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ABSTRACT 

In 1960, Cohen introduced the kappa coefficient to measure chance-corrected nominal scale 
agreement between two raters. Since then, numerous extensions and generalizations of this inter- 
rater agreement measure have been proposed in the literature. This paper reviews and critiques 
various approaches to the study of interrater agreement, for which the relevant data comprise 
either nominal or ordinal categorical ratings from multiple raters. It presents a comprehensive 
compilation of the main statistical approaches to this problem, descriptions and characterizations 
of the underlying models, and discussions of related statistical methodologies for estimation and 
confidence-interval construction. The emphasis is on various practical scenarios and designs that 
underlie the development of these measures, and the interrelationships between them. 

RESUME 

C’est en 1960 que Cohen a propost I’emploi du coefficient kappa comme outil de mesure de 
I’accord entre deux tvaluateurs exprimant leur jugement au moyen d’une Cchelle nominale. De 
nombreuses gentralisations de cette mesure d’accord ont CtC proposies depuis lors. Les auteurs 
jettent ici un regard critique sur nombre de ces travaux traitant du cas ou I’Cchelle de rtponse 
est soit nominale, soit ordinale. Les principales approches statistiques sont passCes en revue, les 
modkles sous-jacents sont dicrits et caractCrisCs, et les problkmes liCs i I’estimation ponctuelle 
ou par intervalle sont abordCs. L’accent est m i s  sur diffkrents scknarios concrets et sur des 
schtmas exp6rimentaux qui sous-tendent I’emploi de ces mesures et les relations existant entre 
elles. 

1. INTRODUCTION 

In medical and social science research, analysis of  observer or interrater agreement 
data often provides a useful means of assessing the reliability of a rating system. The ob- 
servers may be physicians who classify patients as having or not having a certain medical 
condition, or competing diagnostic devices that classify the extent of disease in patients 
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into ordinal multinomial categories. At issue in both cases is the intrinsic precision of 
the classification process. High measures of agreement would indicate consensus in the 
diagnosis and interchangeability of the measuring devices. 

Rater agreement measures have been proposed under various practical situations. Some 
of these include scenarios where readings are recorded on a continuous scale: measure- 
ments on cardiac stroke volume, peak expiratory flow rate, etc. Under such scenarios, 
agreement measures such as the concordance correlation coefficient (Lin 1989, Chinchilli zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1996) are appropriate. Specifically, the concordance correlation coefficient evalu- 
ates the agreement between the two sets of readings by measuring the variation from the 
unit line through the origin. Our focus, however, is on agreement measures that arise 
when ratings are given on a nominal or ordinal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcategorical scale. Scenarios where raters 
give categorical ratings to subjects occur commonly in medicine; for instance, when rou- 
tine diagnostic tests are used to classify patients according to the stage and severity of 
disease. Therefore, the topic of interrater agreement for categorical ratings is of immense 
importance in medicine. 

Early approaches to studying interrater agreement focused on the observed proportion 
of agreement (Goodman and Kruskal 1954). However, this statistic does not allow for 
the fact that a certain amount of agreement can be expected on the basis of chance alone 
and could occur even if there were no systematic tendency for the raters to classify the 
same subjects similarly. Cohen (1 960) proposed kappa as a chance-corrected measure 
of agreement, to discount the observed proportion of agreement by the expected level 
of agreement, given the observed marginal distributions of the raters’ responses and 
the assumption that the rater reports are statistically independent. Cohen’s kappa allows 
the marginal probabilities of success associated with the raters to differ. An alternative 
approach, discussed by Bloch and Kraemer ( 1  989) and Dunn ( 1  989), assumes that each 
rater may be characterized by the same underlying success rate. This approach leads to 
the intraclass version of the kappa statistic obtained as the usual intraclass correlation 
estimate calculated from a one-way analysis of variance, and is algebraically equivalent 
to Scott’s index of agreement (Scott 1955). Approaches based on log-linear and latent- 
class models for studying agreement patterns have also been proposed in the literature 
(Tanner and Young 1985a, Agresti 1988, 1992). 

Just as various approaches have evolved in studying interrater agreement, many gener- 
alizations have also been proposed to the original case of two raters using a nominal scale 
rating. For example, Cohen (1968) introduced a weighted version of the kappa statistic 
for ordinal data. Extensions to the case of more than two raters (Fleiss I97 I ,  Light 197 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  
tandis and Koch 1977a, b, Davies and Fleiss 1982, Kraemer 1980), to paired-data situa- 
tions (Oden 1991, Schouten 1993, Shoukri et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1995) and to the inclusion of covariate 
information (Graham 1995, Barlow 1996) have also been proposed. 

The purpose of this paper is to explore the different approaches to the study of interrater 
agreement, for which the relevant data comprise either nominal or ordinal categorical rat- 
ings from multiple raters. I t  presents a comprehensive compilation of the main statistical 
approaches to this problem, descriptions and characterizations of the underlying models, 
as well as discussions of related statistical methodologies for estimation and confidence 
interval construction. The emphasis is on various practical scenarios and designs that 
underlie the development of these measures, and the interrelationships between them. In 
the next section, we review the basic agreement measures. Section 3 presents the various 
extensions and generalizations of these basic measures, followed by concluding remarks 
in Section 4. 
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2. BASIC AGREEMENT MEASURES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1. Cohen's Kappa Coefficient. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The most primitive approach to studying interrater agreement was to compute the 
observed proportion of cases in which the raters agreed, and let the issue rest there. This 
approach is clearly inadequate, since it does not adjust for the fact that a certain amount 
of the agreement could occur due to chance alone. Another early approach was based on 
the chi-square statistic computed from the cross-classification (contingency) table. Again, 
this approach is indefensible, since chi-square, when applied to a contingency table, 
measures the degree of association, which is not necessarily the same as agreement. The 
chi-square statistic is inflated quite impartially by any departure from chance association, 
either disagreement or agreement. 

