame of the

fluid) and ua is the fluid four-velocity. The stress-energy tensor Tab

describing a perfect fluid minimally coupled to an electromagnetic

field is given by the superposition

Tab = T fluid
ab + T em

ab , (11)

where

T ab
em ≡ F acF b

c −
1

4

(

F cdFcd

)

gab , (12)

T ab
fluid ≡ huaub + pgab . (13)

Here, h ≡ ρ (1 + ǫ) + p is the enthalpy, with p the pressure and ǫ

the specific internal energy.

The conservation law (9) can be split into directions parallel

and orthogonal to na to yield the familiar energy and momentum

conservation laws:

∂tτ + ∇ · Fτ = 0 , (14)

∂t S + ∇ · FS = 0 , (15)

where we have introduced the conserved quantities {τ , S}, which

are essentially the energy density τ ≡ Tabnanb and the energy flux

density Si ≡ Tain
a, and whose expressions are given by

τ ≡
1

2
(E2 + B2) + hW 2 − p , (16)
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S ≡ E × B + hW 2
v. (17)

Here, v is the velocity measured by the inertial observer and W ≡
−nau

a = 1/
√

1 − v2 is the Lorentz factor. The fluxes can then be

written as

Fτ ≡ E × B + hW 2
v , (18)

FS ≡ −E E − B B + hW 2
vv +

[

1

2
(E2 + B2) + p

]

g . (19)

Finally, the conservation of the baryon number (10) reduces to the

continuity equation written as

∂tD + ∇ · FD = 0 , (20)

where we have introduced another conserved quantity D ≡ ρ W and

its flux FD ≡ ρ W v.

2.3 Ohm’s law

As mentioned above, Maxwell equations are coupled to the fluid

ones by means of the current four-vector Ia, whose explicit form

will depend, in general, on the electromagnetic fields and the local

fluid properties. A standard prescription is to consider the current

to be proportional to the Lorentz force acting on a charged particle

and the electrical resistivity η to be a scalar function. Ohm’s law,

written in a Lorentz invariant way, then reads

Ia + (I bub)ua = σFabu
b , (21)

with σ ≡ 1/η being the electrical conductivity of the medium.

Expressing (21) in terms of the electric and magnetic fields, one

obtains the familiar form of Ohm’s law in a general inertial frame:

J = σW [E + v × B − (E · v)v] + qv . (22)

Note that the conservation of the electric charge (8) provides the

evolution equation for the charge density q (i.e. the projection of

the four-current I along the direction n), while Ohm’s law pro-

vides a prescription for the (spatial) conduction current J (i.e. the

components of I orthogonal to n).

It is important to recall that in deriving expression (22) for Ohm’s

law, we are implicitly assuming that the collision frequency of the

constituent particles of our fluid is much larger than the typical os-

cillation frequency of the plasma. Stated differently, the time-scale

for the electrons and ions to come into equilibrium is much shorter

than any other time-scale in the problem, so that no charge separa-

tion is possible and the fluid is globally neutral. This assumption is

a key aspect of the MHD approximation.

The well-known ideal-MHD limit of Ohm’s law can be obtained

by requiring the current to be finite even in the limit of infinite

conductivity (σ → ∞). In this limit, Ohm’s law (22) then reduces

to

E + v × B − (E · v)v = 0 . (23)

Projecting this equation along v, one finds that the electric field does

not have a component along that direction and then from the rest of

the equation one recovers the well-known ideal-MHD condition

E = −v × B , (24)

stating that in this limit the electric field is orthogonal to both B and

v. Such a condition also expresses the fact that, in ideal MHD, the

electric field is not an independent variable since it can be computed

via a simple algebraic relation from the velocity and magnetic vector

fields.

Summarizing: the system of equations of the relativistic resis-

tive MHD approximation is given by the constraint equations (4)

and (5), evolution equations (6)–(8), (14)–(15) and (20), where the

fluxes are given by equations (18) and (19) and the three current is

given by Ohm’s law (22). These equations, together with a equa-

tion of state (EOS) for the fluid and a reasonable model for the

conductivity, completely describe the system under consideration

provided consistent initial and boundary data are defined.

2.4 Different limits of the resistive MHD description

At this point, it is useful to point out some properties of the rel-

ativistic resistive MHD equations discussed so far, to underline

their purely hyperbolic character and to contrast them with those

of the other forms of the resistive MHD equations which contain a

parabolic part instead. To do this within a simple example, we adopt

the Newtonian limit of Ohm’s law (22):

J = σ (E + v × B) , (25)

where we have neglected terms of the order of O(v2/c2), obtaining

the following potentially stiff equation for the electric field:

∂t E − ∇ × B = −σ (E + v × B). (26)

Assuming now a uniform conductivity and taking a time derivative

of equation (7), we obtain the following hyperbolic equation with re-

laxation terms (henceforth referred simply as hyperbolic-relaxation

equation) for the magnetic field:

−
1

σ
(∂t t B − ∇2 B) = [∂t B − ∇ × (v × B)]. (27)

If the displacement current can be neglected, i.e. ∂t E ≃ ∂t t B ≃
0, equation (27) reduces to the familiar parabolic equation for the

magnetic field:

∂t B − ∇ × (v × B) −
1

σ
∇2 B = 0 , (28)

where the last term is responsible for the diffusion of the magnetic

field. It is important to stress the significant difference in the char-

acteristic structure between equations (27) and (28). Both equations

reduce to the same advection equation in the ideal-MHD limit of

infinite conductivity (σ → ∞) indicating the flux-freezing con-

dition. However, in the opposite limit of infinite resistivity (σ →
0), equation (28) tends to the (physically incorrect) elliptic Laplace

equation ∇2 B = 0 while equation (27) reduces to the (physically

correct) hyperbolic wave equation for the magnetic field.

2.5 The augmented MHD system

The set of Maxwell equations described above can also be cast in

an extended fashion which includes two additional fields, ψ and φ,

introduced to control dynamically the constraints of the system, i.e.

equations (4) and (5). This ‘augmented’ system reads

∂b(F ab + ψgab) = I a − κψna, (29)

∂b(∗F ab + φgab) = −κφna . (30)

Clearly, the standard Maxwell equations (1) and (2) are recovered

when ψ = φ = 0 and we are in this way extending the space of

solutions of the original Maxwell equations to include those with

non-vanishing {ψ , φ}.

