
Beyond Location Check-ins: Exploring Physical and
Soft Sensing to Augment Social Check-in Apps

Kiran K. Rachuri1,2, Theus Hossmann1,3, Cecilia Mascolo1, Sean Holden1
1University of Cambridge, UK; 2Samsung Research America, USA; 3Swisscom, Switzerland

{kiran.rachuri, theus.hossmann, cecilia.mascolo, sean.holden}@cl.cam.ac.uk

Abstract—Smartphone sensing research has been advancing at
a brisk pace. Yet, current social networking services often only
take advantage of location sensing: applications like Foursquare
use the phone’s GPS and Wi-Fi radios to infer the user’s
location to simplify checking-in to a place. However, smartphone
sensing could be exploited to considerably expand the spectrum
of information a user can share with a few clicks with friends:
not only the location of an event but activities such as “cooking
dinner” or “waiting for a bus” can be predicted and suggested
to the user to ease the check-in process. In this paper we show
how mobile phone sensing can be used in this sense. For this
prediction process to be accurate however, sensors need to be
sampled often, with a considerable impact on the phone battery.
To alleviate this issue, we explore streams of phone usage data
(soft sensors), such as application usage, messages, and phone
calls for predicting the user’s activity in a more efficient fashion
for augmenting mobile social check-in apps. We have deployed
our application and collected a dataset of over 2700 check-ins
to 48 activities from 20 users. Our analysis shows a prediction
accuracy of 75% when offering 5 check-in suggestions to users.
Furthermore, we show that when using only soft sensors we
can achieve very similar performance to that obtained with real
sensors, thereby significantly reducing the impact on the phone
battery. This finding might have a potentially high impact on
smartphone based activity check-in apps.

I. INTRODUCTION

The unprecedented growth of Location Based Social Net-
works (LBSN) such as Foursquare and Facebook Places has
fulfilled the desire of millions of users to share their current
context with their social circles using smartphones. Motiva-
tions for context sharing range from social: signaling to friends
and discovering new friends, over personal: life-logging and
quantified-self, to gaming: points, mayorships and badges [1].
Yet, there is more to human activity than just location, indeed
studies [2] have shown that users wish to share more about
their daily context than just the restaurant or bar they visit.
On a more fine-grained and less location-centric level, a user
could signal that she is at work drinking a coffee so that her
colleagues may join her or that she is waiting for a bus so that
her family may want to call during this idle time. In spite of
the enthusiasm of users to share context, a cumbersome check-
in process (e.g., a long list of potential places to check-in) can
discourage users from frequently sharing updates using these
apps. Indeed, check-in fatigue [3] is a known problem in LBSN
applications causing users to abandon the service and thereby
adversely affecting the revenues of the service provider. Even if
users check-in often, the service providers still need to build
models to generate revenue from these check-ins. Given the
advances in the mobile advertising space, one could envisage
a lucrative business model utilizing activity check-ins of users.
Although, a major obstacle in realizing this would be to gauge
how trustworthy a user’s check-in is, as the user might have
already ended the activity or checked-in to a wrong activity.

The overarching goal of our work is to considerably expand
check-in applications beyond just location, by addressing the
check-in burden and fatigue problems while minimizing the
impact on the phone’s battery. To this end, we explore the
automatic prediction and suggestion of activities to check-in to,
by exploiting the phone’s sensors, including a variety of “soft
sensors” (i.e., phone usage logs). We design features based on
smartphone sensor data and explore machine learning models
to predict the user’s activity, which can then be used by social
check-in apps. To demonstrate this, we have developed up2, a
social networking mobile application, which uses the concept
of check-in to allow users to easily share their current activity
on a fine-grained level. The activities we consider are not
limited to physical activities unlike most existing work [4], but
more fine-grained and diverse, e.g., eating, reading, watching
TV. In fact, with up2, users can select among 47 pre-defined
activities, as well as define their own activities.

In order to enable easy and quick check-ins, suggestions
must be ready as soon as the user starts the check-in pro-
cess (typically by clicking on a check-in button). As sensor
sampling duration of typical activity recognition systems are
in the order of seconds (e.g., GPS, accelerometer), initiating
it after the user starts the check-in process will incur a high
delay. The phone’s sensors, therefore, must be sampled often
in the background to have the suggestions ready when the
user wants to check-in. Continuous sensing, however, leads to
faster battery depletion. We, therefore, explore the feasibility
of using low energy cost data streams such as phone calls,
messages, app usage to suggest activities, which we refer to as
soft (software) sensors. The intuition behind using soft sensors
is that a user’s phone usage in many cases has a correlation
with her everyday activities. E.g., a user might typically call
her parents when driving home from the office, or might read
news, e.g., BBC or CNN news apps, while she waits for her
bus, or use an activity tracker app while running. The idea is
to exploit these correlations to infer activities, as the energy
cost of using soft sensors is negligible compared to that of
physical sensors. Further, we also explore validating check-ins
using smartphone sensor data, which is useful in cases where
check-ins are directly tied to commercial incentives, e.g., a
user might earn a discount by frequently checking-in to a food
place, or to support targeted advertising, which is an important
consideration for the service providers. Our work is one of the
very few systems [5], [6] to exploit phone usage patterns to
predict user activity and validate the user’s check-in, and to the
best of our knowledge, our work is the first to quantitatively
compare the energy-accuracy trade-offs of physical and soft
sensors. Our main contributions are the following:

• We present a framework, which expands check-ins to fine-
grained activities by exploiting smartphone sensing for
check-in recommendation and validation.