A chance-corrected measure introduced by Scott (1 959, was extended by Cohen (1  960) 
and has come to be known as Cohen's kappa. It springs from the notion that the observed 
cases of agreement include some cases for which the agreement was by chance alone. 
Cohen assumed that there were two raters, who rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn subjects into one of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn mutually 
exclusive and exhaustive nominal categories. The raters operate independently; however, 
there is no restriction on the marginal distribution of the ratings for either rater. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi, 

be the proportion of subjects that were placed in the i,jth cell, i.e., assigned to the ith 
category by the first rater and to the jth category by the second rater (i,j = 1 , .  . . , rn). 
Also, let pi. = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,:, pi ,  denote the proportion of subjects placed in the ith row (i.e., the 
ith category by the first rater), and let p., = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAELl pi ,  denote the proportion of subjects 
placed in the j t h  column (i.e., the j t h  category by the second rater). Then, the kappa 
coefficient proposed by Cohen is 

where po = czl p i ,  is the observed proportion of agreement and pc = EL, p i p i  is the 
proportion of agreement expected by chance. Cohen's kappa is an extension of Scott's 
index in the following sense: Scott defined pc  using the underlying assumption that the 
distribution of proportions over the rn categories for the population is known, and is equal 
for the two raters. Therefore, if the two raters are interchangeable, in the sense that the 
marginal distributions are identical, then Cohen's and Scott's measures are equivalent. 
To determine whether i? differs significantly from zero, one could use the asymptotic 
variance formula given by Fleiss er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. ( 1  969) for the general rn x rn table. For large n, 
Fleiss et al.'s formula is practically equivalent to the exact variance derived by Everitt 
(1968) based on the central hypergeometric distribution. Under the hypothesis of only 
chance agreement, the estimated large-sample variance of i? is given by 

Assuming that i ? / d G  follows a normal distribution, one can test the hypothesis 
of chance agreement by reference to the standard normal distribution. In the context of 
reliability studies, however, this test of hypothesis is of little interest, since generally the 
raters are trained to be reliable. In this case, a lower bound on kappa is more appropriate. 
This requires estimating the nonnull variance of i?, for which Fleiss et al. provided an 
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approximate asymptotic expression, given by: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

Cicchetti and Fleiss (1977) and Fleiss and Cicchetti (1978) have studied the accuracy of 
the large-sample standard error of I? via Monte Carlo simulations. 

Landis and Koch (l977a) have characterized different ranges of values for kappa with 
respect to the degree of agreement they suggest. Although these original suggestions 
were admitted to be “clearly arbitrary”, they have become incorporated into the literature 
as standards for the interpretation of kappa values. For most purposes, values greater 
than 0.75 or so may be taken to represent excellent agreement beyond chance, values 
below 0.40 or so may be taken to represent poor agreement beyond chance, and values 
between 0.40 and 0.75 may be taken to represent fair to good agreement beyond chance. 

Much controversy has surrounded the use and interpretation of kappa, particularly re- 
garding its dependence on the marginal distributions. The marginal distributions describe 
how the raters separately allocate subjects to the response categories. “Bias” of one rater 
relative to another refers to discrepancies between these marginal distributions. Bias de- 
creases as the marginal distributions become more nearly equivalent. The effect of rater 
bias on kappa has been investigated by Feinstein and Cicchetti (1990) and Byrt et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 
(1993). Another factor that affects kappa is the true prevalence of a diagnosis, defined 
as the proportions of cases of the various types in the population. The same raters or 
diagnostic procedures can yield different values of kappa in two different populations 
(Feinstein and Cicchetti 1990, Byrt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet ul. 1993). In view of the above, i t  is important 
to recognize that agreement studies conducted in samples of convenience or in popula- 
tions known to have a high prevalence of the diagnosis do not necessarily reflect on the 
agreement between the raters. 

Some authors (Hutchinson 1993) deem it disadvantageous that Cohen’s kappa mixes 
together two components of disagreement that are inherently different, namely, disagree- 
ments which occur due to bias between the raters, and disagreements which occur because 
the raters rank-order the subjects differently. A much-adopted solution to this is the in- 
traclass kappa statistic (Bloch and Kraemer 1989) discussed in Section 2.3. However, 
Zwick (1988) points out that rather than straightway ignoring marginal disagreement or 
attempting to correct for i t , researchers should be studying i t  to determine whether i t  
reflects important rater differences or merely random error. Therefore, any assessment of 
rater agreement should routinely begin with the investigation of marginal homogeneity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2. Weighted Kappa Coefficient. 

Often situations arise when certain disagreements between two raters are more serious 
than others. For example, in an agreement study of psychiatric diagnosis in the categories 
personality disorder, neurosis and psychosis, a clinician would likely consider a diagnostic 
disagreement between neurosis and psychosis to be more serious than between neurosis 
and personality disorder. However, I? makes no such distinction, implicitly treating 
all disagreements equally. Cohen (1968) introduced an extension of kappa called the 
weighted kappa statistic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Pw), to measure the proportion of weighted agreement corrected 
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for chance. Either degree of disagreement or degree of agreement is weighted, depending 
on what seems natural in a given context. 

The statistic k, provides for the incorporation of ratio-scaled degrees of disagreement 
(or agreement) to each of the cells of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm table of joint assignments such 
that disagreements of varying gravity (or agreements of varying degree) are weighted 
accordingly. The nonnegative weights are set prior to the collection of the data. Since the 
cells are scaled for degrees of disagreement (or agreement), some of them are not given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
furl disagreement credit. However, P,, like the unweighted k, is furry chance-corrected. 