The evolution of these extra scalar fields can be obtained by taking

a partial derivative ∂a of the augmented Maxwell equations (29) and
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(30) and using the antisymmetry of the Maxwell and Faraday tensors

together with the conservation of charge to obtain

∂a∂
aψ = −κ∂a(ψna), (31)

∂a∂
aφ = −κ∂a(φna). (32)

It is evident that these represent wave equations with sources for

the scalar fields {ψ , φ}, which propagate at the speed of light

while being damped if κ > 0. In particular, for any positive κ ,

they decay exponentially over a time-scale ∼ 1/κ to the trivial

solution ψ = φ = 0 and the augmented system then reduces to the

standard Maxwell equations, including the constraints (4) and (5).

This approach, named hyperbolic divergence cleaning in the context

of ideal MHD (Dedner et al. 2002), was proposed as a simple way

of solving the Maxwell equations and enforcing the conservation of

the divergence-free condition for the magnetic field.

Adopting this approach and following the formulation proposed

by Komissarov (2007), the evolution equations of the augmented

Maxwell equations (29) and (30) can then be written as

∂tψ + ∇ · E = q − κψ , (33)

∂tφ + ∇ · B = −κφ , (34)

∂t E − ∇ × B + ∇ψ = −J , (35)

∂t B + ∇ × E + ∇φ = 0. (36)

Note that the divergence cleaning technique is applied to both the

magnetic and electric constraints and the same arguments apply to

violation in both constraints being damped through the evolution.

The system of equations (33)–(36), together with the current con-

servation (8), is the one we will use for the numerical evolution

of the electromagnetic fields within the set of relativistic resistive

MHD equations.

3 EVO L U T I O N O F

H Y P E R B O L I C - R E L A X AT I O N EQUAT I O N S

While the ideal-MHD equations are well suited to an efficient nu-

merical implementation, the general system of relativistic resistive

MHD equations brings about a delicate issue when the conductivity

in the plasma undergoes very large spatial variations. In the regions

with high conductivity, in fact, the system will evolve on time-scales

which are very different from those in the low-conductivity region.

Mathematically, therefore, the problem can be regarded as a hyper-

bolic one with stiff relaxation terms which requires special care to

capture the dynamics in a stable and accurate manner. In the next

section, we discuss a simple example of a hyperbolic equation with

relaxation which exhibits the problems discussed above and then

introduce IMEX Runge–Kutta methods to deal with these kind of

equations. In essence, these methods treat the advection charac-

ter of the system with strong stability preserving (SSP) explicit

schemes, while the relaxation character with an L-stable diago-

nally implicit Runge–Kutta (DIRK) scheme. After presenting the

scheme, its properties and some examples, we discuss in detail its

application to the resistive MHD equations.

3.1 Hyperbolic systems with relaxation terms

A prototypical hyperbolic equation with relaxation is given by

∂t U = F (U) +
1

ǫ
R(U) , (37)

where ǫ > 0 is the relaxation time (not necessarily constant in either

space or time), F(U) gives rise to a quasi-linear system of equations

[i.e. F(U) depends linearly on first derivatives of U], and R does not

contain derivatives of U.

In the limit ǫ → ∞ (corresponding for the resistive MHD equa-

tions to the case of vanishing conductivity), the system is hyperbolic

with propagation speeds bounded by ch. This maximum bound, to-

gether with the length-scale L of the system, defines a characteristic

time-scale τ h ≡ L/ch of the hyperbolic part. In the opposite limit

ǫ → 0 (corresponding to the case of infinite conductivity), the sys-

tem is instead said to be stiff, since the time-scale ǫ of the relaxation

(or stiff) term R(U) is, in general, much shorter than the time-scale

τ h of the hyperbolic part F(U). In such a limit, the stability of an

explicit scheme is only achieved2 with a time-step size �t ≤ ǫ. This

requirement is certainly more restrictive than the Courant–Lewy–

Friedrichs (CFL) stability condition �t ≤ �x/ch for the hyperbolic

part and makes an explicit integration impractical. The development

of efficient numerical schemes for such systems is challenging, since

in many applications the relaxation time can vary by several orders

of magnitude across the computational domain and, more impor-

tantly, to much beyond the one determined by the speed ch.

When faced with this issue several strategies can be adopted. The

most straightforward one is to consider only the stiff limit ǫ → 0,

where the system is well approximated by a suitable reduced set of

conservation laws called ‘equilibrium system’ (Chen, Levermore &

Liu 1994) such that

R(Ū) = 0 , (38)

∂t Ū = G(Ū), (39)

where Ū is a reduced set of variables. This approach can be followed

if the resulting system is also hyperbolic. This is precisely the

case in the resistive MHD equations for vanishing resistivity η →
0 (or σ → ∞). In this case, the equations reduce to those of

ideal MHD and describe indeed an ‘equilibrium system’ in which

the magnetic field is simply advected with the flow. As discussed

earlier, this limit is often adequate to describe the behaviour of

dense astrophysical plasmas, but it may also stray away in the

magnetospheres. A more general approach could consist of dividing

the computational domain in regions in each of which a simplified

set of equations can be adopted. As an example, the ideal-MHD

equations could be solved in the interior of compact objects, an

equivalent of the force-free MHD equations could be solved in the

magnetosphere, and finally the Maxwell equations for the vacuum

regions outside the compact object. However, this approach requires

the overall scheme to suitably match the different regions so as to

obtain a global solution. This task, unfortunately, is far from being

straightforward and, to date, it lacks a rigorous definition.

An alternative approach consists of considering the original

hyperbolic-relaxation system in the whole computational domain

and then employing suitable numerical schemes that work for all

regions. Among such schemes is the Strang-splitting technique

(Strang 1968), which has recently been applied by Komissarov

(2007) for the solution of the (special) relativistic resistive MHD

equations. The Strang-splitting scheme provides second-order accu-

racy if each step is at least second-order accurate, and this property

2 Implicit schemes could avoid this issue at an increased computational cost;

however, an explicit second-order accurate method approaching iteratively

the Crank–Nicholson scheme has been shown, in a simple model with

hyperbolic-relaxation terms, to work well when dealing with smooth profiles

without being too costly (Choptuik, private communication).
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is maintained under suitable assumptions even for stiff problems

(Jahnke & Lubich 2000). In practice, however, higher order accu-

racy is difficult to obtain even in non-stiff regimes with this kind of

splitting. Moreover, when applied to hyperbolic systems with relax-

ation, Strang-splitting schemes reduce to first-order accuracy since

the kernel of the relaxation operator is non-trivial and corresponds

to a singular matrix in the linear case, therefore invalidating the

assumptions made by Jahnke & Lubich (2000) to ensure high-order

accuracy. Komissarov (2007) avoided this problem by solving ana-

lytically the stiff part in a reduced form of Ampere’s law. Although

this procedure works well for smooth solutions, our implementation

of the method has revealed problems when evolving discontinuous

flows (shocks) for large-conductivities plasmas. Moreover, it is un-

clear whether the same procedure can be adopted in more general

configurations, where an analytical solution may not be available.