• We explore the feasibility of using low-cost data streams
(soft sensors) for predicting the user’s activity at negligible
energy cost. Our results on the performance comparison of
soft and real sensor features might have a potentially high
impact on mobile social check-in applications.

• We report on a deployment of a context check-in application
and analyze the collected dataset of about 2700 fine-grained
activity check-ins. Our evaluation results show that we
i) successfully suggest the activity a user will check-in to in
about 75% of the cases (by offering as little as 5 suggestions
out of a possible 48), and ii) identify 80% of fake check-ins
at a false positive rate of less than 3%.

II. RELATED WORK AND GOALS

Activity and context recognition based on smartphone
sensing has been widely explored. The phone’s accelerometer
has been proposed as a means to detect physical activity [4], [7]
(e.g., walking, running). Other systems use the microphone [8],
or combinations of different sensors [6]. Mun et al. [9]
use accelerometer and location to detect transportation mode.
Multimodal sensing, in particular the combination of GPS,
accelerometer and mic, has been found effective in recognizing
a variety of activities, beyond the relatively simple walking
and running [10]. However, none of these works explored the
feasibility of using smartphone sensing, especially soft sensors,
to assist users in sharing their activities at a fine-grained level
– we consider 48 activities in our evaluation. Goal 1: Using
the phone’s sensor signals, infer the activity the user is
about to check-in to.

In order to suggest activities to check-in to, data needs to
be captured from the phone’s sensors and then processed. If
these tasks are initiated after a user starts the check-in process,
the high delays incurred might have a negative impact on the
user experience. Therefore, like existing systems [4], [6], [9], a
sensor assisted check-in application also requires background
sensing as the application would not know when a user wants
to check in. However, continuous background sensing leads
to rapid depletion of the phone’s battery thereby discouraging
users from using these type of applications. Thus, researchers
have devised mechanisms to limit the impact on the phone
battery like duty cycling [4]. Our approach to achieve energy
savings is very different from the existing work: instead of
duty-cycling sensors, we use data streams that incur negligible
energy cost such as phone calls or messages or app usage
patterns to predict the user’s activity. For example, using an
application such as runtastic or endomondo might infer that the
user might be running, or calling a specific friend (or a contact)
might suggest that the user is at home. Although software
data streams have been explored by some existing work [5],
[11], none of them compared the energy-accuracy trade-offs of
physical and soft sensors. Further, the problem we consider,
i.e., predicting the user’s check-in, is very different from these
works. Goal 2: To achieve energy efficiency, explore the
feasibility of using the phone’s soft sensor signals to infer
the activity the user is about to check-in to.

A pivotal business model of check-in applications is tar-
geted advertising, e.g., advertising about “sports shoes” if the
user is a frequent runner. More importantly, advertising at
the right moment considerably enhances the chance that the
user reads the advertisement, e.g., when the user is “waiting

(a) Friends’ activities. (b) Check-in screen. (c) Past activities.
Fig. 1: up2 screen shots.

for bus”. A related challenge, therefore, is verifying that the
activity check-in indeed corresponds to what she is doing.
“Invalid” or “Fake” check-ins may happen for various reasons,
e.g., checking in after the activity has finished or a user may lie
about the activity. Further, fake check-ins also impact the user-
centric features of these apps such as friend recommendations
and gaming. To mitigate the impact of fake check-ins, is thus
our third goal. Goal 3: Identify invalid or fake check-ins
using the phone’s physical and software sensor signals.

III. SOCIAL CHECK-IN APPLICATION

We built up2, a mobile social check-in app for the Android
platform. The main goal of the app is not only to collect data
from users but also to serve as a platform for implementing
our check-in prediction scheme. Further, it uses many concepts
from existing social networking services to motivate users to
check-in more regularly so that it enables our research on
check-in prediction. After installation, the user first sets up
the profile consisting of user name, description and profile
picture. To connect to their friends, users can search for user
names and send friend requests. All the user’s friends will be
notified about her check-ins and comments. The main screens
in up2 are shown in Figure 1. To check in, the user either
clicks on one of the suggested activities (the buttons shown in
Figure 1a; for the data collection these are disabled or static) or,
if none of the suggestions is correct, the user clicks the check-
in symbol. If the check-in screen (Figure 1b) is accessed from
the suggestion buttons, the context and activity are already
filled in. Otherwise, the user first selects the context and then
the respective activity. Additionally to the pre-defined activities
in Table I, users can define their own activities and assign them
to one of the default contexts.

The central part of the application for this work is the
sensing service. We used the open source sensor libraries
presented in [12] to implement the sensing service. The
service captures data from various physical and soft sensors of
the phone such as Accelerometer, Mic, GPS, Wi-Fi, Screen,
Proximity, Application usage, Calls, SMS Messages, Battery,
and Network information. The application collects data from
the physical sensors only when the user checks in to reduce the
impact on the phone’s battery, whereas it continuously collects
software sensor data. We store the sensor data temporarily
on the phone in an SQLite database, which is uploaded
asynchronously to a server for feature extraction. The server
side of up2 is implemented on the Google App Engine.

