Beyond Macrobenchmarks: Microbenchmark-based
Graph Database Evaluation

Matteo Lissandrini
Aalborg University
matteo@cs.aau.dk

ABSTRACT

Despite the increasing interest in graph databases their re-
quirements and specifications are not yet fully understood
by everyone, leading to a great deal of variation in the sup-
ported functionalities and the achieved performances. In
this work, we provide a comprehensive study of the exist-
ing graph database systems. We introduce a novel micro-
benchmarking framework that provides insights on their per-
formance that go beyond what macro-benchmarks can of-
fer. The framework includes the largest set of queries and
operators so far considered. The graph database systems
are evaluated on synthetic and real data, from different do-
mains, and at scales much larger than any previous work.
The framework is materialized as an open-source suite and

is easily extended to new datasets, systems, and queries’.
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1. INTRODUCTION

Graphs have become increasingly important for a wide
range of applications [17,41] and domains, including bi-
ological data [16], knowledge graphs [61], and social net-
works [31]. As graph data is becoming prevalent, larger,
and more complex, the need for efficient and effective graph
management is becoming apparent. Since graph manage-
ment systems are a relatively new technology, their features,
performances, and capabilities are not yet fully understood
neither agreed upon. Thus, there is a need for effective
benchmarks to provide a comprehensive picture of the dif-
ferent systems. This is of major importance for practition-
ers, in order to understand the capabilities and limitations
of each system, for researchers to decide where to invest
their efforts, and for developers to be able to evaluate their
systems and compare with competitors.

Ihttps://graphbenchmark. com
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There are two categories of graph management systems
that address two complementary yet distinct sets of func-
tionalities. The first is that of graph processing systems [27,
42,44], which analyze graphs to discover characteristic prop-
erties, e.g., average connectivity degree, density, and mod-
ularity. They also perform batch analytics at large scale,
implementing computationally expensive graph algorithms,
such as PageRank [54], SVD [23], strongly connected com-
ponents identification [63], and core identification [12,20].
Those are systems like GraphLab, Giraph, Graph Engine,
and GraphX [67]. The second category is that of graph
databases (GDB for short) [5]. Their focus is on storage
and querying tasks where the priority is on high-throughput
and transactional operations. Examples in this category are
Neod4j [51], OrientDB [53], Sparksee [60] (formerly known
as DEX), Titan [64] (recently renamed to JanusGraph),
ArangoDB [11] and BlazeGraph [62]. To make this distinc-
tion clear, graph processing systems, can, in some sense, be
seen as the graph world parallel to OLAP systems, while
graph databases as the parallel to the OLTP systems.

Graph processing systems and their evaluation have re-
ceived considerable attention [27,32,42,44|. Instead, graph
databases lag far behind. Our focus is specifically on graph
databases aiming to reduce this gap, with a two-fold contri-
bution. First, the introduction of a novel evaluation method-
ology for graph databases that complements existing ap-
proaches, and second, the generation of a number of insights
on the performance of the existing GDBs. Some experi-
mental comparisons of graph databases do exist [22,37,38].
However, they test a limited set of features providing a par-
tial understanding of the systems, experiment at small scale
making assumptions not verifiable at large scale [37, 38|,
sometimes provide contradicting results, and fail to pinpoint
the fine-grained limitations that each system has.

Motivated by the above, we provide a complete and sys-
tematic evaluation of existing graph databases, that is not
provided by any other existing work to date. We test 35
classes of operations with both single queries and batch
workloads for a total of about 70 different tests, as opposed
to the 4-13 that existing studies have done, and we scale
our experiments up to 76M nodes/ 314M edges, as opposed
to the 250K nodes/2.2M edges of existing works. Our tests
cover all the types of insert-select-update-delete queries that
have so far been considered, and in addition, cover a whole
new spectrum of use-cases, data-types and scales. Moreover,
we study workloads and datasets both synthetic and real.

Micro-benchmarking. In designing the evaluation method-
ology we follow a principled micro-benchmarking approach.



To substantiate our choice, we look at the test queries pro-
vided by the popular LDBC Social Network benchmark [26],
and show how the produced results are ambiguous and lim-
ited in providing a clear picture of the advantages of each
system. So, instead of considering queries with such a com-
plex structure, we opt for a set of primitive operators. The
primitive operators are derived by decomposing the complex
queries found in LDBC, the related literature, and some real
application scenarios. Their advantage is that they are often
implemented by opaque components in the system, thus, by
identifying the underperformed operators one can pinpoint
the exact components that underperform. Furthermore, any
complex query can be typically decomposed into a combi-
nation of primitive operations, thus, its performance can be
explained by the performance of the components implement-
ing them. Query optimizers may change the order of the
basic operators, or select among different implementations,
but the primitive operator performance is always a signif-
icant performance factor. This evaluation model is known
as micro-benchmarking [15] and is similar to the principles
that have been successfully followed in the design of bench-
marks in many other areas [2,22,35,36,37,38]. Note micro-
benchamrking is not intended to replace macro-benchamrks.
Macro-benchmarks are equally important in order to eval-
uate the overall performance of query planners, optimizers,
and caches. They are, however, limited in identifying un-
derperforming operators at a fine grain.

Our evaluation provides numerous specific insights. Among
them, three are of particular importance: (i) we highlight
the different insights that micro and macro benchmarks can
provide; (ii) we experimentally demonstrate limitations of
the tested hybrid systems when dealing with localized traver-
sal queries that span across multiple long paths, such as the
breadth-first search; and (iii) we identify the trade-offs be-
tween the logical and physical data organizations, support-
ing the choice of the native graph-databases we study to
separate structural information from the actual data. For
example, we found that storing nodes and edges as records,
directly linked to each other, and with pointers to off-loaded
structures for node attributes, seems to be the most effective
organization for typical graph queries.

Note that the current work does not consider any distri-
bution features. The focus is on single machine installation.

Contributions. Our specific contributions are as follows:
(i) We explain the limitations of the existing graph database
evaluations and clarify the motivations for the current eval-
uation study (Section 2); (ii) We provide an extensive list of
primitive operations (queries) that graph databases should
support (Section 4); (iii) We introduce the first thorough
experimental evaluation methodology based on the micro-
benchmarking model for Graph Databases (Section 5); (iv)
We materialize the methodology into an open-source testing
suite [40], based on software containers, that automates the
addition of new systems, tests, and datasets; (v) We apply
this methodology on the major graph databases available
today, using different real and synthetic datasets — from
co-citation, biological, knowledge base, and social network
domains — and discuss our findings (Section 6).

2. RELATED WORK

Evaluating Graph Processing Systems. There is a

great deal of works on evaluating graph processing systems [18,

32,43,45,68]. Such systems are designed for computationally
expensive algorithms that often require traversing all the
graph multiple times to obtain an answer, like page rank, or
community detection. Such systems are very different in na-
ture from graph database systems, thus, in their evaluation,
“needle in the haystack” queries like those that are typical of
transactional workloads are not considered. Of course, there
are proposals for unified graph processing and database sys-
tems [27], but this idea is in its infancy. Our focus is not on
graph processing systems or their functionalities.