As an alternative approach to the methods solving the relativis-

tic resistive MHD equations on a single computational domain,

we here introduce an IMEX Runge–Kutta method (Asher, Ruuth &

Wetton 1995; Asher, Ruuth & Spiteri 1997; Pareschi 2001; Pareschi

& Russo 2005) to cope with the stiffness problems discussed above.

These methods, which are easily implemented, are still under de-

velopment and have few (relatively minor) drawbacks. The most

serious one is a degradation to first- or second-order accuracy for

a range of values of the relaxation time ǫ. However, since high-

resolution shock-capturing (HRSC) schemes usually employed for

the solution of the hydrodynamic equations already suffer from

similar effects at discontinuities, the possible degradation of the

IMEX schemes does not spoil the overall quality numerical solu-

tion when employed in conjunction with HRSC schemes. The next

sections review in some detail the IMEX schemes and our specific

implementation for the relativistic resistive MHD equations.

3.2 The IMEX Runge–Kutta methods

The IMEX Runge–Kutta schemes rely on the application of an

implicit discretization scheme to the stiff terms and an explicit one

to the non-stiff ones. When applied to system (37), it takes the form

(Pareschi & Russo 2005)

U (i) = Un + �t

i−1
∑

j=1

ãijF [U (j )] + �t

ν
∑

j=1

aij

1

ǫ
R[U (j )] ,

Un+1 = Un + �t

ν
∑

i=1

ω̃iF [U (i)] + �t

ν
∑

i=1

ωi

1

ǫ
R[U (i)] , (40)

where U (i) are the auxiliary intermediate values of the Runge–Kutta

scheme. The matrices Ã = (ãij ) and A = (aij ) are ν × ν matrices

such that the resulting scheme is explicit in F (i.e. ãij = 0 for j ≥ i)

and implicit in R. An IMEX Runge–Kutta scheme is characterized

by these two matrices and the coefficient vectors ω̃i and ωi . Since

simplicity and efficiency in solving the implicit part at each step is

important, it is natural to consider DIRK schemes (i.e. aij = 0 for

j > i) for the stiff terms.

A particularly convenient way of describing an IMEX Runge–

Kutta scheme is offered by the Butcher notation, in which the

scheme is by a double tableau of the type (Butcher 1987, 2003)

c̃ Ã

ω̃T

c A

ωT
(41)

where the index T indicates a transpose and the coefficients c̃ and

c used for the treatment of non-autonomous systems are given

Figure 1. Tableau for the explicit (left-hand side) implicit (right-hand side)

IMEX–SSP2 (2,2,2) L-stable scheme.

by

c̃i =
i−1
∑

j=1

ãij , ci =
i

∑

j=1

aij . (42)

The accuracy of each of the Runge–Kutta method is achieved by

imposing restrictions on some of the coefficients of their respective

Butcher tableaus. Although each of them separately can have an

arbitrary accuracy, this does not ensure that the combination of

the two schemes will preserve the same accuracy. In addition to the

above conditions for each Runge–Kutta scheme, there are also some

additional conditions combining terms in the two tableaus which

must be fulfilled in order to achieve a global accuracy order for the

complete IMEX scheme.

Since the details of these methods are not widely known, we

first consider a simple example to fix ideas. A second-order IMEX

scheme can be written in the tableau form given in Fig. 1. The

intermediate and final steps of this IMEX Runge–Kutta scheme

would then be written explicitly as

U (1) = Un +
�t

ǫ
γR[U (1)] ,

U (2) = Un + �tF [U (1)]

+
�t

ǫ
{(1 − 2γ )R[U (1)] + γR[U (2)]} ,

Un+1 = Un +
�t

2
[F (U (1)) + F (U (2))]

+
�t

2ǫ
{R[U (1)] + R[U (2)]} .

Note that at each substep an implicit equation for the auxiliary inter-

mediate values U (i) must be solved. The complexity of inverting this

equation will clearly depend on the particular form of the operator

R(U).

3.2.1 Stability properties of the IMEX schemes

Stable solutions of conservation type equations are usually analysed

in terms of a suitable norm being bounded in time. With Un rep-

resenting the solution vector at the time t = n�t, then a sequence

{Un} is said to be ‘strongly stable’ in a given norm ‖ · ‖ provided

that ‖Un+1‖ ≤ ‖Un‖ for all n ≥ 0.

The most commonly used norms for analysing schemes for non-

linear systems are the total variation (TV) norm and the infinity

norm. A numerical scheme that maintains strong stability at the

discrete level is called SSP (see Spiteri & Ruuth 2002 for a detailed

description of optimal SSP schemes and their properties). Because

of the stability properties of the IMEX schemes (Pareschi & Russo

2005), it follows that if the explicit part of the IMEX scheme is SSP,

then the method is SSP for the equilibrium system in the stiff limit.

This property is essential to avoid spurious oscillations during the

evolution of non-smooth data.
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The stability of the implicit part of the IMEX scheme is ensured

by requiring that the Runge–Kutta is ‘L-stable’, and this represents

an essential condition for stiff problems. In practice, this amounts

to requiring that the numerical approximation is bounded in cases

when the exact solution is bounded. A more strict definition can be

derived starting from a linear scalar ordinary differential equation,

namely

dt� = q� . (43)

In this case, it is easy to define the stability (or amplification)

function C(z) as the ratio of the solutions at subsequent time-steps

C(z) ≡ �n+1/�n, where z ≡ �tq. A Runge–Kutta scheme is then

said to be L-stable if |C(z)| < 1 (i.e. it is bounded) and C(∞) = 0

(Butcher 1987, 2003).

There are a number of IMEX Runge–Kutta schemes available

in the literature and we report here only some of the second- and

third-order schemes which satisfy the condition that in the limit

ǫ → 0, the solution corresponds to that of the equilibrium system

(38) (Pareschi & Russo 2005). These are given in their Butcher

tableau form in Fig. 2 and taken from Pareschi & Russo (2005). In

Figure 2. Tableaux for the explicit (first row) and implicit (second row)

IMEX–SSP schemes. We use the standard notation SSPk(s, σ , p), where k

denotes the order of the SSP scheme and the triplet (s, σ , p) characterizes,

respectively, the number of stages of the implicit scheme (s), the number of

stages of the explicit scheme (σ ) and the order of the IMEX scheme (p).

all these schemes, the implicit tableau corresponds to an L-stable

scheme. The tableaus are reported in the notation SSP k(s, σ , p),

where k denotes the order of the SSP scheme and the triplet (s, σ ,

p) characterizes, respectively, the number of stages of the implicit

scheme (s), the number of stages of the explicit scheme (σ ) and the

order of the IMEX scheme (p).