Assuming that w;, represents the weight for agreement assigned to the i,jth cell ( i ,  j = 
1 , .  . . , m),  the weighted kappa statistic is given by 

Note that the unweighted kappa is a special case of 2, with w,, = 1 for i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj and w;, = 0 
for i # j .  If, on the other hand, the m categories form an ordinal scale, with the categories 
assigned the numerical values 1,2,. . . ,m, and if w;, = 1 - ( i  - j ) ’ / ( m  - I)’, then 2, 
can be interpreted as an intraclass correlation coefficient for a two-way ANOVA computed 
under the assumption that the n subjects and the two raters are random samples from 
populations of subjects and raters, respectively (Fleiss and Cohen 1973). 

Fleiss et al. (1969) derived the formula for the asymptotic variance of P,, for both the 
null and the nonnull case. Their formula has been evaluated for its utility in significance 
testing and confidence-interval construction by Cicchetti and Fleiss (1 977) and Fleiss and 
Cicchetti (1978). Based on Monte Carlo studies, the authors report that only moderate 
sample sizes are required to test the hypothesis that two independently derived estimates 
of weighted kappa are equal. However, the minimal sample size required for setting 
confidence limits around a single value of weighted kappa is n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16m2, which is 
inordinately large in most cases. 

2.3. lntraclass Kappa. 

Bloch and Kraemer (1989) introduced the intraclass correlation coefficient as an 
alternative version of Cohen’s kappa, using the assumption that each rater is characterized 
by the same underlying marginal probability of categorization. This intraclass version of 
the kappa statistic is algebraically equivalent to Scott’s index of agreement (Scott 1955). 

The intraclass kappa was defined by Bloch and Kraemer (1989) for data consisting of 
blinded dichotomous ratings on each of n subjects by two fixed raters. It is assumed that 
the ratings on a subject are interchangeable; i.e., in the population of subjects, the two 
ratings for each subject have a distribution that is invariant under permutations of the 
raters. This means that there is no rater bias. Let X ; j  denote the rating for the ith subject 
by the j t h  rater, i = 1,. . . ,n, j = 1, 2, and for each subject i, let p; = P ( X i j  = 1) be the 
probability that the rating is a success. Over the population of subjects, let E pi = P ,  

P’ = 1 - P and Vur p ;  = u;. The intraclass kappa is then defined as 

a’p Kf = - 
PP‘. 

An estimator of the intraclass kappa can be obtained by introducing the probability 
model in Table 1 for the joint responses, with the kappa coefficient explicitly defined in 
its parametric structure. Thus, the log-likelihood function is given by 

In L(P,K,Jnii,niz,nzi,nzt) = nil 1n(P2 +KIPPI) 

+ (n12 + n2 , )  In{ PP’(I - KI)} + n22 In( P” + KIPPI). 
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TABLE I :  Underlying model for estimation of intraclass kappa 

Response type 
Expected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x, I x, 2 Obs. freq. probability 

The maximum-likelihood estimators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj and kI for P and K/  are obtained as 

and 

with the estimated standard error for PI given by (Bloch and Kraemer 1989) 

The estimate 21, the MLE of KI as defined by (1) under the above model, is identical 
to the estimator of an intraclass correlation coefficient for 0-1 data. I f  the formula for 
the intraclass correlation for continuous data (Snedecor and Cochran 1967) is applied to 
dichotomous data, then the estimate 21 is obtained. Assuming k/ is normally distributed 
with mean KI and standard error SE(k,), the resulting lOO(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa)% confidence interval 
is given by 121 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzlPn/2 SE(k/), where ZI-+ is the lOO(1 - a)  percentile point of the 
standard normal distribution. The above confidence interval has reasonable properties 
only in very large samples that are not typical of the sizes of most interrater agreement 
studies (Bloch and Kraemer 1989, Donner and Eliasziw 1992). 

Bloch and Kraemer (1989) also derive a variance-stabilizing transformation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21, 
which provide improved accuracy for confidence-interval estimation, power calculations 
or formulations of tests. A third approach (Bloch and Kraemer 1989, Fleiss and Davies 
1982) is based on the jackknife estimator k, of KI .  This estimator is obtained by 
averaging the estimators k-,, where 2 - ,  is the value of k/ obtained over all subjects 
except the ith. Bloch and Kraemer present a large-sample variance for 2, which can be 
used to construct confidence limits. However, the authors point out that the probability 
of obtaining degenerate results (I?, undefined) is relatively high in smaller samples, 
especially as P approaches 0 or 1 or K /  approaches 1.  

For confidence-interval construction in small samples, Donner and Eliasziw ( 1992) 
propose a procedure based on a chi-square goodness-of-fit statistic. Their approach 
is based on equating the computed one-degree-of-freedom chi-square statistic to an 
appropriately selected critical value, and solving for the two roots of kappa. Using this 
approach, the upper (ku) and lower ( k L )  limits of a 100( 1 - a)% confidence interval for 
KI are obtained as 

I 
j 1‘3 



1999 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTERRATER AGREEMENT MEASURES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 = arccos -, v = - g ( y 2 y 3  1 - 3Yl), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i y Y 3  * - 5 Y 2 ) ; ;  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 

W 

9 

- 1 .  
n 1 2  + n21 + { 1 - 2&1 - h}x : ,&<L 

B( 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(x:., -a + n) 
Y3 = 

The coverage levels associated with the goodness-of-fit procedure have improved accu- 
racy in small samples across all values of KI and P. Donner and Eliasziw (1992) also 
describe hypothesis-testing and sample-size calculations using this goodness-of-fit proce- 
dure. The above approach has been extended recently by Donner and Eliasziw (1997) to 
the case of three or more rating categories per subject. Their method is based on a series 
of nested, statistically independent inferences, each corresponding to a binary outcome 
variable obtained by combining a substantively relevant subset of the original categories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.4. Tetrachoric Correlation Coefficient. 