Evaluating Graph Databases. In contrast to graph pro-
cessing systems, graph databases are designed for transac-
tional workloads and “needle in the haystack” operations,
i.e., queries that identify and retrieve a small part of the
data. Existing evaluation works [3,5] for such systems are
limited in describing the systems implementation, data mod-
elling, and query capabilities, but provide no experimental
evaluation. A different group of studies provides an exper-
imental comparison but is incomplete and fails to deliver
a consistent picture. In particular, one work [22| analyzes
only four systems, two of which are no longer supported,
with small graphs and a restricted set of operations. Two
other empirical works [37,38] compared almost the same set
of graph databases over datasets of comparable small sizes,
but agree only partially on the concluded results. Moreover,
all existing studies do not test with graphs at large scale and
with rich structures. Our work comes to fill exactly this gap
in graph database evaluation, by providing the most exten-
sive evaluation of the state of the art systems in a complete
and principled manner.

Distribution & Cluster Evaluation. In the era of Big
Data, it is important to understand the abilities of graph
databases in exploiting parallel processing and distributed
architectures. This has already been done in graph process-
ing systems [32,43,66]. However, distributed data processing
is out of the scope of the current paper, for a number of rea-
sons. First, not all the systems support distribution in the
same way, i.e., partitioning, replication, or sharding. Sec-
ond, an evaluation of distribution capabilities to be complete
would require to consider additional parameters like the
number of nodes and concurrency level. Third, despite the
popularity of distributed graph management systems, single
machine installations are still a highly popular choice [58].
For these reasons, we consider the study of distribution as
our natural follow up work, since the question about which
system is able to scale-out better may only come after the
understanding of its inherent performance [49,57].

Graph Benchmarks. There is already a number of bench-
marks [1,4, 6,26] for evaluating systems for RDF or social
data. Yet, those benchmarks are application specific. For
instance, RDF benchmarks [1] focus only on finding struc-
tures that match a set of RDF triples. While another graph
benchmark, LDBC [26], simulates queries on a social graph.
We have used such benchmarks, among others, to create our
list of test queries. Moreover, in our experiments, we illus-
trate the limitations of complex benchmarks. Our goal is
not to replace such benchmarks but to enhance them with
the extra insights that our own methodology can bring.

3. GRAPH DATABASES

Graph databases adopt the atiributed graph model [5].
Graph data is data consisting of nodes (also called vertices)



Table 1: Features and Characteristics of the tested systems

System Type Storage Edge Traversal Gremlin Query Execution Access Languages
ArangoDB (2.8) Hybrid (Document) Serialized JSON Hash Index v2.6 AQL, Non-optimized REST (V8 Server) AQL, Javascript
BlazeGraph (2.1.4) Hybrid (RDF) RDF statements B+Tree v3.2 Programming API, Non-optimized embedded, REST Java, SPARQL

Neo4J (1.9, 3.0) Native Linked Fixed-Size records Direct Pointer ~ v2.6 / v3.2 Programming API, Non-optimized embedded, WebSocket, REST Java, Cypher,

OrientDB (2.2) Native Linked Records 2-hop Pointer v2.6 Mixed, Mixed embedded, WebSocket, REST Java, SQL-like

Sparksee (5.1) Native Indexed Bitmaps B-+Tree/Bitmap v2.6 Programming API, Non-optimized embedded Java, C++,Python, NET
SQLG (1.2) / Postgres (9.6) Hybrid (Relational) Tables Table Join v3.2 SQL, Optimized(*) embedded (JDBC) Java

Titan (0.5, 1.0) Hybrid (Columnar) Vertex-Indexed Adjacency List Row-Key Index v2.6 / v3.0 Programming API, Optimized embedded, REST Java

and connections between them, called edges. Edges have
labels, and every node or edge has a set of attributes or
properties, i.e., set of name-value pairs. In the implemen-
tation of such a model, graphs and edges are typically first
class citizens and are assigned internal identifiers.

3.1 Systems

For a fair comparison, we need all the systems to support
a common access method. For this we considered systems
that support the Gremlin query language [9] through offi-
cially recognized implementations. Gremlin [56] is the query
language with the most widespread support across graph
databases and can be seen as the SQL of the Graph Database
Systems [33]. We also required that the systems we consider
have a licence permitting the publication of experimental
comparisons and their operation on a server without a fee.
Furthermore, we wanted to consider every system that has
been studied or mentioned in similar previous studies [58].

Given these requirements, we consider a number of na-
tive graph databases. Among them is Neod4j [51], that stores
nodes and edges natively, but separately, and supports some
schema indexes. Another such database is OrientDB [53],
a multi-model database where nodes are considered docu-
ments and edges are considered links. It supports SB-Trees,
hash and Lucene full-text indexes for node search.

We consider also hybrid systems, i.e., graph databases us-
ing third-party store engines. In particular, we study Sqlg
and ArangoDB that have never been considered in the past,
as well as Titan. ArangoDB [11] offers a REST API for
interaction, uses a document store, and builds automati-
cally indexes on edge endpoints. Sqlg [46] is an implementa-
tion of Apache TinkerPop on the relational database Post-
gresql [55]. It models every vertex type as a separate table
and edge labels as many-to-many join tables. The indexes
it supports are those provided by the relational engine. Ti-
tan [64]2 uses different third-party storage and indexing en-
gines. For storage, it may use Cassandra [7], HBase [8],
BerkeleyDB [52], or an in-memory storage engine (not in-
tended for production use). To store the graph data, Titan
adopts the adjacency list format, where each vertex is stored
alongside the list of incident edges. In addition, each vertex
property is an entry in the vertex record. For node search,
it supports graph centric and a verter centric indexes. We
have excluded from our study Caley [19] and DGraph [21]
which are hybrid systems but do not support Gremlin.

We have also considered some RDF databases like Blaze-
Graph and Sparksee. Although tailored for RDF data, such
systems look very similar to graph databases. Blazegraph [62]
is an RDF store, using B4Tree indexed journal files for stor-

2At the time of writing, Janus Graph has just started as the
successor of Titan, yet here we test the last version of Titan.
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ing the graph data. Sparksee® [60] is a commercial graph
storage system that provides fast queries of graph structures
by partitioning them in clusters of bitmaps. Not all RDF
systems, however, support Gremlin, which is why systems
of that family, like Apache Jena [29], Virtuoso [59], and Al-
legroGraph [34], have not been considered.

Table 1 provides a summary of the main characteristics
of the aforementioned systems, on which we expand below.
Note that for some systems we considered two versions. We
do so because we want to illustrate the degree of progress
that has been achieved in these systems from one version
to another, and also help stakeholders decide whether it is
worth the effort to upgrade. The most recent versions have
adopted a newer version of Gremlin that has cleaner se-
mantics, less overloaded operators, and richer operator set.
Gremlin is mainly a syntax, thus, any performance variation
observed across the different versions of the same system will
most likely be due to more effective implementation and not
due to the actual language per se.

3.2 Architectures and Query Processing

There are two ways to implement a graph database. One
is to build it from scratch (native databases) and the other
is to delegate some functionalities to other existing systems
(hybrid databases). In both cases, the two challenges to
solve are how to store the graph and how to traverse it.

Native System Architectures:

For data storage, a common design principle is to separate
information about the graph structure (nodes and edges)
from other they may have (e.g., attribute values), to speed-
up traversal operations. Neo4J has one file for node records,
one file for edge records, one file for labels and types, and
one file for attributes. OrientDB stores information about
nodes, edges and attributes similarly, in distinct records. In
both systems, node and edge records contain pointers to
other edges and nodes, and also to types and attributes, but
the organization is different in the two systems. In Neo4J
nodes and edges are stored as records of fixed size and have
unique IDs that correspond to the offset of their position
within the corresponding file. In this way, given the id of
an edge, it is retrieved by multiplying the record size by
its id and reading bytes at that offset in the corresponding
file. Moreover, being records of fixed size, each node record
points only to the first edge in a doubly-linked list, and
the other edges are retrieved by following such links. A
similar approach is used for attributes. In OrientDB, on the
other hand, record IDs are not linked directly to a physical
position, but point to an append-only data structure, where
the logical identifier is mapped to a physical position.