4 IM E X RU N G E – K U T TA SC H E M E FO R T H E

AU GMENTED R ESI STI VE MHD EQUATIO NS

Having reviewed the main properties of the IMEX schemes, we now

apply them to the particular case of the special relativistic resistive

MHD equations. Our goal is to consider a numerical implementation

of the general system that can deal with standard hydrodynamic

issues (like shocks and discontinuities) as well as those brought

up by the stiff terms discussed in the previous section. Hence, we

adopt high-resolution shock-capturing algorithms (see Appendix

A) together with IMEX schemes. Because the first ones involve the

introduction of conserved variables in order to cast the equations in

a conservative form, we first discuss how to implement the IMEX

scheme within our target system and subsequently how to perform

the transformation from the conserved variables to the primitive

ones.

4.1 IMEX schemes for the Maxwell-hydrodynamic equations

and treatment of the implicit stiff part

For our target system of equations, it is possible to introduce a

natural decomposition of variables in terms of those whose evolution

do not involve stiff terms and those which do. More specifically,

with the electrical resistivity η playing the role of the relaxation

parameter ǫ, the vector of fields U can be split in two subsets {X ,

Y}, with X = {E} containing the stiff terms and Y = {B, ψ , φ, q,

τ , S, D} the non-stiff ones.

Following the prototypical equation (37), the evolution equations

for the relativistic resistive MHD equations can then be schemati-

cally written as

∂t Y = F
Y
(X, Y ) , (44)

∂t X = F
X

(X, Y ) +
1

ǫ(Y )
R

X
(X, Y ) , (45)

where the relaxation parameter ǫ is allowed to depend also on the

Y non-stiff fields. The vector Y can be evolved straightforwardly as

it involves no stiff term. We further note that for our particular set

of equations, it is convenient to write the stiff part as

R
X

(X, Y ) = A(Y )X + S
X

(Y ) . (46)

As a result, the procedure to compute each stage U (i) of the IMEX

scheme can be performed in two steps.

(i) Compute the explicit intermediate values {X∗, Y ∗} from all

the previously known levels, i.e.

Y ∗ = Y n + �t

i−1
∑

j=1

ãijFY
[U (j )], (47)

X∗ = Xn + �t

i−1
∑

j=1

ãijFX
[U (j )] + �t

i−1
∑

j=1

aij

ǫ(j )
R

X
[U (j )], (48)

where we have defined ǫ(j ) ≡ ǫ[ Y (j ) ] and aij/ǫ
(j ) in equation (48)

is a simple division and not a contraction on dummy indices.
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(ii) Compute the implicit part, which involves only X, by solving

Y (i) = Y ∗, (49)

X (i) = X∗ + �t
aii

ǫ(i)
R

X
[U (i)]. (50)

Note that the implicit equation, with the previous assumption (46),

can be inverted explicitly

X (i) = M(Y ∗)

[

X∗ + aii

�t

ǫ(i)
S

X
(Y ∗)

]

, (51)

M(Y ∗) =
[

I − aii

�t

ǫ(i)
A(Y ∗)

]−1

, (52)

since the form of the matrix [I − aii�tA(Y ∗)/ǫ(i) ] is known explic-

itly in terms of the evolved fields.

The explicit expressions for stiff part are then given simply by

R
E

= −W E + W (E · v)v − Wv × B , (53)

S
E

= −Wv × B , (54)

with the matrix A defined as

A ≡ W

⎛

⎜

⎝

−1 + v2
x vxvy vxvz

vxvy −1 + v2
y vyvz

vzvx vzvy −1 + v2
z

⎞

⎟

⎠
. (55)

Hence, the matrix M can be computed explicitly to obtain

1

m

⎛

⎜

⎝

a + W + aW 2v2
x aW 2vxvy aW 2vxvz

aW 2vxvy a + W + aW 2v2
y aW 2vyvz

aW 2vzvx aW 2vzvy a + W + aW 2v2
z ,

⎞

⎟

⎠

where m ≡ W2 a + Wa2 + W + a and a ≡ aiiσ
(i)�t.

Summarizing. First, an intermediate state {E∗} is found through

the evolution of the non-stiff part for the electric field. Secondly,

if the velocity v is known, the evolution of the stiff part can be

performed by acting with M to obtain

E = M(v) [E∗ + aii�tσ (i) S
E

(v, B)] . (56)

At this point, the approach proceeds with the conversion from the

conserved variables to the primitive ones. Because of the coupling

between the electric and the velocity fields, such a procedure is

rather involved and more complex than in the ideal-MHD case; a

detailed discussion of how to do this in practice will be presented

in Section 3.2.

It is interesting to highlight the consistency at two known limits

of the implicit solution of the stiff part. In the ideal-MHD limit

(i.e. σ → ∞), the first term of equation (56) vanishes, while the

contribution of the second term leads to the ideal-MHD condi-

tion (24). On the other hand, in the vanishing conductivity limit

(i.e. σ → 0), the second term in equation (56) vanishes and the

matrix reduces to the identity M(v) = I. In this case, the electric

field is obtained only by evolving the explicit part, i.e. E =E∗.

Finally, it is important to stress that one could, in principle, have

considered the alternative route of adopting instead X = {E, q},

so that the right-hand side of q would be considered stiff with

Rq = 0 and Sq = ∇· R
E

. However, this choice could lead to spurious

numerical oscillations in the solution since the fluxes of q can be

discontinuous, while they would be evolved with an implicit Runge–

Kutta method. As it has been shown under fairly general conditions,

high-order SSP schemes are necessarily explicit (Gottlieb, Shu &

Tadmor 2001), so it follows that this part of the equations cannot be

evolved with the implicit Runge–Kutta method unless a low-order

scheme is implemented.

4.2 Transformation of conserved variables to primitive ones

As mentioned in the previous section, in order to evolve our system

of equations, the fluxes {Fτ , FS, FD} must be computed at each

time-step. These fluxes depend on the primitive fields {ρ, p, v, E,

B}, which must be recovered from the evolved conserved fields {D,

τ , S, E, B}. These quantities are related by complicated equations

which become transcendental except for particularly simple equa-

tions of state (EOS). As a result, the conversion must be, in general,

pursued numerically and the primitive variables are then given by

the roots of the function

f (p̄) = p(ρ, ǫ) − p̄ , (57)

where p(ρ, ǫ) is given by the chosen EOS and p̄ is the trial value

for the pressure eventually leading to the primitive variables.