In the health sciences, many clinically detected abnormalities which are apparently 
dichotomous have an underlying continuum which cannot be measured as such, for 
technical reasons or because of the limitations of human perceptual ability. An example 
is radiological assessment of pneumoconiosis, which is assessed from chest radiographs 
displaying a profusion of small irregular opacities. Analytic techniques commonly used 
for such data treat the response measure as if it were truly binary (abnormal-normal). Irwig 
and Groeneveld (1988) discuss several drawbacks of this approach. Firstly, i t  ignores 
the fact that ratings from two observers may differ because of threshold choice. By 
“threshold” we mean the value along the underlying continuum above which raters regard 
abnormality as present. Two raters may use different thresholds due to differences in their 
visual perception or decision attitude, even in the presence of criteria which attempt to 
define a clear boundary. Furthermore, with such data, the probability of misdassifying 
a case across the threshold is clearly dependent on the true value of the underlying 
continuous variable; the more extreme the true value (the further away from a specified 
threshold), the smaller the probability of misclassification. Since this is so for all the 
raters, their misclassification probabilities cannot be independent. Therefore, kappa-type 
measures (i.e., unweighted and weighted kappas, intraclass kappa) are inappropriate in 
such situations. 

When the diagnosis is regarded as the dichotomization of an underlying continuous 
variable that is unidimensional with a standard normal distribution, the tetrachoric cor- 
relation coefficient (TCC) (Pearson 1901) is an obvious choice for estimating interrater 
agreement. Specifically, the TCC estimates the correlation between the ucruul latent (un- 
observable) variables characterizing the raters’ probability of abnormal diagnosis, and 
is based on assuming bivariate normality of the raters’ latent variables. Therefore, not 
only does the context under which TCC is appropriate differ from that for kappa-type 
measures, but quantitatively they estimate two different, albeit related, entities (Kraemer 
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1997). Several twin studies have used the TCC as a statistical measure of concordance 
among monozygotic and dizygotic twins, with respect to certain dichotomized traits 
(Corey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1992; Kendler et al. 1992; Kvaerner et al. 1997). 

The tetrachoric correlation coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis obtained as the maximum-likelihood estimate 
for the correlation coefficient in the bivariate normal distribution, when only informa- 
tion in the contingency table is available (Tallis 1962, Hamdan 1970). The computation 
of TCC is based on an iterative process, using tables for the bivariate normal integral 
(Johnson and Kotz 1972). It has recently been implemented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAS, and can be ob- 
tained through the /p lcorr  option with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtables statement in the PROC FREQ 
procedure. 

3. EXTENSIONS AND GENERALIZATIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1. Case of Two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARaters. 

( a )  Kappa coeflcient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom paired data. 

Suppose two raters classify both the left and right eyes in a group of n patients for the 
presence or absence of a specified abnormality. Interrater agreement measures based on 
rating such paired body parts should allow for the positive correlation generally present 
between observations made on the paired organs of the same patient. It is incorrect to 
treat the data as if they arose from a random sample of 2n organs. The application of 
a variance formula such as that given by Fleiss et al. (1969) may lead to unrealistically 
narrow confidence intervals for kappa in this context, and spuriously high rejection rates 
for tests against zero. This is often countered by calculating separate kappa values for 
the two organs. However, this approach is again inefficient and lacks conciseness in the 
presentation of the results. 

Oden (1991) proposed a method to estimate a pooled kappa between two raters when 
both raters rate the same set of pairs of eyes. His method assumes that the true left-eye 
and right-eye kappa values are equal and makes use of the correlated data to estimate 
confidence intervals for the common kappa. The pooled kappa estimator is a weighted 
average of the kappas for the right and left eyes, and is given by 

where 

p,, = proportion of patients whose right eye was rated i by rater 1 and j by rater 2, 
h,, = proportion of patients whose left eye was rated i by rater 1 and j  by rater 2, 
w,, = agreement weight that reflects the degree of agreement between raters I and 2 if 

and p, , p,, h, , h, have their usual meanings. Applying the delta method, Oden obtained 
an approximate standard error of the pooled kappa estimator. The pooled estimator was 
shown to be roughly unbiased (the average bias, based on simulations, was of the order 
of lo-’) and had better performance than either the naive two-eye estimator (which treats 
the data as a random sample of 2n eyes) or the estimator based on either single eye, in 
terms of correct coverage probability of the 95% confidence interval for the true kappa 
(Oden 1991). 

Schouten (1993) presented an alternative approach in this context. He noted that 
existing formula for the computation of weighted kappa and its standard error (Cohen 

they use ratings i and j  respectively for the same eye, 
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TABLE 2: Binocular data frequencies and agreement weights. 

Total zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fll (1.0) f 12  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0.5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i 3  (0.5) f i 4  (0.0) 

R-L+ PI (0.5) f 32  (0.0) fu (1.0) f34 (0.5) 
R-L- f41 (0.0) f42 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0.5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf43 (0.5) f44 (1.0) 

f2i (0.5) f22 ( 1 . 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi3 (0.0) f24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0.5) 

Total I f i  f 2  f 3  

11 

1968, Fleiss zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet ul. 1969) can be used i f  the observed as well as the chance agreement is 
averaged over the two sets of eyes and then substituted into the formula for kappa. To this 
end, let each eye be diagnosed normal or abnormal, and let each patient be categorized 
into one of the following four categories by each rater: 

R+L+: abnormality is present in both eyes, 
R+L-: abnormality is present in the right eye but not in the left eye, 
R-L+: abnormality is present in the left eye but not in the right eye, 
R-L-: abnormality is absent in both eyes. 

The frequencies of the ratings can be represented as shown in Table 2. 
Schouten used the weighted kappa statistic to determine an overall agreement measure. 