3Formerly known as DEX [48]. We tested it through a free
research licence.



This allows for changing the physical position of an ob-
ject without changing its identifier. In both cases, given
an edge, to obtain its source and destination requires con-
stant time operations, and inspecting all edges incident on
a node, hence visiting the neighbors of a node, has a cost
that depends on the node degree and not on the graph size.

Sparksee employs separate data structures: one struc-
ture for objects, both nodes and edges, two for relationships
which describe which nodes and edges are linked to each
other, and a data structure for each attribute name. Each
of these data structures is in turn composed by a map from
keys to values, and a bitmap for each value [47]. In each
data-structure objects are identified by sequential IDs, and
each ID is linked as a key through the map to one single
value. Also, each value links to a bitmap, where each bit
corresponds to an object ID, and the bit is set if that object
has that value. For instance, given a label, one can scan the
corresponding bitmap to identify which edges share the same
label. Furthermore, bitmaps identify all edges incident to a
node. For the attributes, a similar mechanism is used. The
main advantage of this organization is that many operations
become bitwise operations on bitmaps, although operations
like edge traversals have no constant time guarantees.

Hybrid System Architectures:

ArangoDB is based on a document store. Each document
is represented as a self-contained JSON object (serialized
in a compressed binary format). To implement the graph
model, ArangoDB materializes JSON objects for each node
and edge. Each object contains links to the other objects
to which it is connected, e.g., a node lists all the IDs of
incident edges. A specialized hash index is in place, in order
to retrieve the source and destination nodes for an edge,
this accelerates many traversals. BlazeGraph is an RDF
database and stores all information into Subject-Predicate-
Object (SPO) triples. Each statement is indexed three times
by changing the order of the values in each triple, i.e., a
B+Tree is built for each one of SPO, POS, OSP. BlazeGraph
stores attributes for edges as reified statements, i.e., each
edge can assume the role of a subject in a statement. Hence,
traversing the structure of the graph may require more than
one access to the corresponding B+Tree. In Sqlg the graph
structure consists of one table for each edge type, and one
table for each node type. Each node and edge is identified
by a unique ID, and connections between nodes and edges
are retrieved through joins. Hence, this approach requires
unions and joins even for retrieving the incident edges of a
node. Finally, Titan represents the graph as a collection
of adjacency lists. With this model, the system generates
a row for each node, and then one column for each node
attribute and each edge. Hence, for each edge traversal, it
needs to access the node (row) ID index first.

Query Processing and Evaluation:

All the systems we considered support the Apache Tinker-
Pop [9] framework that acts as a database-independent con-
nectivity layer supporting Gremlin. A Gremlin query is a
series of operations. Consider, for instance, Q28 in Table 2,
which selects nodes with at least k incoming edges. For ev-
ery node (g.V), it applies the filter (.filter{...}) by count-
ing the incoming edges (it.inE.count()). In ArangoDB
each step is converted into an AQL query and sent to the
server for execution, so the above Gremlin query will be exe-
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cuted as a series of two independent AQL queries implement-
ing the outer and the inner part respectively. ArangoDB
does not provide any overall optimization of these parts.
Note that Gremlin is a Turing-complete language and can
describe complex operations that declarative languages, like
AQL or Cypher, may not be able to express in one query.
Sqlg translates all operations to a declarative query lan-
guage. Moreover, Sqlg, where possible, tries to conflate op-
erators in a single query, which is some form of query op-
timization. In OrientDB some consequent operators may
get translated into queries and then their result processed
with the programming API, resulting in some form of opti-
mization for a part of the query. Titan, which has Gremlin
as the only supported query language, features also some op-
timization during query processing. BlazeGraph, Neo4J,
and Sparksee, instead, translate Gremlin queries directly
into a sequence of low-level operators with direct access to
their programming API, evaluate every operator, and pass
the result to the next in the sequence.

4. QUERIES

The set of queries selected for our tests adhere to a micro-
benchmark approach [15] that has been repeatedly used in
many cases [24,28,65|. The list is the result of an extensive
study of the literature and of many practical scenarios. Of
the many complex scenarios we found, we identified the very
basic operations of which they were composed. We obtained
in this way a set of common operations that are independent
of the schema and the semantics of the underlying data,
hence, they enjoy a generic applicability.

In the query list, we consider different types of operations.
We consider all the “CRUD” kinds, i.e., Creations, Reads,
Updates, Deletions, for nodes, edges, their labels, and their
properties. Specifically for the creation, we treat the initial
loading of the dataset and the individual object creations as
separate cases. The reason is that the first happens in bulk
mode on an empty instance, while the second at runtime
with data already in the database. The category of Read
operations comprises statistical operations, content search,
and filtering content.

We consider also Traversal operations across nodes and
edges, which are characteristic in graph databases. We re-
call that operations like finding the centrality, or computing
strongly connected components are typical in graph ana-
lytic systems and not in graph databases. The categoriza-
tion we follow is aligned to the one found in other similar
works [3,37,38] and benchmarks [26]. The complete list of
queries can be found in Table 2 and is briefly presented next.
In addition to those queries, we also run a set of complex
queries in order to compare the insights they provide with
the results of the other operators, as well as testing the query
optimization capabilities of the systems. These queries are
taken from a social network application benchmark [4].

4.1 Load Operations

Data loading is a fundamental operation. Given the size of
modern datasets, understanding the speed of this operation
is crucial for the evaluation of a system. The specific oper-
ator (Query 1) reads the graph data from a GraphSON [10]
file. Additional operations may be needed for loading, e.g.,
to deactivate indexing, but in general, they are vendor spe-
cific, i.e., not found in the Gremlin specifications.



Table 2: Test Queries by Category (in Gremlin 2.6)

[# [Query [Description [Cat |
1. Jg.loadGraphSON(" /path™) Load dataset into the graph ‘g’ L
2. |g.addVertex(pl[]) Create new node with properties p
3. |g.addEdge(vl , v2 , 1) Add edge [ from v1 to v2
4. |g.addEdge(vl , v2, 1, p[]) Same as (.3, but with properties p C
5. |v.setProperty(Name, Value) Add property Name=Value to node v
6. |e.setProperty(Name, Value) Add property Name=Value to edge e
7. |g.addVertex(...); g.addEdge(...)|Add a new node, and then edges to it
8. |g.V.count() Total number of nodes
9. |g.E.count() Total number of edges
10.|g.E.label.dedup() Existing edge labels (no duplicates)
11.|g.V.has(Name, Value) Nodes with property Name= Value R
12.|g.E.has(Name, Value) Edges with property Name= Value
13.|g.E.has(’label’,1) Edges with label [
14.|g.V(id) The node with identifier id
15.]g.E(id) The edge with identifier id
16.]v.setProperty(Name, Value) Update property Name for vertex V U
17.|e.setProperty(Name, Value) Update property Name for edge e
18.|g.removeVertex(id) Delete node identified by id
19.|g.removeEdge(id) Delete edge identified by id D
20.|v.removeProperty(Name) Remove node property Name from v
21.|e.removeProperty(Name) Remove edge property Name from e
22.v.in() Nodes adjacent to V via incoming edges
23.|v.out() Nodes adjacent to V via outgoing edges
24.|v.both(‘l’) Nodes adjacent to V via edges labeled [
25.|v.inE.label.dedup() Labels of in coming edges of v (no dupl.)
26.|v.outE.label.dedup() Labels of outgoing edges of V (no dupl.)
27.|v.bothE.label.dedup() Labels of edges of v (no dupl.
28.|g.V filter{it.inE.count()>=k} Nodes of at least k-incoming-degree
29.|g.V filter{it.outE.count()>=k} |Nodes of at least k-outgoing-degree T
30. |g.V filter{it.bothE.count()>=k} |Nodes of at least k-degree
31.|g.V.out.dedup() Nodes having an incoming edge
32.|v.as(‘’).both().except(vs) Nodes reached via breadth-First
.store(j).loop(‘i’) traversal from v
33.|v.as(‘i’).both(*1s).except(j) Nodes reached via breadth-First
.store(vs).loop (‘") traversal from V on labels [S
34.|v1.as(’).both().except(j).store(j) [Unweighted Shortest Path from v1 to v2
loop('i’){lit.object.equals(v2) }
retain([v2]).path()
35.|Shortest Path on ‘I’ Same as Q.34, but only following label [

