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Abstract 
W e  address a n  open and hitherto neglected problem 
i n  computer vision, how to reconstruct the geometry 
of objects with arbitrary and possibly anisotropic bidi- 
rectional reflectance distribution functions (BRDFs) .  
Present reconstruction techniques, whether stereo vi- 
sion, structure f rom motion, laser range finding, etc. 
make explicit or implicit assumptions about the B R D F .  
Here, we introduce two methods that were developed 
by re-examining the underlying image formation pro- 
cess; the methods make n o  assumptions about the ob- 
ject’s shape, the presence or absence of shadowing, o r .  
the nature of the B R D F  which may  vary over the sur- 
face. The first method takes advantage of Helmholtz 
reciprocity, while the second method exploits the fact 
that the,  radiance along a ray of light is constant. I n  
particular, the first method uses stereo pairs of images 
in which point light sources are co-located at the cen- 
ters of projection of the stereo cameras. The second 
method is  based on double covering a scene’s incident 
light field; the depths of surface points are estimated 
using a large collection of images in which the view- 
point remains fixed and a point light source illuminates 
the object. Results f rom our implementations lend em- 
pirical support to  both techniques. 

1 Introduction 
We address an open problem in computer vision: how 
to reconstruct the shape (geometry) of an object with 
an arbitrary, unknown bidirectional reflectance distri- 
bution function (BRDF) [8]. Our solutions stand in 
contrast t o  existing methods which assume, either im- 
plicitly or explicitly, that the BRDF of points on the 
object’s surface are Lambertian, approximately Lam- 
bertian, or of some known parametric form. 

A BRDF at a point on the surface is the ratio of 
the outgoing radiance to  the incident irradiance. The 
BRDF can be represented as a positive 4-D function 
p ( i ,  6 )  where i is the direction of an incident light ray, 
and 6 is the direction of the outgoing ray. The coor- 
dinates of and 6 are usually expressed with respect 
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Figure 1: The measured intensity of one pixel as a 
function of light source position. Images were acquired 
as a point source was moved over a quarter of a sphere. 

to a coordinate system attached to  the tangent plane. 
The BRDF is not an arbitrary function since from the 
second law of thermodynamics, it sltisfies Helmholtz’s 
reciprocity condition p ( i ,  e )  = p(6 ,  i) [SI. Th’ IS symme- 
try essentially says that the fraction of light coming 
from direction i and emitted in direction e is the same 
as that coming from 6 and emitted in direction I. 

In computer vision and computer graphics, models 
are used to  simplify the BRDF. In computer vision, 
Lamberts Law is the basis for most reconstruction tech- 
niques. And, in computer graphics it would not be 
an exaggeration t o  say that more than 99.99% of ren- 
dered images use a Phong reflectance model which is 
composed of an ambient term, a diffuse (Lanibertian) 
term and an ad hoc specular term [18]. While the 
isotropic Phong model captures the reflectance prop- 
erties of plastics over a wide range of conditions, it does 
not effectively capture the reflectance of materials such 
as metals and ceramics, particularly when they have 
rough (random) surfaces or a regular surface structure 
(e.g., parallel grooves). Much less common are a nuni- 
ber of physics-based parametric models [ la ,  17, 211, yet 
each of these only characterizes a limited class of sur- 
faces. So, a recent alternative is to measure the BRDF 
and represent it by a suitable set of basis functions [ll]. 

As a simple empirical illustration of the complexity 
of the BRDF’s of real surfaces, consider the two views 
of a surface plot shown in Fig. 1. For a ceramic figurine, 
this plot shows the measured intensity of one pixel as 
an isotropic point source is moved over a quarter of a 
sphere at  approximately a constant distance from the 
surface. While the deep rectangular cutout (dark part) 
is attributable to  self shadowing, n0t.e that the rest 
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of surface lacks the characteristic lobes in reflectance 
models such as Phong. 

For a surface whose BRDF is not a function of 6 (i.e., 
Lambertian), the image intensity of a surface point 
will be the same irrespective of the viewing direction. 
This “constant brightness assumption” is the basis for 
establishing correspondence in dense stereo and mo- 
tion methods. Yet for objects with a general and un- 
known BRDFs, this constant brightness assumption is 
violated. Thus, establishing correspondences between 
images gathered from different viewpoints under con- 
stant lighting is difficult - if not impossible. Methods 
for computing optical flow (e.g., Horn and Schunck [8]) 
also assume constant brightness. 