Leisure Home Work Transit Sports Vacation
Eating, Drinking Cooking, Eating Meeting, Reading Walking, Cycling Walking, Running Sightseeing
Dancing, Date Coffee, Housework Writing, Telephone Motorbike, Car, Bus Cycling, Climbing Shopping, Reading
Waiting, Coffee Sleeping, TV, Gaming Chatting, Coffee Tram, Train, Plane Football, Tennis Hiking, Beach

Shopping, Waiting Waiting Waiting Swimming, Waiting Waiting
Hanging Out, Reading

TABLE I: List of pre-defined activities.
IV. APPLICATION DEPLOYMENT

In this section we describe the real-world deployment of
the application described in the previous section. We recruited
volunteers by advertising in social media such as Twitter
and Facebook and circulating emails in different universities
requesting participation. We also searched for volunteers by
snowball sampling. We recruited a total of 29 users spread over
3 European countries and collected check-in data for about a
month. We have disabled check-in suggestions for the data
collection as it might introduce a bias in the check-ins.

Dataset. We collected over 3200 check-ins to 48 different
activities. However, we observed a variance in the number of
check-ins per user: Some users only provided around 20 check-
ins, whereas some others contributed 200 and more check-
ins. We removed check-ins with no associated sensor data and
users with less than 50 check-ins, which resulted in over 2700
check-ins to 48 activities from 20 users. As described in the
previous section, users can check in to predefined activities
(Table I) or define their own. We have seen check-ins to
307 different activities, 260 of which are user-defined. User-
defined activities range from “Studying” to “Web browsing” or
“Procrastinating”. Figure 2a shows the distribution of number
of check-ins per user. Another observation is that there are
differences in how users use the application. While some
users report a wide range of different activities across different
contexts, others only report a relatively small number of
activities from few contexts (e.g., checking in only at home
or at work). Further, we notice that not all users check-in
to the same activities. In Figure 2b, showing the number
of users per activity, we observe a long tail of activities
with only few users. These observations on variance in user
behaviour further emphasise the challenges in designing check-
in predictors. Figure 2c shows complementary cumulative
distribution function of the number of check-ins per activity.
We see that relatively many activities have only a small number
of check-ins. For 48 activities we have more than 10 check-ins.
In the following we will focus on these 48 activities. Note that
this set actually contains unique context-activity pairs, thus,
for example, the activity “coffee” is contained three times, in
contexts “leisure”, “home”, and “work” (Table I).

Temporal patterns. In human activity, daily and weekly
patterns are often observed. We expect to see this reflected
in the check-ins. Indeed, in Figure 2d, showing the context
of check-ins depending on the time of day, we observe such
patterns: in the morning and evening we have many check-
ins at home, whereas work context is typical during business
hours. Thus, the hour of day is a good predictor for the context.
The question now is whether it is also a good predictor of the
activity. In Figure 2e, we show the hour of day for the top 4
activities. We can indeed observe activity-specific patterns: for
example “coffee” has a peak in the morning, whereas “eating”
peaks in the early morning, around noon and in the evening.
Looking at weekly patterns, in Figure 2f, as expected, we see

0 5 10 15 20 25 30
0

50

100

150

200

250

300

User

#
 C

h
e

c
k
in

s

(a) Check-ins per user.

0 20 40

25

20

15

10

 5

 0

U

se
rs

(b) Users per activity.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X

P
r[

X
 >

=
 x

]

(c) Check-ins per activity.

5 10 15 20
0

50

100

150

200

250

300

350

400

Hour of day

#
 C

h
e

c
k
in

s

Transport
Sports
Going out
Home
Work
Vacation

(d) # check-ins vs. time of day.

5 10 15 20
0

10

20

30

40

50

60

Hour of day

#
 C

h
e

c
k
in

s

Walking

Coffee

Eating

Coding

(e) Time of day of top activities.

Sun Mon Tue Wed Thu Fri Sat
0

100

200

300

400

500

600

#
 C

h
e

c
k
in

s

Transport
Sports
Going out
Home
Work
Vacation

(f) # check-ins vs. day of week.

Fig. 2: Check-in distributions and temporal patterns of users
in the collected dataset.

more work check-ins during week days. Sports, transport and
vacation contexts are rather independent of the day of the
week. These observations are not surprising, but confirm our
intuition that hour of day and the day of the week are two
strong predictors for activity.

V. FEATURES AND MODELS OF HUMAN ACTIVITY

In order to engage the user frequently, we aim to suggest
a small set of activities in which the user quickly finds her
current activity. In this section, we describe how we select
the most meaningful features and use them in predictive
models of human activity check-ins. Our goal is to keep the
features relatively simple (to allow for feature extraction on the
resource constrained mobile phone) and easily interpretable (to
help us gain insights about mapping features to activities). We
summarise all the features that we use in Table II.

Temporal Features. In the previous section we observed a
strong link between the time of day and certain activities, which
motivates the use of temporal features such as the hour of day
(F 1) and the day of week (F 2) for check-in prediction.