Note that since Y (i) =Y ∗ (cf. equation 49), the values of the

conserved quantities {D, τ , S, B} at time (n + 1)�t are obtained

by evolving their non-stiff evolution equations which, however,

provide only an approximate solution for the electric field {E∗}. As

discussed in the previous section, the final solution for the electric

field E requires the inversion of an implicit equation and, hence, is

a function of the velocity v and the fields {B, E∗} (cf. equation 56).

However, the velocity is a primitive quantity and thus not known

at the time (n + 1)� t. It is clear, therefore, that it is necessary

to obtain, at the same time, the evolution of the stiff part of the

equations and the conversion of the conserved quantities into to

the primitive ones. In what follows, we describe how to do this in

practice using an iterative procedure.

(i) Adopt as initial guess for the velocity its value at the previous

time level v = v
n. The electric field E is computed by equation (56)

as a function of (E∗, v, B).

(ii) Adopt as initial guess for the pressure its value at the previous

time level p = pn. Compute in the following order

v =
S − E × B

τ − (E2 + B2)/2 + p
,

W =
1

√
1 − v2

,

ρ =
D

W
,

ǫ =
τ − (E2 + B2)/2 − DW + p(1 − W 2)

DW
.

(58)

(iii) Solve numerically equation (57) by means of an iterative

Newton–Raphson solver, so that the solution at the iteration m + 1

can be computed as

pm+1 = pm −
f (pm)

f ′(pm)
. (59)

The derivative of the function f(p) needed for the Newton–Raphson

solver can be computed as

f ′(p) = v2c2
s − 1, (60)

with cs being the local speed of the fluid which, for an ideal-fluid

EOS p(ρ, ǫ) = (Ŵ − 1) ρ ǫ, is given by

c2
s =

Ŵ(Ŵ − 1)ǫ

1 + Ŵǫ
. (61)

(iv) With the newly obtained values for the velocity v and the

pressure p, the steps (i)–(iii) can be iterated until the difference

between two successive values falls below a specified tolerance.

The approach discussed above is a simple procedure that can be

implemented straightforwardly and works well for moderate ratios

of |B |2/p (i.e. |B |2/p � 5), converging in less than 10 iterations

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS



Beyond ideal MHD 9

for both smooth electromagnetic fields and discontinuous ones.

Faster and more robust procedures to obtain the primitive variables

certainly can be implemented, but this is beyond the scope of this

work.

5 N U M ERIC A L TESTS

In this section, we present several one-dimensional or two-

dimensional tests which have been used to validate the implemen-

tation of the IMEX Runge–Kutta schemes in the different regimes

of relativistic resistive MHD. In all these tests, we employ the

ideal-fluid EOS with Ŵ = 2 for the one-dimensional tests and Ŵ

= 4/3 in the two-dimensional ones. The damping coefficient of

the hyperbolic divergence cleaning is set to κ = 1. The magnetic

field is divergence-free and the charge is preserved up to the trun-

cation error. The different tests span several prescriptions for the

conductivity and compare the solutions obtained either with those

expected in the ideal-MHD limit or with those computed with the

Strang-splitting technique.

More specifically, in one-dimensional, we consider large-

amplitude circularly polarized (CP) Alfvén waves to test the ability

of the code to reproduce the ideal-MHD results when adopting a

very large conductivity. The intermediate conductivity regime is

instead tested by simulating a self-similar current sheet. Finally, a

large range of uniform and non-uniform conductivities are used for

a representative shock-tube problem. In two-dimensional, on the

other hand, we first consider a commonly employed test for ideal-

MHD codes corresponding to a cylindrical explosion. Subsequently,

we simulate a toy model for a ‘magnetized neutron star’ when mod-

elled as a cylindrically symmetric density distribution obeying a

Gaussian profile. The behaviour of the magnetic field is studied

again for a range of constant and non-uniform conductivities.

5.1 One-dimensional tests

5.1.1 Large amplitude CP Alfvén waves

This test is discussed in detail by Del Zanna et al. (2007) and

we report here only a short summary. The solution describes the

propagation of a large amplitude circularly polarized Alfvén waves

along a uniform background field B0 in a domain with periodic

boundary conditions. The exact solution in the ideal-MHD limit

and assuming vx = 0 for simplicity is given by (Del Zanna et al.

2007)

(By, Bz) = ηAB0{cos[k(x − vAt)], sin[k(x − vAt)]} ,

(vy, vz) = −
vA

B0

(By, Bz) , (62)

where Bx = B0, k is the wave vector, ηA is the amplitude of the wave

and the special relativistic Alfvén speed vA is given by

v2
A =

2B2
0

h + B2
0 (1 + η2

A)

⎧

⎨

⎩

1 +

√

1 −
[

2ηAB2
0

h + B2
0 (1 + η2

A)

]2

⎫

⎬

⎭

−1

.

(63)

In practice, using such ideal-MHD solution it is possible to assess

the accuracy of evolution of the resistive equations by requiring

that for very large conductivities the numerical solution approaches

the exact one as the resolution is progressively increased. It is also

worth remarking that although we do not expect the solution of

the resistive MHD equations to converge to that of ideal MHD for

any finite value of σ , we also expect the differences between the

-0.4 -0.2 0 0.2 0.4
x

-1

-0.5

0

0.5

1

B
y

Δx = 1/50
Δx = 1/100
Δx = 1/200

Figure 3. Magnetic field component By for a large-amplitude CP Alfvén

wave and three different resolutions �x = {1/50, 1/100, 1/200}. The

conductivity is constant with a magnitude of σ = 106. The agreement

betweem the exact solution and that corresponding to the high resolution

one is excellent.

two to be O(v/σ ) and thus negligibly small for sufficiently large

values. For this reason, we have performed the evolution with a high

uniform conductivity of σ = 106 for three different resolutions N =
{50, 100, 200} covering the computational domain x ∈ [−0.5, 0.5].

In addition, the initial data parameters have been chosen so that

ρ = p = ηA = 1 and B0 = 1.1547, thus yielding vA = 1/2, with a

full period being achieved at t = 2.

Fig. 3 confirms this expectation by reporting the component By

after one period and thus overlapping with the initial one (at t = 0)

for the highest resolution. This test shows clearly that in the limit

of very high conductivity, the resistive MHD equations tend to a

solution which is very close to the same solution obtained in the

ideal-MHD limit. The convergence rate measured for the different

fields is consistent with the second-order spatial discretization being

used as expected for smooth flows (see Appendix A).

5.1.2 Self-similar current sheet

The details of this test are described by Komissarov (2007), so

again we provide here only a short description for completeness.