He defined the agreement weights w;, to be 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.O (complete agreement) if the raters agreed 
on both eyes, 0.5 (partial agreement) if the raters agreed on one eye and disagreed on 
the other, and 0.0 (complete disagreement) if the raters disagreed on both eyes. The 
agreement weights for each cell are represented in parenthesis in Table 2. 

The overall agreement measure is then defined to be k, = (p,, - p c ) / (  1 - pc) ,  where 

and 

and the w;,’s are as defined in Table 2. Formulae for the standard error can be calculated 
as in Fleiss et al. (1969). Note that the above agreement measure can be easily extended 
to accommodate more than two rating categories by simply adjusting the agreement 
weights. Furthermore, both Oden’s and Schouten’s approaches can be generalized for 
the setting in which more than two (similar) organs are evaluated, e.g., several glands or 
blood vessels. 

Shoukri et al. (1995) consider a different type of pairing situation where raters classify 
individuals blindly by two different rating protocols into one of two categories. The 
purpose is to establish the congruent validity of the two rating protocols. For example, 
two recent tests for routine diagnosis of paratuberculosis in cattle animals are the dot 
immunobinding assay (DIA) and the enzyme linked immunosorbent assay (ELISA). 
Comparison of the results of these two tests depends on the serum samples obtained 
from cattle. One then evaluates the same serum sample using both tests - a procedure 
that clearly creates a realistic “matching”. 

Let Xi = I or 0 according to whether the ith (i = 1,2,. . . , n )  serum sample tested by 
DIA was positive or negative, and let Yi = 1 or 0 denote the corresponding test status 
of the matched serum sample when tested by the ELISA. Let xkl (k, 1 = 0, 1 )  denote the 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn l h  is the number of subjects in study h who received success ratings from both 
raters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn?h is the number who received one success and one failure rating, n3h is the 
number who received failure ratings from both raters, and nh = nlh+n2h+n.3),. An overall 
measure of agreement among the studies is estimated by computing a weighted average 
of the individual Ph, yielding 

To test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH() : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK I  = K? = . . = K N ,  Donner et al. propose a goodness-of-fit test using the 
statistic 

where &h(k) is obtained by replacing P h  by p h  and Kh by k in x /h(Kh) ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 1,2,3; h = 
I ,  2 , .  . . , N .  Under the null hypothesis, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx: follows an approximate chi-square distribution 
with N - 1 degrees of freedom. Methods to test a variety of related hypotheses, based 
on the goodness-of-fit theory, are described by Donner and Klar (1996). 

using a large-sample variance approach. The estimated large-sample variance of Ph (Bloch 
and Kraemer 1989, Fleiss and Davies 1982) is given by 

Donner et d. (1996) also discuss another method of testing H() : K I  = K2 = . . . = KN 

- 
Letting W h  = I/Vur Ph and i2 = (Cr=, WhPh)/(C;=, W h ) ,  an approximate test of *) 
is obtained by referring xt = xr=, i f ; l ( P h  - Z)2 to tables of the chi-square distribution 
with N - 1 degrees of freedom. 

The statistic xt is undefined if kh = 1 for any h. Unfortunately, this event can occur 
with fairly high frequency in samples of small to moderate size. In contrast, the goodness- 
of-fit test statistic, xg, can be calculated except in the extreme boundary case of Ph = 1 
for all h = I ,  2,. . . , N ,  when a formal test of significance has no practical value. Neither 
test statistic can be computed when bh = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 or 1 for any h, since then k h  is undefined. 
Based on a Monte Carlo study, the authors found that the two statistics have similar 
properties for large samples ( n h  > 100 for all h). In this case differences in power tend 
to be negligible except in the case of unequal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxh’s or very unequal nh’s, where x: tends 
to have a small but consistent advantage over xt. For smaller sample sizes, clearly the 
goodness-of-fit statistic xi is preferable. 

3.2. Case of Multiple Raters: Generalizations of Kappa. 

Fleiss (197 1) proposed a generalization of Cohen’s kappa statistic to the measurement 
of agreement among a constant number of raters (say, K ) .  Each of the n subjects are rated 
by K (> 2) raters independently into one of rn mutually exclusive and exhaustive nominal 
categories. This formulation applies to the case of different sets of raters (i.e., random 
ratings) for each subject. The motivating example is a study in which each of 30 patients 
was rated by 6 psychiatrists (selected randomly from a total pool of 43 psychiatrists) into 
one of five categories. 
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Let K;, be the number of raters who assigned the ith subject to the jth category, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,.  . . , n, j = 1, .  . . ,m, and define 

Note that p, is the proportion of all assignments which were to the j t h  category. The 
chance-corrected measure of overall agreement proposed by Fleiss (197 1) is given by 

Under the null hypothesis of no agreement beyond chance, the K assignments on each 
subject are multinomial variables with probabilities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp l ,  . . . ,pm. Using this, Fleiss (1971) 
obtained an approximate asymptotic variance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd under the hypothesis of no agreement 
beyond chance: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In addition to the d-statistic for measuring overall agreement, Fleiss (197 1) also proposed 
a statistic to measure the extent of agreement in assigning a subject to a particular 
category. A measure of the beyond-chance agreement in assignment to category j is 
given by 

It is easy to see that d, the measure of overall agreement, is a weighted average of the 
dj’s, with the corresponding weights pi( 1 -p j ) .  Under the null hypothesis of no agreement 
beyond chance, the approximate asymptotic variance of 2, is 

{ 1 + 2(K - l)pj}’ + 2(K - I)pj( 1 - p j )  
Vuro 2, = 

nK(K - 1)’p,(l - p i )  

In a different, unbalanced setting (subjects rated by different numbers of raters), 
Landis and Koch (1977b) associated Fleiss’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 with the intraclass correlation coefficient 
computed for a one-way random-effects ANOVA model with the single factor corresponding 
to the (random) subjects. Davies and Fleiss (1982) demonstrated this equivalence for a 
two-way balanced layout. Specifically, the authors proposed a kappa-like statistic for a 
set of multinomial random variables arrayed in a two-way (subject by rater) layout, and 
showed that this statistic can be obtained either via chance-correction of the average 
proportion of pairwise agreement, or via an analysis of variance for a two-way layout. 
In contrast to Fleiss’s (1971) formulation, theirs applies to the case of a common set of 
raters who judge all subjects. Applications include the case where each of the same set 
of several physicians classifies each of a sample of patients into one of several mutually 
exclusive and exhaustive categories, or the case where blood samples are classified by 
each of the same set of several assay methods. 