Temporal features
F 1 Time of day {0, 1, . . . 23}
F 2 Day of week {0, 1, . . . 6}

Physical sensor features
F 3 Acceleration mean ma = 1

N

∑
i ai

F 4 Acceleration std. dev. sa =
√

1
N

∑
i (ai −ma)2

F 5 Noise mean mn = 1
N

∑
i ni

F 6 Noise std. dev. sn =
√

1
N

∑
i (ni −mn)2

F 7 Speed 1
tN−t1

∑N−1
i=1 d(li, li+1)

F 8 Distance from home d(lN , lh)

F 9 Distance from work d(lN , lw)

Software sensor features
F 10 Previous check-in {all activity IDs}
F 11 Battery charging? Boolean
F 12 Battery level {1, 2, . . . 100}
F 13 Battery state {low, medium, high}
F 14 Network type {Wi-Fi, cellular, none}
F 15 Network name String
F 16 Last used app category {app categories}
F 17 # Proximity events {1, 2, . . .}
F 18 # Screen events {1, 2, . . .}
F 19 # SMS events {1, 2, . . .}
F 20 # Phone calls {1, 2, . . .}
F 21 Recent SMS/Calls? Boolean
F ∗ Temporal features F 1, F 2

TABLE II: List of prediction features.
Physical Sensor Features. From the accelerometer sensor, we
obtain time sequences of vectors containing acceleration in the
x, y and z directions, logged with a frequency of about 5Hz.
We first compute the undirected acceleration from these vectors
ai =

√
x2
i + y2i + z2i . From the sequence of accelerations we

then compute the mean (F 3) and the standard deviation (F 4).
Similarly, we compute the mean of the sequence of noise
levels ni (F 5) and their standard deviation (F 6). Using the
phone’s GPS and network location, we obtain a sequence
of N timestamped latitude/longitude readings li. Since the
contexts home and work are, for many users, bound to a single
location, we extract the distance to home location lh (F 8) and
to work location lw (F 9) using the Haversine formula. We
extract the home and work locations from the latest home
and, respectively, work check-in. Using the location of the
last check-in has the advantage that this will adapt quickly
if the user changes work location (e.g., during a conference)
or home location (e.g., when moving) or even has several
work/home locations. Further, in order to detect activities
involving movement, we are interested in the speed with
which the user travels. For this, we sum the distances between
subsequent location readings, and divide this sum by the time
difference between the time of the last location reading tN and
the time of the first t1 (F 7).

Software Sensor Features. We take a broad definition of
software sensors, i.e., data streams in the phone that do not
incur any additional cost to capture them unlike physical
sensors. For example, Screen on/off events are already logged
by the phone and the incremental cost for an application to
register for these events is negligible. Similarly, proximity
sensor events, application usage, phone calls, SMS messages
could be captured without much impact on the phone’s battery
as these are already captured by the phone’s operating system.

On the other hand, a physical sensor such as accelerometer or
microphone needs to be actively queried by expending battery
energy to capture data from it. Software sensors can provide
us with information about the user’s context, for example,
using maps when driving or charging phone when at home
or listening to music when travelling, i.e., there might be a
correlation between the way the user uses her phone and her
activity, and we aim to exploit this correlation.

We use several software sensor features to predict the user’s
check-in such as whether the phone is charging or not (F 11),
battery level (F 12, F 13), its network state (F 14 and F 15),
number of recent screen, proximity and communication events
(F 17 to F 21). We define “recent” as occurring in the preceding
one hour before a check-in. We also use the activity label
of the previous check-in (F 10) of the same user, to account
for typical sequences of activities. Thus, the previous check-
in feature takes values from the set of all activity IDs. This
feature is undefined for the user’s first check-in. Further, we
define a set of application categories such as music, news,
social, games, transport, etc. and use the category of the last
used application before check-in as one of the features (F 16).
If an application does not fall into any of these then we
categorise it as “other”. The intuition behind this feature is
that there might be a correlation between the application usage
and the user’s context, for example, playing “Angry Birds”
during lunch or when at home. We also use temporal features
as part of software sensors as they too are negligible cost
data streams. In the evaluation, however, we also compare
the performance of software sensor and temporal features to
understand the performance gain of software sensor features
over that of temporal. We normalise all numeric features to
zero mean and unit variance.

Prediction Models. Given the features and activity labels
from the past, we are facing the supervised learning problem
of building a model that predicts the labels of new check-
ins. What makes our problem particularly challenging is the
large number of classes that we must be able to predict. In
order to find a model which is able to exploit these patterns,
we empirically evaluate ZeroR, Naive Bayes, Decision Table,
Decision Tree, and Random Forest classifiers using the WEKA
machine learning library [13].

VI. PREDICTING THE USER’S CHECK-IN

In this section, we empirically evaluate the predictive power
of different types of features using various models and measure
the predictability of different activities. Considering that users
have their own specific routines, we also create user-specific
models to predict check-ins of users.

A. Prediction Accuracy

In this section, the questions of interest are: i) What is
the prediction accuracy that can be achieved with various
feature sets (temporal, physical, and software)?; ii) How do the
different prediction models compare to each other in terms of
prediction accuracy?; iii) How does the predictive power of the
types of features relate to their energy cost, especially physical
sensors? We define the prediction accuracy as percentage of
correctly predicted check-ins out of all predictions that we
make. Thus, the problem here is: given the set of N training

Temporal Physical Soft All
0

10

20

30

40

50

%
 c

o
rr

e
c
t

ZeroR
Naive Bayes
Decision Table
C4.5
Random Forest

Fig. 3: Prediction accuracy (% of correctly predicted activities)
of various feature sets.

feature vectors f1 = {f1
1 . . . fn

1 } . . . fN = {f1
N . . . fn

N}, learn
a mapping of features to activity classes: g : F → C. We
evaluate each of the classifiers described in the previous section
using the widely accepted stratified 10-fold cross validation on
the entire deployment check-in data collected.