Similarly, nearly all photometric stereo methods as- 
sume that the BRDF is Lambertian [13, 19, 221, is 
completely known a priori, or can be specified using a 
small number of parameters usually derived from lim- 
ited physical models [7, 9, 16, 201. In these methods, 
multiple images under varying lighting (but fixed view- 
point) are used to estimate a field of surface normals 
which is then integrated to produce a surface. When 
the BRDF varies across the surfaces, there is insuffi- 
cient information to  reconstruct both the geometry and 
the BRDF. Naturally with only a single image, shape- 
from-shading methods are even more limited. In [14], 
a hybrid method with controlled lighting and object 
rotation was used to estimate both the structure and 
a non-parametric reflectance map, though the BRDF 
must be isotropic and uniform across the surface. 

Even the effectiveness of structured light methods 
such as triangulation-based light stripers and laser 
range finders depends upon the BRDF. While it is no 
longer necessary to paint an object matte white to  ob- 
tain effective range scans from light stripers, specular- 
ities and interreflections tend to  cause erroneous depth 
readings for metallic objects. Similarly, when the sur- 
face is specular and there is little backscatter, there 
may be insufficient return for a laser range finder to  
estimate depth. There are numerous other reconstruc- 
tion techniques, yet their effectiveness also depends 
upon explicit or implicit assumptions about the BRDF. 

The only techniques that do not seem to  impose any 
requirements on the BRDF are shape-from-silhouette 
(by deformation of the occluding contour) and shape- 
from-shadows methods. However, silhouette-based 
methods are limited to  surface points on the visual 
hull, and implementations of shape-from-shadow algo- 
rithms are not yet particularly effective. 

In contrast, we present two new methods for recov- 
ering the geometry of objects with an arbitrary BRDF. 
In both cases, we assume a local reflectance model and 
ignore the secondary effects of interreflection. The first 

technique uses a modest set of images of a scene ac- 
quired from multiple viewpoints with controlled illumi- 
nation. The second technique uses a large number of 
images acquired from a single viewpoint, but under dif- 
ferent lighting conditions. While more data intensive, 
this technique can yield a 2-D slice of the 4-D BRDF 
at each reconstructed surface point which can then be 
used for photorealistic image-based rendering [15]. 

The first method requires as few as two images of 
the objectlscene taken from differing viewpoints un- 
der differing lighting conditions. The method is essen- 
tially a form of binocular (or multinocular) stereopsis 
in which the lighting is controlled in such a manner as 
to exploit Helmholtz reciprocity. If only two images are 
used, image acquisition proceeds in two simple steps. 
First, an image is acquired with the objectlscene il- 
luminated by a single point light source. Second, the 
positions of the camera and light source are swapped, 
and the second image is acquired. After swapping, the 
point light source occupies the former position of the 
camera’s focal point, while the focal point occupies the 
former position of the point light source. By acquiring 
the images in this manner, we ensure (up to  contribu- 
tions from interreflections) that for all corresponding 
points in the images, the ratio of the outgoing radi- 
ance to  the incident irradiance is the same. Note that 
in general this is not true for stereo pairs - unless the 
surfaces of the objects have Lambertian reflectance. 

The second method requires only a single viewpoint 
of the object, but many images of the object illumi- 
nated by point light sources at different positions. In 
particular, we require two sets of images of the ob- 
ject: an inner and an outer set. The inner set of im- 
ages is created by moving a point light source over any 
known surface that is star-shaped (e.g., convex) with 
respect to  all object points. The outer set of images is 
similarly acquired with light sources on a second non- 
intersecting star-shaped surface. Using these two sets 
of images, a point for point reconstruction of the ob- 
ject’s visible surface is performed by estimating the 
depth of each point along the line of sight. Depth esti- 
mation is based on a simple assumption: the radiance 
along a ray of light is constant. With this assumption 
in hand, we reconstruct the surface by double covering 
the incident light field at the visible surface (the space 
of light rays). In particular, we are able to  equate the 
scene radiance of an object point produced by a point 
light source lying on the inner star-shaped surface with 
the point’s scene radiance produced by some corre- 
sponding point light source lying on the outer star- 
shaped surface. The correct correspondence can then 
be cast as a 1-D optimization over the point’s depth 
along the line of sight. 
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Figure 2: The setup for acquiring a pair of images 
that exploits Helmholtz reciprocity: a. An image is 
acquired with the scene illuminated by a single point 
light source. b. Second image is acquired after the 
positions of the camera and light source are swapped. 