* [] denotes a Hash Map; g is the graph; v and e are node/edges.

4.2 Create Operations

Creation operators may be for nodes, edges, or even prop-
erties on existing nodes or edges. To create a complex ob-
ject, e.g., a node with a number of connections to existing
nodes, these operators must often be called multiple times.
We tested the insertion of nodes alongside some initial prop-
erty (Query 2), the insertion of edges with and without prop-
erties attached (Query 3, and 4), the insertion of properties
on top of existing nodes or edges (Query 5, and 6), and fi-
nally the insertion of a new node, alongside a number of
edges that connect it to other nodes already in the database
(Query 7). Note that one does not create an edge label with-
out an edge, so edge labels are instantiated with the edge
instantiation. In some of these (and other queries below) the
node (or the edge) is explicitly referred through its unique
id, and thus no search task is involved, as the lookup for the
object is performed before the time is measured.

4.3 Read Operations

Graph Statistics. (Queries 8, 9, and 10) Among the op-
erations that require a scan over the entire graph dataset,
three are included in the evaluation set. The first one scans
and counts all the nodes, the second counts all edges, and the
last counts distinct edge-labels. Performing the last opera-
tion also tests the ability of the system to maintain interme-
diate information in memory, since it requires to eliminate
duplicates before reporting the results.

Search by Property. (Queries 11, and 12) These are the
basic operators used for content filtering since they search
for nodes (or edges) that have a specific property. The name
and the value of the property are provided as arguments.

Search by Label. (Query 13) This task is similar to the
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previous, but filters edges with a given label. Labels are
fundamental components in a graph, and probably for this
reason the syntax in Gremlin & has distinct operators for
labels and properties, while in 2.6, they are treated equally.

Search by Id. (Queries 14, and 15) As it happens in almost
any other kind of database, a fundamental search operation
is the search by a key, i.e., ID. These two queries retrieve a
node and an edge, respectively, via their unique identifier.

4.4 Update Operations.

Since edges are first class citizens of the system, an update
of the graph structure, e.g., on the connectivity of two or
more nodes, requires either the creation of new edges or the
deletion of an existing one. In contrast, updates on objects
properties are possible without deletion/insertion. Thus, we
include Queries 16, and 17 to test the ability of a system to
change the value of a property of a specific node or edge.

4.5 Delete Operations.

We include three types of deletions: the deletion of a node
(Query 18), which implicitly requires also the elimination of
all its properties and edges; the deletion of an edge and
its attached properties (Query 19); and the deletion of a
property from a node or an edge (Queries 20, and 21).

4.6 Traversals

Direct Neighbors. (Queries 22, 23, and 24) A popular
operation is the retrieval of all the nodes directly reachable
from a given node (1-hop), i.e., those that can be found by
following either an incoming or an outgoing edge. Finally, a
specific query performs a 1-hop traversal only through edges
having a specific label, which allows more advanced filtering.

Node Edge-Labels. (Queries 25, 26, and 27) Given a
node, we often need to know the labels of the incoming,
outgoing, or both types of edges. This set of three queries
performs these three kinds of retrieval respectively.

K-Degree Search. (Queries 28, 29, 30, and 31) For many
real application scenarios, there is a need to identify nodes
with many connections, i.e., edges, since this is an indicator
of the importance of a node. The first three queries retrieve
nodes with at least k edges. They differ from each other in
considering incoming, outgoing, or both types of edges. The
fourth query identifies nodes with at least one incoming edge
and is often used when a hierarchy needs to be retrieved.

Breadth-First Search. (Queries 32, and 33) Some search
operations give preference to nodes found in close proximity
and are better implemented with a breadth-first search from
a given node. This ability is tested with these two queries.
The second being a special case of the first that considers
only edges with a specific label.

Shortest Path. (Queries 34, and 35) Another traditional
operation on graphs is the discovery of the path between two
nodes that contains the smallest number of edges. Thus, we
include these two queries, with the second query being the
special case that considers only edges with a specific label.

4.7 Complex Query Set.

In order to compare the insights obtained using the micro-
benchmark approach with those using a macro-benchmark,
and to test the ability of the systems to optimize complex



queries, we also created a workload of 13 queries based on
the LDBC Social Network benchmark [26]. These queries
mimic the tasks that may be performed by a new user in
the system, from the creation of an account (creating a new
node with attributes) and fill-up of the profile (connecting
to nodes representing the school, place of birth, and work-
place), to the task of retrieving recommendations of items
or other users. For these operations, we include in the work-
load queries composed of multiple primitive operators, mul-
tiple join predicates, sorting, top-k, and max finding. The
complete list is detailed in the technical report [40].

5. EVALUATION METHODOLOGY

Fairness, reproducibility, and extensibility have been three
fundamental principles in our evaluation of the different sys-
tems. In particular, a common query language and input
format for the data has been adopted for all the systems.
We ensured that each query execution was performed in iso-
lation so that it was not affected by external factors. Any
random selection made in one system (e.g., a random selec-
tion of a node in order to query it) has been maintained the
same across the other systems (more details are reported in
the report [40]). The goal is to perform a comparative eval-
uation and not an evaluation in absolute terms. Both real
and synthetic datasets have been used, especially of large
volumes, in order for the experiments to be able to highlight
the differences across the systems also in terms of scalabil-
ity. Our evaluation methodology has been materialized in
an open-source test suite [40], which contains scripts, data,
and queries, and is extensible to new systems and queries.

Common Query Language. All queries are written in
Gremlin [56] that all the graph databases we tested support
through implemented adapters.

Hardware. For the experiments we used a machine with
a 24-core CPU, an Intel Xeon E5-2420 1.90GHz, 128 GB of
RAM, 2TB hard disk (20000 rpm), Ubuntu 14.04.4 operat-
ing system, and with Docker 1.13, configured to use AUFS
on ext4. Each graph database was configured to be free to
use all the available machine resources, e.g., for the JVM
we used the option -Xmx120GB. For other parameters, we
used the settings recommended by the vendors.

Test Suite. We have materialized the evaluation proce-
dure into a software package (a test suite) and have made
it freely available, enabling repeatability and extensibility.
The suite contains the scripts for installing and configuring
each database in the Docker environment and for loading
the datasets. It provides also the queries and a script that
instantiates the Docker containers and provides the parame-
ters required by each query. To test a new query it suffices to
write it into a dedicated script, while to perform the tests
on a new dataset, one only needs to place the dataset in
GraphSON file (plain JSON) in the dedicated directory.