1) Prediction Power of Features: To get an idea of how
well the different features predict activities, we first group the
features into three types temporal, physical sensors, and soft
sensors (as shown in Table II), and measure the prediction
accuracy when only one recommendation could be given. The
result of this evaluation is shown in Figure 3. First, we note
that the trivial classifier (ZeroR) predicts 9% of the labels
correctly since the top activity accounts for about 9% of all
check-ins (see Table I). Note that this is independent of the
selected features, since ZeroR just serves as a baseline simply
predicting the most likely class.

For the temporal features, we see that the Naive Bayes
classifier and decision table achieve the highest accuracy, with
16% of correctly predicted check-ins. Given the large number
of classes we predict (48 activity classes), correctly inferring
higher percentage of check-ins than the baseline is promising
with relatively simple temporal features. The relatively good
predictive power of the temporal features confirms the very
strong temporal patterns that we have discussed in Section IV.
We, however, note that this value is too low to be of much use
in practice. The sensor features achieve better accuracy (20%
with the Naive Bayes and 21% with the random forest). One
of the most interesting results is the performance of software
sensors, i.e., they achieve an accuracy of 21% with the Naive
Bayes classifier. Considering that physical sensors have been
widely used for predicting many activity types in the existing
work [4], this is an interesting result and shows that there is a
correlation between the user’s context and her interaction with
the phone. We achieve almost 21% accuracy in the best case
by using only software sensor features. However, the intuition
is that by combining the features, this increases further. All
classifiers are able to improve on the trivial ZeroR by factors of
3 to 4. Further, we observe that the decision tree, the decision
table, and the Naive Bayes model perform best, with slight
benefits for the Naive Bayes model (34%). Given the very
large set of sometimes similar activities, correctly predicting
34% of the check-ins is a good start, however, this should
be further improved to use it on users’ phones. We address
this issue in the next sections. Based on the results presented
so far, we have chosen Naive Bayes model for the rest of
this evaluation. Naive Bayes has two main advantages over
the competing decision tree: i) training its classifier is cheap

ii) by design, it gives a probability distribution over all classes,
which is particularly useful in suggesting sets of activities (i.e.,
activities with highest probability), as well as for verification,
where we can exclude very low probability labels.

B. Check-in Suggestions

The goal of activity suggestions is to enable a fast user
check-in. Suggesting only a single activity would lead to
considerable error. Given that there is an increasing trend to
move towards 4-5 inch screen sizes, (e.g, the Samsung Galaxy
S5, the iPhone 6), 3-5 check-in suggestions would very easily
fit a typical phone screen and it would be reasonable to let
the user choose from such a small list. Thus, what is needed
is a prediction of a small set of most likely activities to make
the user choose from. In this case the learning problem is
g : F → S, where S = {s1, s2 . . . sn} is a set of n suggestions
and si is a suggested activity from the set of all activities
{c1 . . . c48}. Since the Naive Bayes classifier computes a class
probability p(ci) for each activity ci ∈ {c1 . . . c48} for a given
check-in, we choose to suggest the n activities with the highest
class probability. The suggestion is successful in the case that
the user-reported class is in the set of suggestions.

For evaluation, we measure the percentage of successful
suggestions, depending on the number of suggestions n. Fig-
ure 4 shows the results of this evaluation. As a baseline,
the figure shows the ZeroR classifier, which, for a given n,
suggests the n most frequently reported activities. We see that
ZeroR starts around 9% for one suggestion and then steadily
improves up to 31% when suggesting 5 activities. Our Naive
Bayes model outperforms this by far: the model that uses all
features reaches 60% accuracy with 5 suggestions, twice the
accuracy of the baseline model. One of the highlights of this
result is that the software sensor features achieve an accuracy
of 54%, which is close to that of the model with all the
features. Given the battery limitations of smartphones and the
high energy demand of phone applications, this result could
pave the way for applications which currently use physical
sensors for predicting the user’s context to start using soft
sensors too. Another important observation is that initially the
performance steeply increases with the number of suggestions.
However, already after 4 or 5 suggestions, the curve flattens.
Thus, a relatively small number of 4 or 5 suggestions is a
good compromise offering high accuracy, yet not overloading
the user interface as they can easily fit on a typical phone
screen. In the next section we show how to further improve
the accuracy by exploiting user specific models.

C. Subject Specific Models

Human behaviour is different from one individual to the
next. For example, some users might read news (on phones us-
ing news applications such as “BBC News”) during lunch and
some others might read them at home in the evening. Further,
based on when and where they have “coffee”, each user might
produce a different physical sensor pattern like noise levels,
physical activity patterns. Intuitively, a user specific model that
is trained only with the user’s data may perform better than
the global model that is trained with data from all users. Yet,
for user-specific models, a significant amount of training data
per given user is needed. The questions we seek to answer
here is i) How much training data per user is necessary for

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

suggestions

%
 c

o
rr

e
c
t

Temporal
Physical
Soft
All
ZeroR

Fig. 4: Prediction accuracy of various
feature sets vs. number of suggestions.