We assume that the magnetic pressure is much smaller than the

fluid pressure everywhere, with a magnetic field given by B = [0,

By(x, t), 0], where By(x, t) changes sign within a thin current layer

of width �l. Provided the initial solution is in equilibrium (p =
constant), the evolution is a slow diffusive expansion of the layer

due to the resistivity and described by the diffusion equation (cf.

equation 27 with v = ∂t E = 0):

∂tBy −
1

σ
∂

2
xBy = 0. (64)

As the system expands, the width of the layer becomes much larger

than � l and it evolves in a self-similar fashion. For t > 0, the

analytical exact solution is given by

By(x, t) = B0 erf

(

1

2

√

σ

ξ

)

, (65)

where ξ = t/x2 and ‘erf’ is the error function. This solution

can be used for testing the moderate resistive regime. Following

Komissarov (2007), and in order to avoid the singular behaviour at

t = 0, we have chosen as initial data the solution at t = 1 with p = 50,
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Figure 4. Magnetic field component By in a self-similar current sheet. The

solution is computed with N = 200 gridpoints (� x = 1/200) and shown at

the initial time t = 1 and 10. The conductivity is uniform with a magnitude

of σ = 102 (i.e. η = 1/σ = 0.01). The numerical solution is in excellent

agreement with the exact one.

ρ = 1, E = v = 0 and σ = 100. The domain covers the region x ∈
[−1.5, 1.5] with N = 200 points.

The numerical simulation is evolved up to t = 10 and then the

numerical and the exact solution are compared in Fig. 4. The two

solutions match so well that they are not distinguishable on the plot,

thus, showing that the intermediate-conductivity regime is also well

described by our method.

5.1.3 Shock-tube problem

As prototypical shock-tube test we consider a simple MHD version

of the Brio and Wu test (Brio & Wu 1988), where the initial left and

right states are separated at x = 0.5 and are given by
(

ρL, pL, BL
y

)

= (1.0, 1.0, 0.5) ,
(

ρR, pR, BR
y

)

= (0.125, 0.1, −0.5) ,

while all the other fields set to 0. We consider both uniform and non-

uniform conductivities. In the latter case, we adopt the following

prescription

σ = σ0D
γ , (66)

thus allowing for non-linearities in the dependence of the conduc-

tivity on the conserved quantity D. This is one of the simplest cases,

0 0.2 0.4 0.6 0.8 1
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Δx = 1/400

0 0.2 0.4 0.6 0.8 1
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Figure 5. Left-hand panel: magnetic field component By in the solution of the shock-tube problem. Different lines refer to three different resolutions and to

the exact ideal-MHD solution at t = 0.4. The conductivity is uniform with a magnitude of σ 0 = 106. Right-hand panel: the same as in the left-hand panel but

for different uniform conductivities. Note that for σ 0 = 0 the solution describes a discontinuity propagating at the speed of light and corresponding to Maxwell

equations in vacuum. As the conductivity increases, the solution tends to the ideal-MHD one.

but in realistic situations a more general expression for the conduc-

tivity can be assumed, where σ is a function of both the rest-mass

density and the specific internal energy, i.e. σ = σ (ρ, ǫ).

The exact solution of the ideal-MHD Riemann problem was

found by Giacomazzo & Rezzolla (2006), and in our particular

case it has been computed with a publicly available code (see

Giacomazzo & Rezzolla 2006). When Bx = 0, the structure of the

solution contains only two fast waves, a rarefaction moving to the

left and a shock moving to the right, with a tangential discontinuity

between them. More demanding Riemann problems have also been

performed but the procedure to convert the conserved variables into

the primitive ones has shown in these case a lack of robustness for

moderate ratios of |B|2/p between 1 and 5.

We have first considered the case of uniform (γ = 0) and very

large conductivity (σ 0 = 106) as in this case we can use the solution

in the ideal-MHD limit as a useful guide. The profile of the magnetic

field component By for three different resolutions � x = {1/100,

1/200, 1/400} and the exact solution are shown in the left-hand

panel of Fig. 5 at t = 0.4. Overall, the results indicate that even in

the presence of shocks our numerical solution of the resistive MHD

tends to the ideal-MHD solution as the resolution is increased. It is

also interesting to study the behaviour of the solution for different

values of the constant σ 0 while still keeping a uniform conductivity

(i.e. γ = 0). This is shown in the right-hand panel of Fig. 5, which

displays the different solutions obtained, and where it is possible to

see how they change smoothly from a wave-like solution for σ 0 =
0 to the ideal-MHD one for σ 0 = 106. These tests have also been

performed with a CFL factor 20 times smaller in order to confirm

that the errors introduced by the implicit integration of the stiff

equation are very small. A comparison of the solutions obtained

in two cases has revealed only very small differences and of the

order of 10−5. We interpret this as an evidence that a CFL-limited

time-step is, in general, sufficient to achieve very good accuracy.

This set up is also useful to perform a comparison between the

IMEX and the Strang-splitting approaches. In Fig. 6, we show the

L1-norm of the difference between the numerical solution obtained

with both schemes and the ideal-MHD exact solution, for different

values of the conductivity with N = 400 points.

Several comments are in order. First, the reported difference

between the numerical solution for the resistive MHD equations and

the ideal-MHD equations should not be interpreted as an error given

that the latter is not the correct solution of the equations. Hence,

the fact that the use of a Strang-splitting method yields smaller dif-

ferences is simply a measure of its ability of better capture steep
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Figure 6. Differences in the magnetic field component By between the nu-

merical solution computed with either the Strang or the IMEX schemes and

the exact solution of the shock tube in the ideal-MHD limit. The differ-

ences are computed for several uniform conductivities, although the Strang-

splitting technique does not yield a stable solution for values larger than σ 0

∼ 7000 for the reference resolution of �x = 1/400 (i.e. with 400 gridpoints).

Shown in the inset is the maximum conductivity for which a solution was

possible, σmax, as a function of the number of gridpoints, N.

gradients. Secondly, while the IMEX approach does not show any

sign of instability for σ 0 ranging between 102 and 109, the imple-

mentation adopting the Strang-splitting technique becomes unstable

for moderately high values of the conductivity and, at least for the

shock-tube problem, no numerical solution was possible for σ 0 �

7000 at the above resolution. Increasing the resolution can help to

increase the maximum value of the resistivity which can be han-

dled, but since this gain is only linear with the number of gridpoints

aiming for higher conductivities results impractical. This is shown

in the inset of Fig. 6, which reports the maximum conductivity for

which a solution was possible, σ max, as a function of the number

of gridpoints, N. Finally, we note that the difference between the

IMEX numerical solution and the exact ideal-MHD one saturates

between σ 0 ∼ 105 and 106. This is not surprising since the dif-

ferences are expected to be O(1/σ ), and thus the saturation in the

differences essentially provides a measure of our truncation error at

the resolution used.