2 Reciprocity Stereopsis 
In this section we present a method for reconstructing 
surfaces with arbitrary BRDF’s (e.g., non-Lambertian) 
using binocular (or multinocular) stereopsis. The 
method differs from standard stereopsis in that the il- 
lumination of the scene is chosen to  exploit Helmholtz 
reciprocity [8].  Images are gathered by interchanging 
the positions of the light source and the camera’s focal 
point as shown in Fig. 2. 

The method offers two advantages over standard 
stereo arrangements. First, the image intensities of 
corresponding points in the images do not depend on 
the direction from which they are viewed - specu- 
larities and other non-Lambertian radiometric events 
appear fixed to the surface of the object as seen in 
the images. Thus, specularities may become powerful 
features which can actually aid in solving the stereo 
matching problem. This is in direct contrast with con- 
ventional stereo matching in which the illumination is 
fixed. In the latter case, specularities are located a t  dif- 
ferent points on the object [4]. The second advantage 
of our method is that the shadowed and half-occluded 
regions are in correspondence - if a point is in shadow 
in the left image, it is not visible in the right image, 
and vice versa. Thus, if one uses a stereo matching al- 
gorithm that exploits the presence of half-occluded re- 
gions for determining depth discontinuities [l, 3, 5, 61, 
then these shadowed regions may significantly enhance 
the quality of the depth reconstruction. These stereo 
matching algorithms are designed to resolve the un- 
matchable half-occluded regions by introducing depth 
(or disparity) discontinuities at the shadow’s edge. 

Let us consider a calibrated multinocular stereo sys- 
tem composed of n pinhole cameras whose centers of 
projection are located at 0, for c = 1 . . . n. From a 
calibration procedure, the multi-view epipolar geome- 
try can be established. As in trinocular stereo, given a 
point ql in image one, there is a one-parameter fam- 

ily of (n-1)-point sets {qz, ..., qn} in the other images 
that could correspond to gl . Like disparity in binocu- 
lar stereopsis, let d parameterize this family; in images 
m = 2 .  . . n, the n - 1 points lying on the epipolar lines 
corresponding to ql are given by qm (d) .  To find corre- 
spondences, this family is searched, typically by choos- 
ing discrete values for d. For a Lambertian surface, 
the image intensity at ql (or a small window around 
q1) is compared to  the image intensities at qm(d) for 
m = 2 .  . . n. Alternatively, some stereo methods match 
filtered intensities (e.g., normalized cross-correlation) 
or a vector of filtered intensities [lo]. For a calibrated 
system, the 3-D location of the surface point p(d) can 
be determined for each value of d. We now develop an 
alternative matching constraint - one that that can be 
used for any BRDF. 

Consider n isotropic point light sources to be co- 
located at the camera centers - this can be accom- 
plished using mirrors or approximated by placing each 
light source near a camera. Images are acquired in the 
following fashion. Light source 1 is turned on while the 
other sources are turned off, and n - 1 images are ac- 
quired from all cameras but camera 1. This process is 
repeated n times until n(n - 1) images are acquired. 
Figure 2 shows this situation for a binocular system. 

We now consider a constraint (a necessary condi- 
tion) that can be used to determine if the image points 
qm(d) from n cameras correspond to  the same scene 
point p for some value of d. Let ic = &(oc - p) 
denote the direction from p to camera (or light source) 
c.  The image irradiance in camera c when p is illumi- 
nated by light source 1 is given by 

1 

ZC,l = 7 p ( i l ,  ic)n . i l  -.A-- 
lo1 - PI2 

where ii.+.~ gives the cosine of the angle between the di- 
rection to the light source and the surface normal a t  p, 

is the l/r2 falloff from an isotropic point light 
lo1 -PI 
source, p is the BRDF, and 7 is a proportionality con- 
stant between measured irradiance and scene radiance 
for radiometrically calibrated lenses. 