Kraemer (1980) considered the issue of different numbers of ratings per subject. She 
also relaxed the conditions of mutually exclusive categories by allowing a subject to be 
classified into more than one category by the same rater. For example, a subject could 
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be classified in category zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA or category zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB equally ( A / B )  or in  category A primarily and 
category B secondarily (AB).  Although both of these categorizations involve both A and 
B ,  they are treated differently. The extension of the kappa coefficient in this scenario 
(P,,, say) is derived by regarding an observation on a subject as a rank ordering of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m categories. In the example above, a rating of A / B  would impose a rank of 1.5 on 
the categories A and B and a rank of A(m + 3) on the other m - 2 categories. Using 
the Spearman rank correlation coefficient, k,, is defined to be k(, = ( r ,  - rT)/(I - r7), 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt-1 is the unweighted average of the intrasubject correlation coefficients and rT is 
the average Spearman rank correlation coefficient among zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall pairs of observations in the 
sample. Equivalently, this kappa statistic can be computed using an analysis of variance 
on the ranks. 

For most forms of kappa in the multiple-raters case, only the asymptotic variance, under 
the null hypothesis of no beyond-chance agreement, is known. Davies and Fleiss (1982) 
discuss some interesting applications where the hypothesis that the population kappa 
equals zero might be of interest. Specifically, in estimating familial aggregation of certain 
psychiatric disorders, where several family members are asked to report independently 
on other members of their family, failure to reject the null hypothesis might suggest that 
reliance on the reports from available relatives for information about unavailable relatives 
might produce totally unreliable data. 

3.3. Modelling Patterns of Agreement. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a )  Log-linear models. 

Rather than summarizing agreement by a single number, Tanner and Young (198Sa) 
model the structure of the agreement in the data. They consider log-linear models to 
express agreement in terms of components, such as chance agreement and beyond- 
chance agreement. Using the log-linear modelling approach, one can display patterns 
of agreement among several observers, or compare patterns of agreement when subjects 
are stratified by values of a covariate. Assuming that there are n subjects who are rated by 
the same K raters (K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2) into rn nominal categories, Tanner and Young express chance 
agreement, or statistical independence of the ratings, using the following log-linear model 
representation: 

where v,,..~ is the expected cell count in the i j  . . . fth cell of the joint K-dimensional cross- 
classification of the ratings, u is the overall effect, u? is the effect due to categorization 
by the kth rater in the cth category ( k  = I , .  . . , K; c = 1 , .  . . , m ) ,  and cyLI u;' = 

agreement beyond chance in the following fashion: 

. . .  - - Crzl u p  = 0. A useful generalization of the independence model incorporates 

The additional term h,,,, I represents agreement beyond chance for the i j  . . . Ith cell. To 
test a given hypothesis concerning the agreement structure, the parameters corresponding 
to the agreement component h,,,. I are assigned to specific cells or groups of cells in the 
contingency table. The term €Iij.../ can be defined according to what type of agreement 
pattern is being investigated. For example, to investigate homogeneous agreement among 
K = 2 raters, one would define a,, to be equal to a common b when i = j ,  and 0 when 
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i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOn the other hand, to investigate a possibly nonhomogeneous pattern of agreement 
(i.e,, differential agreement by response category), one would consider zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6i, = 6;l(i  = j ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i , j  = I , .  . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn, where the indicator I ( i  = j )  equals 1 when i = j ,  and 0 when i # j .  
For the general scenario of K > 2 raters, this approach addresses higher-order agreement 
as well as pairwise agreement (Tanner and Young 1985a). The parameters then describe 
conditional agreement: for instance, the agreement between two raters for fixed ratings 
by the other raters. 

As Agresti (1992) points out for the case of two raters, the odds that the ratings 
are concordant rather than discordant can be related to parameters in the log-linear 
model representation. This makes log-linear models good vehicles for studying agree- 
ment. Furthermore, under this representation, the models for independence, homogeneous 
agreement and nonhomogeneous agreement form a nested sequence of models. There- 
fore, using the partitioning property of the likelihood-ratio chi-square statistic, one could 
examine the improvement in fit given the introduction of a set of parameters. Specifically, 
a comparison of the likelihood-ratio chi-square statistics for the model of independence 
and the model of homogeneous agreement can be used to assess whether, in fact, there 
is any beyond-chance agreement. Similarly, assuming that the model for nonhomoge- 
neous agreement is correct, a comparison of the associated likelihood-ratio chi-square 
statistic to that corresponding to the model for homogeneous agreement can be used to 
test whether the agreement is uniform. These models can be easily fitted using available 
software such as GLIM or SAS. Under the log-linear modelling approach, the use of odds 
ratios offer an alternative to characterizing interobserver agreement by a kappa statistic, 
or intraclass correlation coefficient. The latter approach has important advantages too. 
For example, one advantage of the intraclass correlation approach is that this parameter 
is bounded, with specific values within its range representing relatively well-understood 
levels of agreement. However, a major disadvantage of this approach is the loss of in- 
formation from summarizing the table by a single number. In this respect, the log-linear 
modelling approach is better, since it allows one to model the structure of agreement, 
rather than simply describing it with a single summary measure. 