0 20 40 60 80 100
0

10

20

30

40

50

60

checkins

%
 c

o
rr

e
c
t

UserA

UserB

UserC

UserD

Fig. 5: Prediction accuracy for one suggestion
vs # check-ins available for training.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

suggestions

%
 c

o
rr

e
c
t

Temporal

Physical

Soft

All

ZeroR

Fig. 6: User specific model: Prediction
accuracy vs. # of suggestions.

successful user-specific models? ii) What is the performance
gain of using user specific models over the generic model?

To evaluate this, we select the top four users from our
deployment dataset and create models based only on their data.
Figure 5 shows the prediction accuracy of the Naive Bayes
classifier (trained only based on their individual check-ins) for
one check-in suggestion, depending on the amount of training
data (in number of check-ins). There are several important
observations from this figure. First, there is a steep ramp
up phase, during which the prediction accuracy dramatically
improves with the number of check-ins used for training. After
about 50 − 60 check-ins, for all the users, the prediction
accuracy stabilizes. Thus, we clearly do not need the entire
history of a user’s check-ins to make good predictions; a
window of ∼ 60− 70 samples seems sufficient. Note that the
exact value may vary, as different users check-in to different
numbers of activities. Second, we observe that the accuracy
does not steadily increase, but sometimes slightly decreases
over time. We attribute this to changing user behavior, which
is not yet reflected in the model when accounting for too
much historical data. Finally, individual users are predictable
to different degrees. This observation is related to the fact that
some users check-in to a wider range of activities than others,
however, after about 60 check-ins, the prediction accuracy
using one suggestion is mostly stable. In general, global
models are useful when a user joins the system (very little or no
data is available for this user), while the accumulated history of
the user should progressively allow some user profiling, after
which, user-specific models could be used.

To understand the performance gain of subject specific
classifiers, we evaluated their performance with respect to
number of suggestions for each of the users. Figure 6 shows the
result of this evaluation. We can observe that the performance
of all the feature sets increases using subject specific models
compared to that of their corresponding generic models (see
Figure 4). The performance of the subject specific model that
uses all features, for 5 recommendations, is 75%, which is
24% more than that of the corresponding generic model. This
clearly shows that subject specific classifiers perform much
better than a generic model. Another important observation
here is that, for 5 recommendations, the model using software
sensor features achieves an accuracy of 72%, which is very
close to that of the model with all features. This result is very
promising considering the substantial energy gain of using
software sensors over physical sensors.

Activity P R F
Walking (Transit) 0.82 0.86 0.84
Cycling (Transit) 0.81 0.87 0.84
Drinking (Leisure) 0.78 0.83 0.80
Coffee (Work) 0.71 0.88 0.78
Meeting (Work) 0.69 0.90 0.78

TABLE III: Most predictable activities (physical sensors).
Activity P R F
Eating (Leisure) 0.64 0.71 0.67
Hanging out (Home) 0.71 0.64 0.67

TABLE IV: Least predictable activities (physical sensors).

D. Predictability of Activities

Intuitively, different activities are predictable to different
degrees and based on different features. Some activities (e.g.,
eating, sleeping) have clear temporal or soft sensor patterns,
whereas other activities, such as walking, have clear ac-
celerometer patterns. We now investigate the predictability of
the individual activities using physical and soft sensor features.
This analysis provides important insights, for instance, about
the limitations of various feature sets.

To be able to compare between the predictability of individ-
ual activities, we find it useful to adjust our learning problem.
Instead of predicting class labels from the set of all classes
C = {c1 . . . c48}, we now define a per activity binary classifier
ci for the top 15 activities as we have more check-ins for
these activities (see Figure 2). Each binary classifier predicts
whether a given feature vector belongs to the corresponding
activity class ci or whether it belongs to the set of all other
activities, which we call c̄i. Thus, for activity ci, our classifier
learns the mapping gi : F → {ci, c̄i}. The main challenge
faced by these classifiers is that our training data is slightly
imbalanced: for a large number of activities only a small
percentage of training samples belong to ci, while the vast
majority belong to c̄i. A commonly used approach to address
this problem is sampling [14]: we up-sample rare activities
(i.e., sample the class of rare activities with replacement) and
down-sample the over-represented class to have a balanced
dataset. For our binary classifiers gi, we take 100 samples from
activity ci and the same number of samples from activities
c̄i. On these 200 samples, we then use leave-one-out cross-
validation and measure the precision (P) and recall (R). To
compare the predictability of the classifiers, we combine these
two metrics in the F-measure (ranging from 0 to 1, where 1
means a maximum precision and recall) and rank the classifiers
gi accordingly. Since the sampling introduces randomness in
the data, we report average performance over 100 runs.

Activity P R F
Coffee (Work) 0.74 0.87 0.80
Coffee (Home) 0.70 0.83 0.76
Meeting (Work) 0.68 0.83 0.75
Drinking (Leisure) 0.70 0.80 0.75
Reading (Home) 0.72 0.76 0.74

TABLE V: Most predictable activities (soft sensors).

Activity P R F
Cycling (Transit) 0.63 0.73 0.68
Writing (Work) 0.64 0.70 0.67
Walking (Transit) 0.66 0.67 0.67
TV (Home) 0.62 0.71 0.66
Eating (Leisure) 0.64 0.65 0.64

TABLE VI: Least predictable activities (soft sensors).