Datasets. We tested our system on both real and synthetic
datasets. The first dataset (MiCo) describes co-authorship
information crawled from the CS Microsoft Academic por-
tal [25]. Nodes represent authors, while edges represent co-
authorships between authors and have as a label the num-
ber of co-authored papers. The second dataset ( Yeast) is a
protein interaction network [14]. Nodes represent budding
yeast proteins (S.cerevisiae) [16] and have as labels the short
name, a long name, a description, and a label based on its

Table 3: Dataset Characteristics

Connected
Component Degree
V| |E| IL| # ‘Maxim Density |Modularity Avg‘Max A
Yeast | 2.3K | 7.1K | 167 | 101 | 2.2K [1.34%10°3[3.66*10 2] 6.1 | 66 |11
MiCo | 100K | 1.1M | 106 | 1.3K | 93K |1.10%107%|5.45%103|21.6|1.3K |23
Frb-O | 1.9M | 4.3M | 424 | 133K | 1.6M |1.19%107°%]9.82%1071| 4.3 | 92K |48
Frb-S | 0.5M | 0.3M [1814(0.16M| 20K [1.20%10%]9.91%10"1| 1.3 | 13K | 4
Frb-M| 4M | 3.1M |2912| 1.1M | 1.4M |1.94%10~7|7.97%10"1| 1.5 |139K|37
Prb-L |28.4M|31.2M|3821| 2M | 23M |[3.87%1078|2.12%10"!| 2.2 |1.4M|33
[ldbc  [184K[1.5M] 15 [ 1 [ 184K [4.43%107°] 0 [16.6] 48K [10]
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putative function class. Edges represent protein-to-protein
interactions and have as label the respective protein classes.

The third real dataset is Freebase [30], which is one of the
largest knowledge bases freely available for download nowa-
days. Nodes represent entities or events, and edges model
relationships between them. We took the latest snapshot,
cleaned it, and considered four subgraphs of it of different
sizes [39,50]. The raw data dump contains 1.9B triples [30],
many of which are duplicates, technical or experimental
meta-data, and links to other sources that are commonly
removed [13,50], thus leaving a clean dataset of 300M facts.
The sizes of the samples were chosen to ensure that all the
engines had a fair chance to process them in a reasonable
time, but, on the other hand, to show also the system scal-
ability at levels higher than those of previous works.

In this study, we created one subgraph (Frb-O) by con-
sidering only the nodes related to the topics of organiza-
tion, business, government, finance, geography and military,
alongside their respective edges. Furthermore, we created
other 3 graph datasets by randomly selecting 0.1%, 1%, and
10% of the edges from the complete graph, resulting in the
Frb-S, Fro-M, and Frb-L datasets, respectively.

We generated a synthetic dataset [40] using the data gen-
erator provided by the Linked Data Benchmark Council
(LDBC) [26], which produces graphs that mimic the char-
acteristics of a real social network with power-law structure,
and real-world characteristics like assortativity based on in-
terests or preferences (ldbc). We selected this in place of
any available social network dataset because it is richer in
attribute types, edge types and relationships, and it is the
only existing dataset with attributes on the edges.

The generator was instructed to produce a dataset sim-
ulating the activity of 1000 users over a period of 3 years.
The Ildbc is the only dataset with properties on both edges
and nodes. The others have properties only on the nodes.

Table 3 provides the characteristics of the aforementioned
datasets. It reports the number of nodes (|V|), edges (|E|),
labels (|L[), connected components (#), the size of the max-
imum connected component (Maxim), the graph density
(Density), the network modularity (Modularity), the aver-
age degree of connectivity (Avg), the max degree of connec-
tivity (Max), and the diameter (A).

As shown in the table, MiCo and Frb are sparse, while
ldbc and Yeast are one order of magnitude denser, which
reflects their nature. The Idbc is the only dataset with a
single component, while the Frb datasets are the most frag-
mented. The average and maximum degree are reported
because large hubs become a bottleneck in traversals.

Evaluation Metrics. We evaluated the systems consid-
ering the disk space, the data loading, the query execution
time, as well as our experience in their usage.



6. EXPERIMENTAL RESULTS

We provide first an overview of the results of the experi-
mental evaluation performed for the individual types of op-
erations, and then, in Section 6.5 and Table 4, we provide
an overall evaluation and the main insights.

Throughout our tests, we noticed that MiCo and Idbc were
giving results similar to Frbo-M and Frb-O. Yeast was so
small that didn’t highlight any particular issue, especially
when compared to the results of Frb-S. We also tried to load
the full freebase graph (with 314M edges and 76M nodes),
but only Neo4J, Sparksee, and Sqlg managed to do so with-
out errors, and only Neo4J (v.3.0) successfully completed
all the queries. Furthermore, the running times recorded on
the full dataset respected the general trends witnessed with
its subsamples. Thus, in what follows, we focus only on the
results of Frb-S, Frb-O, Frb-M, and Frb-L and make refer-
ence to the other samples only when they show a behavior
different from the one of Freebase. Additional details about
the experimental results that are not mentioned here can be
found in the extended version of the paper [40].

6.1 System Configuration

The system configuration is important since the different
parameters affect significantly its performance. Neo4J does
not need any special configuration to run. OrientDB, in-
stead, supports a default maximum number of edge labels
equal to 32676 divided by the number of CPU cores and re-
quires disabling a special feature in order to support more.
ArangoDB requires configurations for the engine and for its
V8 javascript server for logging. With default values, it gen-
erates approximately 40 GB of log files in 24 hours and is not
possible to force it to allocate more than 4GB of memory. In
Titan, the most important configuration is that of the JVM
Garbage Collection and of the Cassandra backend. The
other systems that are also based on Java, namely, Blaze-
Graph, Neo4J, OrientDB and Titan, are equally sensitive
to the garbage collection, especially for very large datasets
that require large amounts of main memory. As a general
rule, the option -XX:+UseG1GC for the Garbage First (G1)
garbage collector is strongly recommended. Finally, Sqlg has
a limit on the maximum length of labels (due to Postgresql),
which requires special handling.

As a general observation, it seems that Neo4J is a mature
system in which the developers have paid attention to both
usability and automatic tuning. The rest of the systems are
heavily restricted by their underlying technology, which sig-
nificantly affects the system performance if not well-tuned.

6.2 Data Loading

Execution. Many systems were failing or taking days to
load the data through Gremlin (using query 1). The Grem-
lin implementation of ArangoDB was sending each node
and edge insertion instruction separately to the server via
HTTP calls, making it prohibitively slow to load with this
method even small datasets. OrientDB had a similar limita-
tion and was, in addition, performing a lot of bookkeeping
tasks for each edge-label it was loading. For both we used
implementation-specific scripts and commands, bypassing
the Gremlin library, in order to load the datasets. To load
the data in BlazeGraph, we had to explicitly activate a “bulk
loading” option. Without it, the system processes each label
and node separately and updates its meta-data structures af-
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ter the insertion of each such item. In Titan, the delays were
higher. That was due to consistency checks and schema in-
ference tasks. Disabling automatic schema inference was sig-
nificantly reducing the loading times, but required to specify
the schema before inserting any data, meaning that Titan
was not able to handle dynamic schema updates transpar-
ently. NeodJ, Sqlg, and Sparksee managed loading the data
through the Gremlin API without issues, which indicates
that they offer a good Gremlin implementation.