A more challenging test is offered by the solution of the shock-

tube in the presence of a non-uniform conductivity. In particular, we

have considered the same initial states and the same non-uniform
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Figure 7. Left-hand panel: evolution of a non-uniform conductivity σ in the shock-tube problem for different values of γ and indicated by the different lines

(σ 0 = 106 for all lines). Note the large variability on the magnitude of the conductivity. Right-hand panel: the same as in the left-hand panel but for the magnetic

field component By .

conductivity discussed above, but used different values for the ex-

ponent γ in (66) while keeping σ 0 constant. The results of this test

are shown in the left-hand panel of Fig. 7, where the conductivity

is plotted at t = 0.4 for several values of γ . Note that the conduc-

tivity traces the evolution of the rest-mass density and the solution

can also be found when σ varies of almost 12 orders of magnitude

across the grid. Similarly, the right-hand panel of Fig. 7 displays

the component By for the different values of γ . It should be stressed

that because of the relation (66) between σ and ρ, the region on

the left has at this time a very high conductivity and the numerical

solution tends to the ideal-MHD one. The opposite happens on the

right region, where the conductivity is lower for higher values of γ .

Clearly, the results presented in Fig. 7 show that our implementation

can handle non-uniform (and quite steep) conductivity profiles even

in the presence of shocks.

5.2 Two-dimensional tests

5.2.1 The cylindrical explosion

We now consider problems involving shocks in more than one di-

mension. A demanding test for the relativistic codes is the cylin-

drical blast wave expanding in a plasma with an initially uniform

magnetic field. Although there is no exact solution for this prob-

lem, strong symmetric explosions are useful tests since shocks are

present in all the possible directions and the numerical implementa-

tion is therefore tested in all of its parts. For this test, we set a square

domain (x, y) ∈ [ − 6, 6] with a resolution � x = � y = 1/200. The

initial data are such that inside the radius r < 0.8 the pressure is set

to p = 1 while the density to ρ = 0.01. In the intermediate region

0.8 ≤ r ≤ 1.0, the two quantities decrease exponentially up to the

exterior region r > 1, where the ambient fluid has p = ρ = 0.001.

The magnetic field is uniform with only one non-trivial component

B = (0.05, 0, 0). The other fields are set to be zero (i.e. E = q =
0), which is consistent within the ideal-MHD approximation.

The evolution is performed with a high conductivity σ = 106 in

order to recover the solution from the ideal-MHD approximation.

As shown in Fig. 8, which reports the magnetic field components

Bx (left-hand panel) and By (right-hand panel) at time t = 4, we

obtain results that are qualitatively similar to those published in

different works (Komissarov 1999a; Neilsen et al. 2006; Del Zanna

et al. 2007; Komissarov 2007). While a strict comparison with an

exact solution is not possible in this case, the solution found matches

extremely well the one obtained with another two-dimensional code

solving the ideal-MHD equations. Most importantly, however, the
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Figure 8. Magnetic field components Bx (left-hand panel) and By (right-hand panel) for the cylindrical explosion test at time t = 4.

figure shows that the solution is regular everywhere and similar

results can also be obtained with smaller values of the conductivity

(e.g. no significant difference was seen for σ � 104).

5.2.2 The cylindrical star

We next consider a toy model for a star, thought as an infinite

column of fluid aligned with the z-axis but with compact profile

in other directions. Because of the symmetry in the z-direction,

∂zU = 0 for all the fields and the problem is therefore two-

dimensional. More specifically, we consider initial data given by

ρ = ρ0e
−(r/r0)2

, (67)

v = (vr , vφ, vz) = ρ(0, ωφ, 0) , (68)

B = (Br , Bφ, Bz) = ρ

[

0, 0, 2B0(1 −
r2

r2
0

)

]

, (69)

where r ≡
√

x2 + y2 is the cylindrical radial coordinate. The other

fields can be computed at the initial time by using the polytropic

EOS p = ρŴ , the ideal-MHD expression (24) for the electric field

and the electric charge from the constraint equation q = ∇ ·E.
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Figure 9. Left-hand panel: slice, at y = 0, of the magnetic field component Bz for different conductivities σ and the exact solution in the ideal-MHD limit.

The resolution is � x = 1/200 and the solution is plotted at t = 14. Right-hand panel: the same configuration as in the left-hand panel but with a non-uniform

conductivity with σ 0 = 106 and γ = [0, 3, 6, 9]. The values inside the star are essentially the same for any γ , while there are significant differences outside.

We have chosen r0 = 0.7, ρ = 1.0, ωφ = 0.1 and B0 = 0.05.

An atmosphere ambient fluid with ρ = 0.01 is added outside the

cylinder. Finally, the resolution is �x = 1/200 and the domain is

(x, y) ∈ [−3, 3].

This simple problem exhibits some of the issues present in a

magnetized rotating neutron star: a compactly supported rest-mass

density distribution, an azimuthal velocity field and a poloidal mag-

netic field. Suitable source terms describing a gravitational potential

have been added to the Euler equations in order to get, at least at

the initial time, a stationary solution. In the ideal-MHD limit, the

magnetic lines are frozen in the fluid and thus a static profile is also

expected for the magnetic field.

In the left-hand panel of Fig. 9, we plot the slice y = 0 of the

magnetic field component Bz at t = 14 as obtained from the evolution

of the resistive MHD system for different uniform conductivities

in the range σ 0 ǫ [102, 106]. In the limiting case σ 0 = 0, the

solution corresponds to a wave propagating at the speed of light

(i.e. the solution of the Maxwell equations in vacuum), while for

large values of σ 0 the solution is stationary (as expected in the

ideal-MHD limit). The behaviour observed in the left-hand panel

Fig. 9 is also the expected one: the higher the conductivity, the

closer the solution is to the stationary solution of the ideal-MHD

limit. Furthermore, for these values of the conductivity, the electric
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charge conservation shows the second-order convergence expected

from having employed the divergence-cleaning technique also to

the electric field.

For low conductivities, on the other hand, there is a significant

diffusion of the solution, which is quite rapid for σ 0 < 102 and for

this reason those values are not plotted here. We note that values

of the conductivity larger than σ 0 > 107 lead to numerical instabil-

ities that we believe are coming from inaccuracies in the evolution

of the charge density q, and which contains spatial derivatives of the

current vector. In addition, the stiff quantity Ex is seen to converge

only to an order ∼1.5. This can be due to the ‘final layer’ problem

of the IMEX methods, which is known to produce a degradation on

the accuracy of the stiff quantities. Luckily, this does not spoil the

convergence of the non-stiff fields, which are instead second-order

convergent. It is possible that the use of stiffly accurate schemes can

solve this degradation of the convergence and this is an issue we are

presently exploring.