Tables III and IV list the precision, recall, and F-measure
of the most and least predictable activities using only physical
sensors. The first observation is that, in general, we reach quite
high F-measures across all activities. With the Naive Bayes
classifier, even the least predictable activity, “Hanging out”
(at home), still reaches F = 0.67. A second observation is
that the most predictable activities using physical sensors are
physical activities from contexts “Transit” that have a strong
correlation with physical sensors such as accelerometer and
GPS, whereas the least predictable are in the contexts without
much of correlation. Moving onto soft sensors, Tables V
and VI show that activities in “Home” and “Work” contexts
which have a correlation with phone interaction or time of
day are more predictable whereas outdoor activities such as
“Transit” (Cycling) or “Leisure” are less predictable.

E. Energy Cost of Features

As each feature comes with a different energy cost, it
is important to investigate the trade-off between its energy
consumption and predictive power. The aim of this section
is to understand how much energy we invest when using each
feature. On the one hand, we will show that we can improve
the prediction accuracy by combining different features. On
the other hand, invoking more features also requires more
energy, since several sensors will be used simultaneously. To
quantify the energy consumption of the sensed features, we use
the Monsoon Power Monitor1. We measure the approximate
energy consumed during a one minute sampling interval on
a Samsung Galaxy S2 smartphone, running Android version
4.0.4 (in flight mode, in order to prevent external effects as
much as possible).

The cost of the soft sensor features is assumed to be
negligible since these merely require looking up the last check-
in or capturing already logged events such as phone calls/SMS
messages or active applications. For physical sensor features,
however, the cost is non-negligible. Moreover, since we use
quite basic features and low-intensive classifiers, we assume
that the feature extraction and processing is negligible. If the
feature extraction and classification tasks are computationally
expensive, then the respective energy costs should be added
too. Figure 7 shows a typical power measurement for a one
minute sampling window of the accelerometer, microphone,
and GPS. We observe that the individual sensors differ in
energy costs with the accelerometer being the cheapest and

1http://www.msoon.com/LabEquipment/PowerMonitor/

0 20 40 60
0

500

1000

1500

2000

Time [s]

P
o

w
e

r
[m

W
]

(a) Accelerometer.

0 20 40 60
0

500

1000

1500

2000

Time [s]

P
o

w
e

r
[m

W
]

(b) Microphone.

0 20 40 60
0

500

1000

1500

2000

Time [s]

P
o

w
e

r
[m

W
]

(c) GPS.
Fig. 7: Power consumption of various physical sensors.

Features Power Accuracy (# Suggestions, Model type)
(mW) (3, GM) (5, GM) (3, USM) (5, USM)

Soft ∼ 0 42% 54% 58% 72%
Physical 561 40% 51% 62% 75%
All ∼ 561 48% 60% 62% 75%

TABLE VII: Power consumption vs. prediction accuracy of
features (GM: Generic Model; USM: User Specific Model).

the GPS the most expensive. The total power consumption
for physical sensor features (see Table II) includes energy
consumption of accelerometer, microphone, and GPS. Ta-
ble VII summarises the energy-accuracy trade-offs: it shows
the average power consumed by the feature sets in milliwatts
(mW) and the prediction accuracy obtained. The table shows
that physical sensors are clearly a very expensive option.
For generic models, the accuracy achieved using purely soft
sensors is about 6% less than that of using both physical and
soft sensors. Whereas, for user specific models, the accuracy
achieved using purely soft sensors is only about 3 to 4% less
than that of using both physical and soft sensors. Therefore,
the considerable energy gain of soft sensors would make them
a better option than physical sensors.

VII. VERIFICATION

With the insights from the evaluation, we can now solve
another challenge: verification of reported activities, either
to enable accurate targeted advertising or to identify fake
check-ins. In this section, we explain how to use the devised
classifiers to solve the problem of verification.

A user can choose among a set of suggestions or can check-
in to a completely different activity of her choice. So the issue
now is to check if the chosen activity is the real user activity,
or the activity is fake, e.g., due to checking in to a wrong
activity or checking in after the activity has ended or false
check-ins. This becomes important if activity check-ins are
attributed some sort of importance i.e. for advertisement, user
profiling, and offers. We can frame the problem of verification
as another variation of the activity inference problem. This
time, given a feature vector and a corresponding activity label
(assigned by the user when checking in), we must decide if
the label is trustworthy: g : F,C → {fake, real}; where fake
means that we reject the label (e.g., we do not assign the user
credit for the check-in, or, we do not consider it for targeted
advertisements) and real means that we accept it. We use the
class probability, which we obtain from the Bayesian classifier,
to decide whether we reject or accept the label. We use the
global classifier to obtain class probabilities for all classes C.
Given the user-reported class ci, we record the probability
p(ci) and apply a threshold pth: if p(ci) > pth, we accept the
label (we assign real), otherwise we reject the label (we assign
fake). Note that, to detect fake check-ins, we must use the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

No training error
5% training error
10% training error
50% training error

Fig. 8: ROC curve for verification performance.

global model, not the user-specific models. With user-specific
models, a user could just systematically report wrong activities
(e.g., always report “running” when in fact he is “walking”)
to fool the verification. The global model, however, consists
of the behaviour of many users and cannot be easily fooled
without some heavy collusion. Below, we also show that the
global model is relatively robust, even if it is based on a large
percentage of fake check-ins.