Time. In terms of loading time (Figure 3(a)), ArangoDB
was the fastest, mainly thanks to the use of native scripts
we had to employ to load data in reasonable time. Neo4J
was almost equally fast, proving that a good implemented
Gremlin API can achieve as good performance as the native
scripts. The loading time of the different size datasets on
Sqlg and OrientDB illustrated a high sensitivity to the edge
label cardinality. This was because both Sqlg and OrientDB
create and use different structures for different edge labels.
BlazeGraph, on the other hand, updates and balances its
B+Tree index structure after every insertion, and this made
it up to 3 orders of magnitude slower than the other engines.

Space. We studied the disk space that the datasets occu-
pied in the different systems to identify those with the most
effective compression strategies. Although disk space may
not be a major concern nowadays, it becomes relevant, for
instance, in systems with solid state drives. The results of
the experiments are shown in Figures 1(a) and 1(b). The
results of the datasets Frb-O, Frb-M, and Frb-L show Titan
as the one with the best space performance. Its strategy
is to compact node identifiers in each adjacency list with a
form of delta encoding, a strategy very effective in graphs
with nodes of high degree. For the ldbc dataset, instead,
where much textual information is shared by many objects,
OrientDB and Sparksee achieved the least space consump-
tion because they de-duplicate attribute values. Given that
OrientDB creates different files for each distinct edge label,
we see that it is the second last in terms of space on the Frb-
S dataset that contains many different edge labels (~1.8K)
for relatively few edges (~300K). Finally, we can see that
BlazeGraph requires, on average, three times the size of any
other system, on all the datasets, and this is due to the fact
that it instantiates a journal file of fixed size, and produces
a lot of data replication with its different indexes.

6.3 Complex Queries

For completeness, we first evaluate the graph databases
using complex queries of an existing benchmark, the LDBC,
applied on their Idbc dataset (Figure 2). For these as well
we set a time-out of 2-hours. BlazeGraph is not reported
in the figure because the queries timed-out. ArangoDB and
Titan (v.0.5) were, in general, the slowest, which indicates
that they could not effectively exploit the index structures
and neither employ any advanced optimization. Yet, for
ArangoDB this result fails to demonstrate that there are
cases (identified below) in which it can actually perform
better than others. Titan (v.1.0) was very fast for some
queries involving short joins and for some with single-label
selections. Yet, the micro-benchmark analysis (below) shows
that this result doesn’t generalize. This type of performance
is due to the specific query and to the help of caching from
the Cassandra back-end. As we will see below in the result
of our microbenchmark, Titan (v.1.0) is consistently slower
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than other systems when the graph gets larger and when
the query cannot exploit any cache. Sqlg is the fastest in al-
most half the queries. Hence, we question the reason why in
some cases (e.g., the last query) Sqlg is much slower than the
competition. Especially, it is puzzling to compare the last
and the second to last queries, both performing some sort
of traversal. Again, the micro-benchmark analysis identifies
the characteristics of the best performing operators in Sqlg,
which are exploited by those queries that can be translated
to a single relational operator or to conditional join queries,
with no recursion and short join chains that traverse only
few edge labels with limited cardinality. In these queries,
the system does not incur in expensive joins and it is able
to take advantage of the relational optimizer and exploit
indexes. Those cases in which Sqlg is slower are, instead,
queries that traverse many edges and do not filter on a sin-
gle edge label, and thus generate large intermediate results.

6.4 Micro-benchmark Results

We now turn to our micro-benchmark queries.

Completion Rate. For online applications, it is important
to ensure that the queries terminate in a reasonable amount
of time. For this, we count the queries that did not complete
within 2 hours, either in isolation or in batch mode, and
illustrate the results in Figure 1(c).

Neo4J, in both versions, is the only system which suc-
cessfully completed all the tests with all the parameters on
all the datasets (omitted in the figure). OrientDB is the
second best, with just a few timeouts on the large Frb-L.
BlazeGraph is at the other end of the spectrum, collecting
the highest number of timeouts. It reaches the time limit
even for some batch executions on Yeast, and almost on
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all the queries on Frb-L. In general, the most problematic
queries are those that have to scan or filter the entire graph,
i.e., queries Q.9 and Q.10. Some shortest-path searches and
some breath-first traversals with depth 3 or more reach the
timeout on Frb-O, Frb-M and Frb-L in most databases. The
filtering of nodes based on their degree (Q.28, Q.29, and
Q.30) and the search for nodes with at least one incoming
edge (Q.31) are proved to be extremely problematic almost
for all the databases apart from Neo4J and Titan (v.1.0).
In particular for Sparksee, on all the Freebase subsamples,
these queries cause the system to exhaust the entire avail-
able RAM and swap space (this has been linked to a known
problem in the Gremlin implementation). ArangoDB failed
these last queries only on Frb-M and Frb-L, and OrientDB
only on Frb-L. These results highlight the benefits of sepa-
rating the graph structure from the attribute values, allow-
ing native systems to execute fast even queries that require
access to large portions of the graph.

Insertions, Updates and Deletions. For operations that
add new objects (nodes, edges, or properties), we expe-
rienced extremely fast performances for Sparksee, Neo4J
(v.1.9), and ArangoDB, with times below 100ms, with Spark-
see being generally the fastest (Figure 3(b)). Moreover,
with the only exception of BlazeGraph, all the databases
are almost unaffected by the size of the dataset. We at-
tribute this result to the internal configuration of the data-
structures adopted where elements are stored in append-
only lists, while for ArangoDB these operations are regis-
tered in RAM and asynchronously flushed to disk. Blaze-
Graph, on the other hand, is the slowest with times between
10 seconds and more than a minute as each of these opera-
tions require multiple index updates. Both versions of Titan
are the second slowest systems, with times around 7 seconds
for the insertion of nodes, and 3 seconds for the insertion of
edges or properties, while for the insertion of a node with
all the edges (Q.7) it takes more than 30 seconds. Spark-
see, ArangoDB, OrientDB, Sqlg, and Neo4J (v.1.9) complete
the insertions in less than a second. OrientDB is among the
fastest for insertions of nodes (Q.2) and properties on both
nodes and edges (Q.5 and Q.6), but is much slower, showing
inconsistent behavior, for edge insertions. Neo4J (v.3.0), is
more than an order of magnitude slower than its previous
version, with a fluctuating behavior that does not depend
on the size of the dataset. We will see below that this de-
pends on some initialization procedure. Sqlg is one of the
fastest for insertions of nodes as these operations translate
into inserting a tuple into a relational table, while is much
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Figure 4: Selection Queries: general selections (a), search by id (b), and indexed property search (c).

slower for all other queries where it has to change the ta-
ble structure. Similar results are obtained for the update of
properties on both nodes and edges (Q.16, and Q.17), and
for the deletion of properties on edges (Q.21).

On the other hand, the performance of node removal (Q.18)
for OrientDB, Sqlg, and Sparksee seems highly affected by
the structure and size of the graphs (Figure 3(c)). While
ArangoDB and Neo4J (v.1.9) remain almost constantly be-
low the 100ms threshold, Neo4J (v.3.0) completes all the
deletions between 0.5 and 2 seconds, showing that there
is some overhead intervening. Finally, for the removal of
nodes, edges, and node properties, Titan obtains an im-
provement of almost one order of magnitude, by exploiting
the benefits of the data organization in the column stores.
Note that ArangoDB is also consistently among the fastest,
but, its interaction through REST calls, the fact that up-
dates are asynchronous, and the missing support for trans-
actions, constitute a bias on those results in its favor because
the time is measured on the client side and we have no con-
trol on when those operations get materialized on disk.