Now, consider the reciprocal case where light source 
c at 0, is turned on, and camera 1 a t  01 observes p. In 
this case, the image irradiance is 

Because of Helmholtz reciprocity, we have that 
p ( C C , + l )  = p(+l ,CC) ,  and so we can eliminate the 
BRDF term in the above two equations to  obtain 

(3) ( i l , C W l  - i C , l W C )  ’ n = 0 

where w1 = &+I and w, = 1 
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Figure 3: Result of Helmholtz reciprocity-based stereo: 
a. A stereo pair of images acquired by swapping the 
camera and light source. b. Disparity map. 

In Eq. 3, Zl,, and zc,i are measurements. For cali- 
brated cameras and a value for the multinocular dis- 
parity d,  w, and w1 can be computed. So, only the 
surface normal n is unknown. 

For n 2 3, we can form n(n - l ) / 2  linear constraints 
of this form. Let W be the n(n - 1)/2 by 3 matrix 
whose rows are (il,,wl -Zc,~wc)T, then these constraints 
can be expressed as 

wn = 0. (4) 

Clearly, the surface normal lies in the null space of W, 
and it can be estimated from a noisy matrix using sin- 
gular value decomposition. Alternatively, W should 
be rank 2, and this can be used as a necessary con- 
dition for establishing correspondence when searching 
the disparity d. Note that at least three camera/light 
source positions are needed to exploit this constraint. 
2.1 Implementation and Results 
To evaluate the use of Helmholtz reciprocity and co- 
locating cameras and light sources, we have imple- 
mented a simplified version of this approach using a 
binocular pair of cameras observing a scene whose ge- 
ometry is shown in Fig. 2. Since the constraint derived 
above requires at least a trinocular rig, we have cho- 
sen a camera and scene configuration in which we can 
make the following two approximations. 

When the stereo rig has a small baseline with respect 
to  the scene depth, 

(5) 1 %  - PI2 101 - PI . 

n . i + 7 z n . G c R 5 1 .  ( 6 )  

2 

Also, if the surfaces are nearly fronto-parallel, we have 

Figure 4: Result of conventional stereo: a. A stereo 
pair from the same camera positions as in Fig. 3, but 
under the fixed lighting. b. Disparity map. 

Using these approximation along with Helmholtz 
reciprocity, the BRDF can be eliminated from Eqs. 1 
and 2 to obtain the matching constraint 

2c, l  = Z l , C .  (7) 

That is, correspondence can be established simply 
by comparing pixel intensities across the epipolar lines 
in the two images just as in standard stereo vision al- 
gorithms. Recall that unlike standard stereo, we have 
lit the scene differently for the two images. 

Figure 3.a shows a stereo pair similar to the one il- 
lustrated in Fig. 2. Note that the specularities occur 
at the same locations in both images, as is predicted 
by Helmholtz reciprocity. Thus, the specularities be- 
come features in both images which can actually aid 
in establishing correspondence. Note again that the 
shadowed regions occur in the half-occluded regions in 
both images - if a point is in shadow in the left image, 
it is not visible in the right image, and vice versa. 

To establish correspondence between the two images 
shown in Fig. 3.a, we have implemented the “World 
11” stereo algorithm described in [l]. We chose this 
algorithm both because it is intensity-based (not edge- 
based) and because it implicitly resolves half-occluded 
regions by linking them to  depth (disparity) disconti- 
nuities. The result for our implementation of [l] ap- 
plied to  the stereo pair in Fig. 3.a is shown in Fig. 3.b. 

We then gathered a new stereo pair as seen in 
Fig. 4.a in which the lighting was the same for both the 
left and right images. The stereo pair in Fig. 4.a differs 
from that in Fig. 3a only in the illumination - the posi- 
tions of the cameras and scene geometry were identical. 

394 



The result for our implementation of [l] applied to the 
stereo pair in Fig. 4.a is shown in Fig. 4.b. Note that 
we used the same implementation of [l] to establish 
correspondences for the new pair of images. Although 
the accuracy of the stereo matching may have been 
improved by pre-filtering the images, we avoided this 
to make the point that image intensity is very much 
viewpoint dependent. 