With the threshold pth, we can now tune our system:
A small threshold probability will guarantee that we do not
wrongly invalidate a check-in (small number of false positives),
but we might not detect all fake check-ins (high number of
false negatives). Such a setting amounts to trusting the user. A
high threshold, however, will cause a higher number of false
positives but a smaller number of false negatives. This setting
should be chosen in case it is essential to catch (almost) all
fake check-ins. To evaluate this trade off, we use the class
labels from our dataset as ground truth. We assign new (fake)
class labels (randomly chosen among all classes) to 50% of
the test check-ins. These are marked as fake and we measure
how well our classification works to detect them using 10-
fold cross validation. We note that random selection of fake
label represents a beneficial case for detecting fakes. More
severe attacks could for example try to systematically report
fake activities that look similar to the ground truth from the
sensor’s perspective. In Figure 8 (solid line) we show the ROC
curve. The ROC curve plots the true positive rate versus the
false positive rate under varying threshold. As we aim for high
true positive rate and low false negative rate, we want a steeply
increasing curve. We observe that if we want to catch 80% of
all fake check-ins (true positive rate of 0.8) the false positive
rate is less than 3%. That means we will wrongly exclude a
check-in in less than 3% of the cases. For a true positive rate
of 0.7, the false positive rate is less than 1%.

Since we assume here that some users are cheating, we
must also assume that fake check-ins could be used as training
samples for the global model. In order to study the effect
of fake training data on the verification performance, we
artificially introduce fake labels: For 5%, 10% and 50% of
the training samples for the global model, we randomly assign
wrong labels. In Figure 8, we show how this affects the ROC
curve. We observe that for 5% and even 10%, the effect is very
small. Only when we introduce as much as 50%, the effect
becomes severe. However, if we can assume that the system
is used properly by the majority of users, the number of fake
check-ins in the training data should be small. Summarising,
by identifying check-ins where the user-reported activity class
achieves only a small probability in our prediction model,
we can successfully filter fake check-ins even if we have
significant amounts of fake training data.

VIII. CONCLUSION

We have explored the use of smartphone sensing in ap-
plications where the user self-reports their current activity
(e.g., to an online social network). In contrast to existing
activity or context recognition systems, which continuously
sense in the background to infer activity, we use the sensors
to support the sharing of user-reported activity. To this end,
we have presented an application, which exploits sensing in
two ways: i) based on sensed features we provide suggestions
that speed up the check-in process and thereby foster frequent
user engagement, and ii) we use sensors to verify check-ins
and prevent erroneous check-ins. We also use energy as a first
order design consideration and showed that soft sensors are
a viable option for predicting check-ins as they provide an
accuracy close to that of physical sensors without impacting
the phone’s battery. This result has potential to pave the way
to more diverse check-in applications beyond just location, as
energy has been one of the biggest limiting factors for these
applications. By collecting data from a real deployment, we
found that by providing as few as 5 suggestions to the user,
we correctly anticipate the reported activity in 75% of the
cases using user-specific models, thus, simplifying the check-
in process. With a modification of this model, we have also
predicted unintended check-ins and found that we can identify
most of them, with a small false positive rate.

REFERENCES

[1] J. Lindqvist, J. Cranshaw, J. Wiese, J. Hong, and J. Zimmerman, “I’m
the mayor of my house: examining why people use foursquare - a
social-driven location sharing application,” in CHI ’11. ACM, 2011.

[2] F. R. Bentley and C. J. Metcalf, “Location and Activity Sharing in
Everyday Mobile Communication,” in CHI EA ’08. ACM, 2008.

[3] “Check-in fatigue,” http://www.techcrunch.com/2010/03/19/
check-in-fatigue-location-war/.

[4] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi,
S. B. Eisenman, X. Zheng, and A. T. Campbell, “Sensing meets mobile
social networks: the design, implementation and evaluation of the
CenceMe application,” in SenSys ’08. ACM, 2008.

[5] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong, “MoodScope: Building
a Mood Sensor from Smartphone Usage Patterns,” in MobiSys’13.
ACM, 2013.

[6] S. Nath, “ACE: exploiting correlation for energy-efficient and continu-
ous context sensing,” in MobiSys ’12. ACM, 2012.

[7] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, “Activity
recognition from accelerometer data,” in IAAI’05, 2005.

[8] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell,
“SoundSense: scalable sound sensing for people-centric applications on
mobile phones,” in MobiSys ’09. ACM, 2009.

[9] M. Mun, P. Boda, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,
M. Hansen, E. Howard, and R. West, “PEIR, the personal environmental
impact report, as a platform for participatory sensing systems research,”
in MobiSys ’09. ACM, 2009.

[10] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishna-
machari, and N. Sadeh, “A framework of energy efficient mobile sensing
for automatic user state recognition,” in MobiSys ’09. ACM, 2009.

[11] G. Chittaranjan, J. Blom, and D. Gatica-Perez, “Who’s who with big-
five: Analyzing and classifying personality traits with smartphones,” in
ISWC ’11. IEEE, 2011.

[12] N. Lathia, K. K. Rachuri, C. Mascolo, and G. Roussos, “Open Source
Smartphone Libraries for Computational Social Science,” in MCSS
Workshop ’13. ACM, 2013.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
Explorations Newsletter, 2009.

[14] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: one-sided selection,” in ICML ’97, 1997.