We finally consider the same test, but now employing the non-

uniform conductivity given by equation (66) with σ 0 = 106 and

different values for γ . The results are presented in the right-hand

panel of Fig. 9, which shows that the magnetic fields inside the

star are basically the same in all the cases, stressing the fact that

the interior of the star will not be significantly affected by the

exterior solution, which has much smaller conductivity. However,

the electromagnetic fields outside the star do change significantly

for different values of γ , underlining the importance of a proper

treatment of the resistive effects in those regions of the plasma

where the ideal-MHD approximation is not a good one.

6 C O N C L U S I O N S

We have introduced IMEX Runge–Kutta schemes to solve numer-

ically the (special) relativistic resistive MHD equations and thus

deal, in an effective and robust way, with the problems inherent to

the evolution of stiff hyperbolic equations with relaxation terms.

Since for these methods the only limitation on the size of the time-

step is set by the standard CFL condition, the approach suggested

here allows us to solve the full system of resistive MHD equations

efficiently without resorting to the commonly adopted limit of the

ideal-MHD approximation.

More specifically, we have shown that it is possible to split the

system of relativistic resistive MHD equations into a set of equations

that involve only non-stiff terms, which can be evolved straightfor-

wardly, and a set involving stiff terms, which can also be solved

explicitly because of the simple form of the stiff terms. Overall,

the only major difficulty we have encountered in solving the resis-

tive MHD equations with IMEX methods arises in the conversion

from the conserved variables to the primitive ones. In this case, in

fact, there is an extra difficulty given by the fact that there are four

primitive fields which are unknown and have to be inverted simulta-

neously. We have solved this problem by using extra iterations in our

one-dimensional Newton–Raphson solver, but a multidimensional

solver is necessary for a more robust and efficient implementation

of the inversion process.

With this numerical implementation, we have carried out a num-

ber of numerical tests aimed at assessing the robustness and ac-

curacy of the approach, also when compared to other equivalents

ones, such as the Strang-splitting method recently proposed by

Komissarov (2007). All of the tests performed have shown the ef-

fectiveness of our approach in solving the relativistic resistive MHD

equations in situations involving both small and large uniform con-

ductivities, as well as conductivities that are allowed to vary non-

linearly across the plasma. Furthermore, when compared with the

Strang-splitting technique, the IMEX approach has not shown any

of the instability problems that affect the Strang-splitting approach

for flows with discontinuities and large conductivities.

While the results presented here open promising perspectives for

the implementation of IMEX schemes in the modelling of rela-

tivistic compact objects, at least two further improvements can be

made with minor efforts. The first one consists of the generalization

of the (special) relativistic resistive MHD equations with a scalar

isotropic Ohm’s law to the general relativistic case, and its appli-

cation to compact astrophysical bodies such a magnetized binary

neutron stars (Anderson et al. 2008; Liu et al. 2008). The solution

of the resistive MHD equations can yield different results not only

in the dynamics of the magnetosphere produced after the merger,

but also provide the possibility to predict, at least in some approx-

imation, the electromagnetic radiation produced by the merger of

these objects. The second improvement consists of considering a

non-scalar and anisotropic Ohm’s law, so that the behaviour of the

currents in the magnetosphere can be described by using a very high

conductivity along the magnetic lines and a negligibly small one

in the transverse directions (Komissarov 2004). Such an improve-

ment may serve as a first step towards an alternative modelling of

force-free plasmas.
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APPENDIX A : TVD SPAC E D ISCRETIZATION

We are generically interested in solving hyperbolic conservation

laws of the form

∂t U + ∂k
k F(U) = S(U) , (A1)

where U is the vector of the evolved fields, kF are their fluxes

and S contains the sources terms. The semidiscrete version of this

equation, in one dimension, is simply given by

∂t U i = −
F̂i+1/2 − F̂i−1/2

�x
+ S(U i), (A2)

where F̂i±1/2 are consistent numerical fluxes evaluated at the inter-

faces between numerical cells. These consistent fluxes are computed

by using HRSC methods, which are based on the use of Riemann

solvers. More specifically, we have implemented a modification of

the Local Lax–Friedrichs approximate Riemann solver introduced

by Alic et al. (2007), which only needs the spectral radius (i.e. the

maximum eigenvalue) of the system. In highly relativistic cases,

like the ones we are interested in, the spectral radius is close to the

light speed c = 1 and so the Local Lax–Friedrichs reduces to the

simpler Lax–Friedrichs flux:

F̂i+1/2 =
1

2
[FL + FR + (uL − uR)], (A3)

where uL, uR are the reconstructed solutions on the left- and the

right-hand side of the interface and FL, FR are their corresponding

fluxes. The standard procedure is then to reconstruct the solution

uL, uR by interpolating with a polynomial, and then compute the

fluxes FL = F(uL) and FR = F(uR). In our implementation, we first

recombine the fluxes and the solution as (Alic et al. 2007)

F ±
i = Fi ± ui . (A4)

Then, using a piecewise linear reconstruction, these combinations

can be computed on the left-/right-hand side of the interface as

F +
L = F +

i +
1

2
�+

i , F −
R = F −

i+1 −
1

2
�−

i+1 , (A5)

where �±
i are just the slopes used to extrapolate F±

i to the interfaces.

Finally, the consistent flux is computed by a simple average:

F̂i+1/2 =
1

2
(F +

L + F −
R ) . (A6)

For a linear reconstruction, the slopes can be written as

�+
i = L

(

F +
i+1 − F +

i , F +
i − F +

i−1

)

,

�−
i+1 = L

(

F +
i+2 − F +

i+1, F
+
i+1 − F +

i

)

, (A7)

so that it is trivial to check that the standard Lax–Friedrichs (A3)

is recovered when �+
i = �−

i . The choice of these slopes becomes

crucial in the presence of shocks or very sharp profiles, while the

use of some non-linear operators L(x, y) preserves the total varia-

tion diminishing (TVD) condition on the interpolating polynomial.

In this way, the TVD schemes capture accurately the dynamics of

strong shocks without the oscillations which appear with standard

finite-difference discretizations. Monotonicity is typically enforced

by making use of slope limiters and we have, in particular, imple-

mented the monotonized-centred (MC) limiter:

L(x, y) =
1

2
[sign(x) + sign(y)]min(2|x|, 2|y|,

1

2
|x + y|) , (A8)

which provides a good compromise between robustness and accu-

racy. Note that, with linear reconstruction, the scheme is second-

order accurate in the smooth regions, although it drops to first order

near shocks and at local extrema.
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