General Selections. With read queries, some heteroge-
neous behaviors show up. The search by ID (Figure 4(b))
differs significantly from all the other selection queries (Fig-
ure 4(a)), and it’s in general much faster, this indicates spe-
cial attention from all vendors on this operation. Blaze-
Graph is again the slowest. All other systems take between
10ms (Sparksee) to 400ms (Titan) to satisfy both queries.
In counting nodes and edges (Q.8, and Q.9), Sparksee
has the best performance followed by Neo4J (v.3.0). For
BlazeGraph and ArangoDB, node counting is one of the few
queries in this category that complete before timeout. Edge
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iteration, on the other hand, seems hard for ArangoDB,
which rarely completes within 2 hours for the Freebase datasets,
as it materializes all edges while counting them.

Computing the set of unique labels (Q.10) changes a little
the ranking. Here, the two versions of Neo4J are the fastest
databases, while Sparksee is a little slower. Since the pre-
vious experiments showed that Sparksee is fast in iterating
over the edges, we identified here a sub-optimal implemen-
tation of the de-duplication step.

The search for nodes (Q.11) and edges (Q.12) based on
property values perform similar to the search for edges based
on labels (Q.13), for almost all the databases. These 3
are some of the few queries where the RDBMS-backed Sqlg
works best, with results an order of magnitude faster than
the others. Hence, equality search on edge labels has not
received special optimizations in the various native systems.
This is despite Sparksee and OrientDB have data-structures
that should help optimizing this operation.

In general, the above results support the choice of sepa-
rating structure and data records since it allows to iterate
over the entire set of objects without materializing them.
They also indicate the importance of identifying the proper-
ties to be indexed, since, in all the systems, the search task
became problematic for large datasets. The RDBMS was
less affected in this situation, especially for edge labels due
to the storage of the relations in separate tables.

Traversals. For traversal queries that access the direct
neighborhood of a specific node (Q.22 to Q.27), OrientDB,
Neo4J (v.1.9), ArangoDB, and then Neo4J (v.3.0) are the
fastest (Figure 5(a)), with response times below the 60ms,
and are robust to variations in graph size and structure.
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Figure 7: Performance of (a) SP, (b) label-constrained BFS and SP, and (c,d) Overall for Single and Batch.

In contrast, Sparksee seems to be more sensitive, requiring
around 150ms on Frb-L. The only exception for Sparksee is
the visit of the direct neighborhood of a node filtered by
edge labels, in which case it is on par with the former sys-
tems. BlazeGraph is an order of magnitude slower (~600ms)
preceded by Titan (~160ms). We notice also that Sqlg is
the slowest engine for these queries, unless a filter is posed
on the label to traverse, in which case Sqlg becomes much
faster (explaining the good performance in Figure 2).
When comparing the performance of queries from Q.28
to Q.31, which traverse the entire graph filtering the nodes
based on the edges around them, as shown in Figure 5(b),
Neo4J (v.3.0) presents the best performance, with its older
version being the second fastest. Those two are also the only
two engines that complete these queries on all datasets. All
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the systems tested are affected by the number of nodes and
edges to inspect. Sparksee is unable to complete any of these
queries on Freebase due to the exhaustion of the available
memory, identifying a problem in the implementation, as
this never happens in any other case. BlazeGraph as well
hits the time limit on all samples, while ArangoDB is able to
complete only on Frb-S and Frb-O. Finally, Sqlg is able to
complete only Q.31, with time comparable to Neo4J (v.1.9).
Yet, all systems complete the tasks on Yeast, ldbc and MiCo.
Breadth-first (BFS) (Q.32 and Q.33) and shortest path
(SP) search (Q.34 and Q.35) are important operations in
graphs. The performance of the unlabeled version of BFS,
shown in Figure 6, highlights the good scalability of Neo4J at
all depths. OrientDB and Titan give the second fastest times
for depth 2, with times 50% slower than those of Neo4J.



For depth 3 and higher (Figures 6(b,c,d)), OrientDB is a
little faster than Titan. On the other hand, in these queries,
we observe that Sqlg and Sparksee are actually the slowest
engines, even slower than BlazeGraph sometimes. For the
shortest path with no label constraint (Q.34, Figure 7(a)),
the performance of the systems was similar to the above,
even though BlazeGraph and Sparksee are in this case very
similar, while Sqlg is still the slowest since it accesses all
tables for all edges, and performs very large joins.

The label-filtered version of both the breadth-first search
and the shortest path query on the Freebase samples (not
shown in a figure) were extremely fast for all datasets be-
cause the filter on edge labels stops the exploration almost
immediately, i.e., beyond 1-hop the query returned an empty
set, hence the running time was not showing any interest-
ing result. Running the same queries on ldbc we still ob-
serve (Figure 7(b)) that Neo4J is the fastest engine, while
Sparksee is the second fastest in par with OrientDB for the
breadth-first search. Instead, on the shortest path search
filtered on labels, Titan (v.1.0) gets the second place.

Such results support the choice of index-free traversals
implemented by the native systems for large and expensive
visits on the graph. Yet, the dedicated structural index
employed by Titan reaches the second-best performance.

Effect of Indexing. The existing systems provide no sup-
port for structural indexes, i.e., user-specified indexes for
graph structures. They all have some form of indexes al-
ready implemented and hard-wired into the system. The
only kind of index that can be controlled by the users is on
attributes, and this is what we study. BlazeGraph provides
no such capability, so is not considered. ArangoDB showed
no difference in running times, so we suspect some defect
in the Gremlin implementation. Insertions, updates, and
deletions, as expected, become slower since the index struc-
tures have to be maintained, but not more than 10% in gen-
eral, apart from Neo4J (v.3.0) and OrientDB that showed
delays of about 30% and 100%, respectively. Despite this
increase, NeodJ (v.1.9), Sparksee, and OrientDB remain the
fastest systems for CUD operations. For search queries on
node attributes, i.e., Q.11 (Figure 4(c)), the presence of in-
dexes gives Neo4J (v.1.9), OrientDB, Titan (v.0.5), and Ti-
tan (v.1.0) an improvement of 2 to 5 orders of magnitude
(depending on the dataset size), while Sqlg witnesses up to
a 600x speed up. We also see that Titan (v.1.0) still encoun-
ters problems on Frb-L. Sparksee and Neo4J (v.3.0) are not
able to take advantage of such indexes. As a conclusion, it
seems that there is space for optimization in this sector.

Single vs Batch Execution. We looked at the time differ-
ences between single (run in isolation) and batch executions
(Figure 7(c) and (d)). Tests in batch mode do not create
any major changes in the way the systems compare to each
other. For the retrieval queries, the batch executions of 10
queries take exactly 10 times the time of one iteration, i.e.,
no benefit is obtained from the batch execution. Instead, for
the “CUD?” operations, the batch takes less than 10 times the
time needed for one iteration, meaning that in single mode
most of the running time is due to some initial set-up for the
operation. For traversal queries, the batch executions only
stress the differences between faster and slower databases.