There are two things to  note about the results. 
First, the Helmholtz images in Fig. 3 have significant 
specularities, yet they remain fixed in the images and 
do not hinder stereo matching. Contrast this with the 
images in Fig. 4. These also have specularities (as seen 
on the frame and on the glass) and non-Lambertian ef- 
fects (as seen in the intensity change of the background 
wall), yet they move between images and significantly 
hinder matching. Second, there is little texture on the 
background wall, yet the Helmholtz images have shad- 
ows in the half-occluded regions which allow the stereo 
algorithm to estimate the depth discontinuity at the 
boundary of the picture frame. 

3 Reconstruction from Light Fields 
In this section, we present a surface reconstruction 
method that resembles photometric stereo in that a sin- 
gle viewpoint and multiple lighting directions are used. 
Yet, this method differs significantly in that depth, 
rather than surface normal, is directly estimated, and 
no assumptions are made about the BRDF. 

Let us first consider a fixed calibrated pinhole cam- 
era observing a static scene; see Fig. 5.  Let the co- 
ordinates of a point on the image plane be given by 
q E Et2. For every q, there is a line passing through 
the optical center o in the direction f(q) which we call 
the line of sight of pixel q. We obtain the function 
f(q) during camera calibration, and o is taken as the 
origin. The image point q is the projection of a scene 
point p lying on the line defined by o and f(q). The 
depth A ( q )  of p from o is unknown, and the relation 
can be expressed as 

P(q, = X(q)f(q) + 0. (8 )  

The process of reconstruction is the estimation of the 
depth map A ( q ) ,  in this case from images gathered 
under different lighting conditions. Since we will be 
able to  independently estimate A for each q, we will 
drop q from our notation and write p as a function of 
the unknown depth A. 

Consider the scene to be illuminated by an isotropic 
point light source (not at infinity) whose location s E 
lR3 is, known. The direction of the light ray from s to  
p is d(s, A) = &(p(A) - s), and the distance be- 
tween s and p is d ( ~ ,  A) = Ip(A) - S I .  While the BRDF 

Figure 5 :  A 2-D schematic of the reconstruction setup. 
A camera whose origin is at o observes a scene point 
p which is illuminated by light sources covering two 
surfaces, parameterized as SI (41, $1) and ~ ~ ( 4 2 ,  $2). 

is typically defined with respect to a coordinate system 
attached to the surface’s tangent plane, we will specify 
it in a global coordinate system as a function of the 
incoming light ray d and the outgoing direction -f; 
i.e., we write the apparent BRDF as p,(d,f). (Note 
that this apparent BRDF will include global properties 
of the scene like cast shadows.) While the relation be- 
tween the incoming irradiance to the outgoing radiance 
is proportional to the true BRDF and the cosine be- 
tween the incoming light and surface normal, we “fold” 
the cosine term into the apparent BRDF pa(d, 6 ) .  

The image intensity measured at q is aAfunction of 
the light source intensity, d2(s,  A) and p,(d, f ) .  With- 
out loss of generality, we assume that all images are 
acquired with a unit intensity light source. The mea- 
sured image intensity (irradiance) for image point q 
corresponding to a surface point at depth A illuminated 
by light source s can be expressed as: 

As shown in Fig. 5 ,  consider moving the light source 
over any known surface that is star-shaped with re- 
spect to  all points on the object - any convex surface 
is sufficient. Parameterizing the surface by (41, $I),  it 
can be expressed as s1(&,$1). For every light source 
position SI ($1, $I), an image 11 (41, $1) is measured. 
Since we can treat each image location independently, 
we will simply denote the intensity measured at a sin- 
gle pixel by i l (&,  $1). Note that il is a function of the 
light source position; Figure 1.a shows a surface plot 
for the intensity measured at one pixel as a light source 
is moved over a quarter sphere. 