Log-linear models treat the raters in a symmetric manner. In some applications, one 
rater might be a gold-standard device, in which case asymmetric interpretations may be 
of greater interest. In such situations, one can express the models (4) and (5) in terms of 
logits of probabilities for a rater's response, conditional on the standard rating (Tanner 
and Young 1985a). 

Graham (1995) extended Tanner and Young's approach to accommodate one or more 
categorical covariates in assessing agreement pattern between two raters. The baseline for 
studying covariate effects is taken as the conditional independence model, thus allowing 
covariate effects on agreement to be studied independently of each other and of covariate 
effects on the marginal observer distributions. For example, the baseline model for two 
raters and a categorical covariate X is given by 

where up1, up' are as defined in Equation (4), u," is the effect of the xth level of the 
covariate X, and u;' is the effect of the partial association between the kth rater 
(k = 1,2) and the covariate X. Given the level of the covariate X, the above model 
assumes independence between the two raters' reports. Graham uses this conditional 
independence model as the baseline from which to gauge the strength of agreement. The 
beyond-chance agreement is modelled as follows: 

log V I J X  = u + up1 + up' + u," + Upxl' + u;" + bRIR? ~ ( i  = j )  + i f I R Z X I ( i  = j ) ,  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGRIR2/ ( i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj )  represents overall beyond-chance agreement, and G : ~ R Z X / ( i  = j )  
represents additional chance-corrected agreement associated with the xth level of the 
covariate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX .  Likelihood-ratio goodness-of-fit statistics can be used to compare the full 
model, which is saturated in the case of a single covariate and a binary response, with 
a reduced model which assumes = 0 for all x, that is, the magnitude of chance- 
corrected agreement is the same at all levels of the covariate (e.g., the magnitude of 
chance-corrected agreement is the same for men and women). Inferences can also be 
based on the covariate agreement parameter estimates and their estimated asymptotic 
standard errors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) Latent-class models. 

Several authors have proposed latent-class models to investigate interrater agreement 
(Aickin 1990, Uebersax and Grove 1990, Agresti 1992). Latent-class models express the 
joint distribution of ratings as a mixture of distributions for classes of an unobserved 
(latent) variable. Each distribution in the mixture applies to a cluster of subjects repre- 
senting a separate class of a categorical latent variable, those subjects being homogeneous 
in some sense. Following Agresti (1992), we describe a basic latent-class model for inter- 
rater agreement data. This approach treats both the observed scale and the latent variable 
as discrete. 

Suppose there are three raters, namely, A ,  B and C ,  who rate each of n subjects 
into m nominal categories. The latent-class model assumes that there is an unobserved 
categorical scale X ,  with L categories, such that subjects in each category of X are 
homogeneous. Because of this homogeneity, given the level of X ,  the joint ratings of 
A ,  B and C are assumed to be statistically independent. This is referred to as local 

independence. For a randomly selected subject, let ni,/k denote the probability of ratings 
( i , j ,  1 )  by raters ( A ,  B ,  C) and categorization in class k of X .  Furthermore, let v;,/k denote 
the expected frequencies for the A - B - C - X  cross-classification. The observed data then 
constitute a three-way marginal table of an unobserved four-way table. The latent-class 
model corresponding to log-linear model ( A X ,  B X ,  C X )  is the nonlinear model having 
form 

log v,,/+ = u + .;‘ + u: + u,“ + log C exp(4  + + u y  + u?). 
k 

One can use the fit of the model to estimate conditional probabilities of obtaining various 
ratings by the raters, given the latent class. One can also estimate probabilities of 
membership in various latent classes, conditional on a particular pattern of observed 
ratings, and use these to make predictions about the latent class to which a particular 
subject belongs. In that sense, latent class models focus less on agreement between the 
raters than on the agreement of each rater with the “true” rating. This is useful information 
if the latent classes truly correspond to the actual classification categories. But, of course, 
one never knows whether that is the case. I t  seems, therefore, that a combination of 
loglinear and latent-class modelling should be a useful strategy for studying agreement. 

To fit latent-class models, one can use data augmentation techniques, such as the EM 
algorithm. The E (expectation) step of the algorithm approximates counts in the complete 
A - B - C - X  table using the observed A - B - C  counts and the working conditional distribution 
of X ,  given the observed ratings. The M (maximization) step treats those approximate 
counts as data in the standard iterative reweighted least-squares algorithm for fitting log- 
linear models. Alternatively, one could adopt for the entire analysis a scoring algorithm 
for fitting nonlinear models or a similar method for fitting loglinear models with missing 
data (Haberman 1988). 
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3.4. Agreement Measures for Ordinal Data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Medical diagnoses often involve responses taken on an ordinal scale, many of which 
are fairly subjective. For example, in classifying p21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWAF’ gene expression in human 
breast cancer cells, pathologists use the following ordered categories: ( I )  no expression, 
(2) moderate expression, and (3) overexpression. For such scales, disagreement between 
raters may arise partly because of differing perceptions about the meanings of the category 
labels and partly because of factors such as interrater variability. As Maclure and Willett 
(1987) point out, with ordinal data, an intermediate category will often be subject to more 
misclassification than an extreme category because there are two directions in which to err 
away from the extremes. Therefore, a modification of kappa which accounts for severity 
of discordance or size of discrepancy is better suited for ordinal data. The weighted kappa 
statistic (Cohen 1968, Landis and Koch 1977a) offers such a modification. However, since 
the magnitude of the weighted kappa is greatly influenced by the relative magnitudes of 
the weights, some standardization in usage of the weights should be employed (Maclure 
and Willett 1987). Within each off-diagonal band of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm x m cross-classification table, 
the cell indexes differ by 1,2,. . ., or m- 1 units, and the magnitude of disagreement in the 
ratings corresponds to the degree of disparity between indexes. An intuitively appealing 
standard usage, therefore, is to take the disagreement weight w,,, i , j  = I , .  . . ,m ,  to be 
proportional to the distance (or its square) between the two points i and j on the ordinal 
scale. With the above choice of weights, the weighted kappa statistic reduces to a standard 
intraclass correlation coefficient (Fleiss and Cohen 1973). 