Progress across Versions. An important observation re-
gards the difference in performance observed across different
versions of the same system, e.g., Neo4J. For Neo4J, in some

Table 4: Evaluation Summary
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cases, we see improvements or similar performance of the
newer version compared to the old. Yet, we observe the op-
posite in very fast operations, i.e., “CUD” queries and Search
by ID. This is due to the overhead for accessing a wrapper li-
brary that was added in the newer version to cope with some
licencing issues (i.e., Tinkerpop adopted the Apache licence,
and the incompatibility in the licences forced the developer
to add a wrapper). Furthermore, the global node filtering
based on degree (Q28-31) and also some other traversals
not filtered by type, show worsened performance. We found
that in the new version the storage format and the part for
traversal of relationships have been completely rewritten to
improve filtered traversals (so traversals restricted to a sin-
gle edge type). In particular, relationship chains are now
split by type and direction. Disk storage format changed as
well. This probably adds an overhead to queries that access
many edges of different types. Titan, on the other hand,
demonstrated a slightly improved performance in the newer
version. There, the main difference is that the software be-
came production ready (from v.0.5 to v.1). It is important
to note here that the newer version supported also a newer
version of Gremlin language. The new version is offering a
cleaner syntax, but the way the operators have been imple-
mented across versions is orthogonal to the language.

6.5 Opverall Evaluation and Insights

Table 4 provides a summarization of the observed perfor-
mance of the different GDBs in our experiments. The tick
symbol (/) means that the system achieved the best or near-
to-best performance. The warning symbol (A) means that
the system performance was towards the low end or indi-
cated execution problems. Through this table, it is possible
for a practitioner to identify the best system for a specific
workload or scenario. One can see for instance that the na-
tive graph databases Neo4J, OrientDB and in part Sparksee,
are better candidates for graph traversals operators (T). On
the other hand, with data of few node and edge types, and a
heavy search workload, hybrid systems may be a better fit.

Neo4J is the system with the shortest execution time when
looking at the cumulative time taken by each system to com-
plete the entire set of queries in both single and batch exe-
cutions (Figure 7(c) and (d)).

OrientDB also obtained relatively fast running times, which
are often on par with Neo4J, and in some cases better than
one of its two versions.



However, it doesn’t perform well when large portions of
the graph have to be processed and kept in memory, e.g.,
computing graph statistics on Frb-L.

Titan results are quite often one order of magnitude slower
than the best engine. It is slower in create and update op-
erations but faster in deletions. This is most likely due to
the tombstone mechanism, that in deletions marks an item
as removed instead of actually removing it.

Sparksee gives almost consistently the best execution time
in create, update and delete operations. Although it is not
very fast with deletions of nodes having lots of edges, it
is still better than many of the others. It performs better
also in edge and node counts, as well as in the retrieval of
nodes and edges by ID, thanks to its internal compressed
data structures. Nevertheless, it performs worse than the
others for the remaining queries due to suboptimal filtering
and memory management. For instance, it gives a lot of
timeouts on the degree-based node search queries.

ArangoDB excels only in few queries. For creations, up-
dates and deletions, it ranks among the best. This is also
because all updates are kept in main memory and synced
on disk asynchronously. For retrievals and search, its per-
formance is in general poor. This is due to the way Gremlin
primitives are translated into the engine, where ArangoDB
has to materialize all the objects in order to iterate through
them. An exception is when searching by ID, which is ex-
pected since at the core it is a key-value store, while for
traversals it has a narrow lead over Sparksee and Blaze-
Graph demonstrating some effectiveness of its edge-specific
hash index.

Sqlg shows the expected low performance for all the traver-
sal operations, due to the need to traverse the graph via re-
lational joins instead of via direct links to node/edges. How-
ever, for queries containing 1 or 2-hop traversals restricted
to a single edge-label, like some of the complex queries, it
performs extremely well. In these cases, it takes advantage
of the ability to conflate multiple operations in a single query
and filter using foreign key indexes for specific edge-labels.

BlazeGraph results show in general that the indexes it
builds automatically do not help much. Moreover, since each
single step is executed against some specific graph API, in-
stead of having the Gremlin query translated into SPARQL
and executed as such, its query processing is, in general,
the less efficient. This graph API implementation does not
allow it to exploit any of the optimization implemented by
the SPARQL query engine.

System Selection. All the above observations can serve as
a guide in the choice of the right system for the different sce-
narios. The two main factors that should be considered in
each scenario are the characteristics of the dataset and the
intended workload, with the latter weighing more. When
most of the intended operations are search on node prop-
erties, with few traversals, a hybrid system is preferable,
e.g., Sqlg. Such systems allow also the re-utilization of the
existing technologies in an enterprise and allow the exploita-
tion of robust optimizers and advanced index mechanisms.
The choice of hybrid systems is also preferable for data in
large enterprises that have a low degree of heterogeneity. On
the other hand, when the data is highly heterogeneous, i.e.,
many different edge types, and in the workload is predom-
inant the presence of long traversals, native graph systems
appear to be a better choice. This kind of data is often
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coming from social networks or is the result of the integra-
tion of many different heterogeneous sources. Another factor
to consider is the dynamicity of the data. If many insert,
update, and delete operators are to be performed, Sparksee,
and ArangoDB are the best performing in our study. If how-
ever the data is going to be relatively static and the majority
of operations are going to be search queries, then Neo4J and
OrientDB perform better on graph search and Sqlg on con-
tent filters. It is important to note that having studied all
the well-known systems characterised as GDB, our findings
offer a good understanding of the behavior of GDB solutions.
There may be of course proprietary or special-purpose solu-
tions, which are not characterised as GDBs, yet, they offer
some graph data storage and querying functionality. Such
a system may show a different behavior but are not part of
our focus of the current work.

Hybrid and Native systems. The experiments show that
hybrid and native systems perform differently. For a limited
set of use cases the hybrid systems in our study perform
equally well as the native, but for traversal queries, like find-
ing the connectivity between two nodes, BF'S visits, and the
enumeration of edges, these hybrid systems under-perform
significantly. Hence, this suggests that the design choices
made in native systems, e.g., the separation of the graph
structure from other data values, are more effective than
the strategies adopted by the hybrid systems in our study.
The benefit of the effectiveness of the native GDBs against
the hybrid may, however, vary based on the context. In
graph analytic pipelines there are many tasks that need to
be performed on the data from different tools. Using a na-
tive GDB forces the data to be imported in the GDB for
the management and exported for other tasks, diminishing
the benefit of the effective management the native GDB of-
fers. A hybrid GDB, however, can process the data even if
residing in an external storage, thus, big analytic pipeline
systems, like SAP Hana, may opt for a hybrid GDB solution.

Query language. Although all the systems we studied
support Gremlin, each offers also its own native query lan-
guage and performs all the optimizations on it. Many trans-
late Gremlin queries in a one-to-one fashion to native prim-
itives, but in that way, many Gremlin optimizations can-
not be done. This behavior indicates that for many GDBs,
Gremlin is not their first priority. The fact that, in some
cases, data loading was not possible through Gremlin but
only through native calls, and the problems with large in-
termediate results is an additional evidence of this priority.
This optimization, however, is for complex queries. Our mi-
crobenchmark approach is based on primitive queries, hence,
our findings are not affected by this limitation.

7. CONCLUSION

We have performed an extensive experimental evaluation
of the state-of-the-art graph databases in ways not tested
before. We provided a principled and systematic evaluation
methodology based on microbenchmarks. We have materi-
alized it into an evaluation suite, designed with extensibility
in mind, and containing datasets, queries and scripts. Our
findings have illustrated the advantages microbenchmarks
can offer to practitioners, developers, and researchers and
how it can help them understand better design choices, per-
formances, and functionalities of the graph database system.
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