If the depth A were known, then from the image 
data, a two-dimensional slice for fixed i of the apparent 
BRDF at p could be determined from p,(d(s,X),$) = 
d2(sl(q!q, $I), A ) z ~ ( + l ,  $1). Alternatively, if the appar- 
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Figure 8: An example of 143 images with lights located 
on the inner sphere and used for reconstruction. 

at s 2  ( 4 2  (41, $1 ; A), $2 (41 , $1 ; 4). So instead, we must 
interpolate from the available samples, and this is done 
as follows. The second surface is triangulated with the 
sample light source positions serving as vertices. Given 
s ~ ( c # J ~ ,  $1) and an estimated depth A, we find the in- 
tersection S ; ( ~ ~ I , $ J ~ )  of the ray defined by p(A) and 
SI (41, $1) with one of the triangles in the triangula- 
tion of the second surface. From the intensity values 
corresponding to  the vertices and the coordinates of 
the light source of the vertices, bilinear interpolation 
is used to approximate the intensity ia(sa). 

The integral in Eq. 11 becomes a summation over 
n sampled light sources whose locations are s(& , $:) 
on the first surface with corresponding pixel intensities 
zl(q!(, $:). This gives the following objective function 

0“ = C,”=1[d,2cx,iac4z(4~,2L:;X),~2(d~,1CI:;X)) 
-d: (A)il(4J:,  & ) I 2 .  (12) 

There is no reason to  expect Eq. 12 to be convex, 
but fortunately it is only a function of one variable A, 
and it is bounded by the inner light source surface. 
Since O ( A )  is independent for each pixel, the depth of 
each pixel A(q)  can be estimated independently. 

Figure 8 shows a mosaic of 143 images of a ceramic 
pitcher illuminated by the light sources on the inner 
sphere positioned as shown in Fig. 7.b. The recon- 
struction method was applied to  this object, and a 
depth map is shown in Fig. 9.a; note the small spout. 
Examples of a few other reconstructions of decidedly 
non-Lambertian objects can also be found in Fig. 9. 

4 Discussion 
This paper explores the issue of reconstructing the ge- 
ometry of objects having an arbitrary (non-parametric) 
BRDF which may vary over the surface. By consider- 
ing two well-known physical principles, Helmholtz reci- 
procity and the fact that radiance along a ray of light 
is constant, we have introduced two distinct methods 
for reconstructing the surface. Our main purpose was 
to  show both algorithmically and empirically how these 
principles could be exploited for surface reconstruction. 
While both methods can reconstruct the surface geom- 
etry, the second method can also provide a 2-D slice 

of the 4-D BRDF, and this can be used for image- 
based rendering of the object under novel lighting con- 
ditions [2, 151. The implemented algorithms are a first 
step in demonstrating the utility of these principles for 
surface reconstruction; there are a multitude of future 
directions to explore. 

For the reciprocity-based stereo method, we have 
yet to fully implement the multinocular method with- 
out the approximations in Sec. 2.1. While we have con- 
sidered a fully calibrated multinocular rig, is a full Eu- 
clidean reconstruction (rather than projective) possible 
for a geometrically uncalibrated camera system? Since 
the l / r2  term in Eq. 1 provides a non-linear constraint 
on the camera center, a Euclidean reconstruction may 
still be possible. When acquiring images, we did not 
use images where the light source and camera center 
were co-located (i.e., Ic,l with c = 1). This “collinear 
light source” configuration was used in [14] and corre- 
sponds to a camera/source configuration lying on the 
symmetry set of the BRDF - i.e., self-reciprocal con- 
figurations. 

For the light field-based reconstruction, there are 
also many avenues to explore. What is the relation of 
the BRDF and the geometry to the necessary sampling 
rate of light source positions? What are effective ways 
to  render images and to extrapolate from a 2-D slice 
of the BRDF to the full BRDF? What can be gained 
from additional coverings of the incident light field? 
In our experiments, we used 8-bit cameras, yet the 
range of scene radiances is rather large in the presence 
of specularities; how would high dynamic range cam- 
eras/imaging help? Currently, this method requires 
that the light source positions be known. It would be 
preferable to  simply “wave” a light over the object, 
and then to simultaneously estimate the light source 
positions and scene structure. 

Finally, one wonders how the multi-view reciprocity- 
based method and the incident light field-based 
method can be merged to  reconstruct both the surface 
geometry and the full 4-D BRDF. 
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