O’Connell and Dobson (1984) propose a general class of chance-corrected agreement 
measures suitable for ordinal data and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK (> 2) raters with distinct marginal distributions. 
Specifically, these authors propose subject-specific measures of agreement, which allow 
identification of subjects who are especially easy or difficult to classify. The overall 
agreement measure based on the whole group of n subjects is an average of the subject- 
specific measures, and includes the weighted kappa statistic (Cohen 1968) as a special 
case. A modification of O’Connell and Dobson’s overall agreement measure has also been 
suggested (Posner et al. 1990). This allows weighting of subjects to reflect a stratified 
sampling scheme. 

Log-linear models for ordinal scale ratings have been proposed in the literature from the 
perspectives of modelling disagreement (Tanner and Young 1985b) as well as agreement 

(Agresti 1988) patterns. In ordinal scale ratings, magnitudes as well as directions of 
the disagreements of ratings are important. Therefore, the primary advantage of the 
log-linear framework over statistics like weighted kappa is that it provides a natural 
way of modelling “how” the chance-corrected frequencies differ across the off-diagonal 
bands of the cross-classification table. For example, is there a systematic direction bias in 
one of the raters? Tanner and Young’s formulation (1985b) considers the independence 
model as the baseline for chance correction, and the authors incorporate an “additional” 
component for the off-diagonal cells of the m x m cross-classification table to model 
disagreement . 

Agresti (1988) argues that ordinal scale ratings almost always exhibit a positive 
association between the ratings. Conditional on the ratings not being identical, there 
is still a tendency for high (low) ratings by one rater to be accompanied by high (low) 
ratings by another rater. Therefore, to model agreement between ordinal scale ratings it 
is inappropriate to simply take the independence model as the baseline. For two raters 
using the same ordered categories, Agresti ( 1  988) proposes a model of agreement plus 
linear-by-linear association. This approach specifically combines Tanner and Young’s 
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(1985a) model and the uniform association model (Goodman 1979) for bivariate cross- 
classifications of ordinal variables. This model partitions overall agreement into three 
parts: chance agreement (what would occur even if the classifications were independent), 
agreement due to a baseline association between the ratings, and an increment that reflects 
agreement in  excess of that occurring simply from chance agreement or from the baseline 
association. I t  can be represented as 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b , ,  = { b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= j 9  

0, otherwise, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hi c . . . -= An, are fixed scores assigned to the response categories, and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu's and the 
v ' s  are as defined in Equation (4) of Section 3.3. The model (6) is a special case of the 
quasisymmetry model, and has simple interpretations through odds ratios. 

Latent-class models that utilize the ordinality of ordered categories (Bartholomew 
1983) have also been applied to studies of rater agreement. One such model of this 
type also treats the unobserved variable X as ordinal, and assumes a linear-by-linear 
association between each classification and X (Agresti and Lang 1993), using scores 
for the observed scale as well as for the latent classes. Another approach is to posit an 
underlying continuous variable ( Q u  Pf id.  1992, 1995). Instead of assuming a fixed set of 
classes for which local independence applies, one could assume local independence at 
each level of a continuous latent variable. Williamson and Manatunga (1997) extended Qu 
et al.'s ( 1995) latent-variable models to analyze ordinal-scale ratings (with rn categories) 
arising from n subjects who are being assessed by K raters (cg., physicians) using R 

different rating methods (e.g., medical diagnostic tools). Overall agreement and subject- 
level agreement between the raters are estimated based on the marginal and association 
parameters, using the generalized estimating equations approach (Liang and Zeger 1986). 
This method allows for subject- and/or rater-specific covariates to be included in  the 
model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. CONCLUSION 

The literature on interrater agreement analyses has grown extensively over the last 
decade. In this paper, we have presented a comprehensive survey of the various methods 
for the study of interrater agreement when the response variable is nominal or ordinal 
categorical in nature. Our focus was on various practical scenarios and designs that 
underlie the development of these methods, and the interrelationships between them. 

The version of the kappa statistic selected should depend on the population model 
underlying the study in question. If each rater uses the same underlying marginal dis- 
tribution of ratings, then the intraclass kappa is appropriate. When the assumption of a 
common marginal distribution across raters within a study is not tenable, methods using 
Cohen's kappa are more appropriate. 

Most of the methods we discussed are designed to quantify variance attributable 
to the rating process. In that sense, they focus on how the ratings characterize the 
raters. Agreement is assessed at multiple levels: firstly, at the overall level; secondly, 
whether certain individual raters vary appreciably from an established gold-standard norm 
of rating; and, thirdly, whether there is nonhomogeneous agreement between different 
groups of raters (e.g., rater groups that differ in training andor  experience). A different 
context arises when the primary focus is on how the ratings characterize the subjects 
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(Kraemer 1992). For example, a patient given a diagnosis carrying serious cost and risk 
consequences often seeks a second (or third or fourth) diagnostic opinion, for even the 
most expert and careful physician using the best of medical facilities can go wrong. 
How many such opinions suffice to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAguurunree the diagnosis? When one obtains all the 
multiple opinions, what rule (of consensus) should be used to yield the best decision? In 
such contexts, subject-specific agreement measures can provide valuable information. 
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